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GENERAL RELATIVITY: Examples 4 Michaelmas 2015

1. Consider two stars, each of mass M , moving in a circular Newtonian orbit of radius R in the
x, y plane centred on the origin. Show that their positions may be taken to be

x = ±(R cos Ωt, R sin Ωt, 0) ,

where Ω2 = M/(4R3). Treating the stars as non-relativistic point masses (in the sense of ques-
tion 7 on sheet 3), compute the corresponding energy-momentum tensor, the second moment
of the energy distribution Iij , and the metric perturbation h̄ij . Determine the time average of
the power radiated in gravitational waves.

2. Show that the second-order terms in the expansion of the Ricci tensor around Minkowski
spacetime are

R(2)
µν [h] =
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hρσ∂µ∂νhρσ − hρσ∂ρ∂(µhν)σ +

1

4
∂µhρσ∂νh

ρσ + ∂σhρν∂[σhρ]µ

+
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∂σ(hσρ∂ρhµν)− 1
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∂ρh∂ρhµν −

(
∂σh

ρσ − 1
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∂ρh

)
∂(µhν)ρ .

3. (a) Use the linearized Einstein equations to show that in vacuum

〈ηµνR(2)
µν [h]〉 = 0 .

(b) Show that

〈tµν〉 =
1

32π
〈∂µh̄ρσ∂ν h̄ρσ −

1

2
∂µh̄ ∂ν h̄− 2∂σh̄

ρσ∂(µh̄ν)ρ〉 .

(c) Show that 〈tµν〉 is gauge invariant.

4. Let η be a p-form and ω a q-form on a manifold N . Show that the exterior derivative satisfies
the properties d(dη) = 0, d(η ∧ ω) = (dη) ∧ ω + (−1)pη ∧ dω and d(φ∗η) = φ∗(dη) where
φ :M→N for some manifold N .

5. A three-sphere can be parametrized by Euler angles (θ, φ, ψ) where 0 < θ < π, 0 < φ < 2π,
0 < ψ < 4π. Define the following 1-forms

σ1 = − sinψ dθ + cosψ sin θ dφ , σ2 = cosψ dθ + sinψ sin θ dφ , σ3 = dψ + cos θ dφ .

Show that dσ1 = σ2 ∧ σ3 with analogous results for dσ2 and dσ3.

6. For this question it may be helpful to recall questions 10 and 11 from example sheet 3. Consider
a metric of Lorentzian signature gαβ and its determinant g ≡ det gαβ. Show that

∂g

∂gαβ
= ggαβ ,

∂g

∂gαβ
= −ggαβ ,

where gαβ denotes the inverse metric. Conclude that the variation of the determinant g can
be expressed as

δ
√
−g = −1

2

√
−ggαβδgαβ .
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7. Let (N , g) be a spacetime and the covariant derivative be given by the Levi-Civita connection.
Let t : N → R be a foliation, Σt the spacelike hypersurfaces of this foliation and n be the unit
normal field on the Σt. We define the acceleration as ab = nc∇cnb. Show that

ab = Db lnα ,

where Db is the covariant derivative associated with the induced metric γab and α denotes the
lapse function.

8. Let (N , g) be a spacetime and the covariant derivative be given by the Levi-Civita connection.
Let t : N → R be a foliation, Σt the spacelike hypersurfaces of this foliation and n be the unit
normal field on the Σt. Let γab be the induced metric on the hypersurfaces and m = αn the
normal evolution vector. Show that

(b) Lmγab = −2αKab ,

(c) Lnγab = −2Kab ,

(d) Lmγab = 0 ,

where Lm and Ln denote the Lie derivative along the vector fields m and n, respectively, and
Kab is the extrinsic curvature.

9. The Lagrangian for the electromagnetic field is

L = − 1

16π
gabgcdFacFbd ,

where Fab is written in terms of a potential Aa as F = dA. Show that this Lagrangian
reproduces the energy-momentum tensor for the Maxwell field that was discussed in lectures.

10. A test particle of rest mass m has a (timelike) world line xµ(λ), 0 ≤ λ ≤ 1 and action

S = −m
∫
dτ ≡ −m

∫ 1

0

√
−gµν(x(λ))ẋµẋνdλ ,

where τ is proper time and a dot denotes a derivative with respect to λ.
(a) Show that varying this action with respect to xµ(λ) leads to the geodesic equation.
(b) Show that the energy-momentum tensor of the particle in any chart is

Tµν(x) =
m√
−g(x)

∫
uµ(τ)uν(τ) δ4(x− x(τ))dτ ,

where uµ is the 4-velocity of the particle.
(c) Conservation of the energy-momentum tensor is equivalent to the statement that∫

R

√
−gvν∇µTµνd4x = 0 ,

for any vector field vµ and region R. By choosing vµ to be compactly supported in a region
intersecting the particle world line, show that conservation of Tµν implies that test particles
move on geodesics. (This is an example of how the “geodesic postulate” of GR is a consequence
of energy-momentum conservation.)
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11. The action for Brans-Dicke theory of gravity is given by

S =
1

16π

∫ [
Rφ− ω

φ
gabφ,aφ,b + 16πLmatter

]√
−gd4x ,

where φ is a scalar field and ω is a constant. Ordinary matter is included in the action Lmatter.
How is the Einstein equation modified, and what is the equation of motion for φ? (See Misner,
Thorne and Wheeler or Carroll for further discussion of this theory.)

12. Calculate the extrinsic curvature tensor for a surface of constant t in the Schwarzschild space-
time

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

Do the same for a surface of constant r.


