Mathematical Tripos Part III Dr U. Sperhake
GENERAL RELATIVITY: Examples 4 Michaelmas 2015

1. Consider two stars, each of mass M, moving in a circular Newtonian orbit of radius R in the
x, y plane centred on the origin. Show that their positions may be taken to be

x = +(RcosQt, Rsint, 0),

where Q2 = M/(4R3). Treating the stars as non-relativistic point masses (in the sense of ques-
tion 7 on sheet 3), compute the corresponding energy-momentum tensor, the second moment
of the energy distribution I;;, and the metric perturbation ﬁij. Determine the time average of
the power radiated in gravitational waves.

2. Show that the second-order terms in the expansion of the Ricci tensor around Minkowski
spacetime are
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3. (a) Use the linearized Einstein equations to show that in vacuum
(i B[] =0.
(b) Show that
(t) = ﬁ(aﬂﬁmaﬁf’” _ %aﬂﬁ B — 20,1701,
(c) Show that (t,,) is gauge invariant.

4. Let n be a p-form and w a ¢-form on a manifold A'. Show that the exterior derivative satisfies
the properties d(dn) = 0, d(n Aw) = (dn) AN w + (=1)Pn A dw and d(¢*n) = ¢*(dn) where
¢ : M — N for some manifold N.

5. A three-sphere can be parametrized by Euler angles (0, ¢, ) where 0 < 0 < m, 0 < ¢ < 2,
0 < ¢ < 4m. Define the following 1-forms

01 = —sinydf + cosy sinfde, o9 =cospdf+siny sinfde, o3=dyp+costde.

Show that doy = 02 A o3 with analogous results for dos and dos.

6. For this question it may be helpful to recall questions 10 and 11 from example sheet 3. Consider
a metric of Lorentzian signature g,s and its determinant g = det go3. Show that

dg
5o = 99",
Jap
dg
W = —99a8

where ¢g®? denotes the inverse metric. Conclude that the variation of the determinant g can
be expressed as

1
V=g = —5V=990509""
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7. Let (N, g) be a spacetime and the covariant derivative be given by the Levi-Civita connection.
Let t : N'— R be a foliation, ¥; the spacelike hypersurfaces of this foliation and n be the unit
normal field on the ;. We define the acceleration as a, = n°V.ny. Show that

ap = Dyln o,

where Dy, is the covariant derivative associated with the induced metric v,;, and o denotes the
lapse function.

8. Let (W, g) be a spacetime and the covariant derivative be given by the Levi-Civita connection.
Let t : N — R be a foliation, ¥; the spacelike hypersurfaces of this foliation and n be the unit
normal field on the ¥;. Let 7, be the induced metric on the hypersurfaces and m = an the
normal evolution vector. Show that

(b) [fmlyab = —2aKy,

(C) LrYab = —2Kap

(d) Lmy*s =0,
where L,, and £, denote the Lie derivative along the vector fields m and n, respectively, and
K is the extrinsic curvature.

9. The Lagrangian for the electromagnetic field is

1
L= _ﬂgabngFachd ,

where F,; is written in terms of a potential A, as F' = dA. Show that this Lagrangian
reproduces the energy-momentum tensor for the Maxwell field that was discussed in lectures.

10. A test particle of rest mass m has a (timelike) world line z#(X), 0 < A <1 and action

S = —m/dT =-m /01 \/—g#,,(x()\))a'cl‘at"’d)\,

where 7 is proper time and a dot denotes a derivative with respect to A.
(a) Show that varying this action with respect to x*(\) leads to the geodesic equation.
(b) Show that the energy-momentum tensor of the particle in any chart is

T (2) =

)_\/_mT(x)/u#(T)u

where u* is the 4-velocity of the particle.
(c) Conservation of the energy-momentum tensor is equivalent to the statement that

Y(T) 54(x —xz(7))dT,

/ \/—gvVVuT“”d4:E =0,
R

for any vector field v* and region R. By choosing v* to be compactly supported in a region
intersecting the particle world line, show that conservation of TH” implies that test particles
move on geodesics. (This is an example of how the “geodesic postulate” of GR is a consequence
of energy-momentum conservation.)
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11. The action for Brans-Dicke theory of gravity is given by

1 w
S = / Rp — —g™¢ 46 + 167 Linater | vV—9d*z
167 10)

where ¢ is a scalar field and w is a constant. Ordinary matter is included in the action Lyatter-
How is the Einstein equation modified, and what is the equation of motion for ¢? (See Misner,
Thorne and Wheeler or Carroll for further discussion of this theory.)

12. Calculate the extrinsic curvature tensor for a surface of constant ¢ in the Schwarzschild space-
time

oM oM\ 7t
ds? — — <1 _ r> dt? + <1 — r) dr® +12(d6* + sin? 0 d¢?) .

Do the same for a surface of constant 7.



