
Mathematical Tripos Part II Lent term 2020

General Relativity, Examples sheet 4 Dr U Sperhake

Comments and corrections: e-mail to U.Sperhake@damtp.cam.

1 A static space-time has line element

ds2 = −e2φ/c
2

c2dt2 + hijdx
idxj (i, j = 1, 2, 3)

where φ and hij are independent of t. Show that

Γ0
αβ =

1

c2

(
Vα

∂φ

∂xβ
+ Vβ

∂φ

∂xα

)
and Γi00 = hij

∂φ

∂xj
e2φ/c

2

where Vα = (1, 0, 0, 0).

Let uα be the 4-velocity of a co-moving observer (i.e. an observer at rest in these coordinates, so
that ui = 0 and u0u0 = −c2). Show that

∇βuα = − 1

c2
uβ∇αφ

and deduce that ∇αφ = uβ∇βuα. Show further that

gαβ∇α∇βφ = Rαβu
αuβ

and hence that

hij∇i∇jφ+
1

c2
hij∇iφ∇jφ = Rαβu

αuβ

[The Ricci identity is uα;βγ − uα;γβ = Rδαβγuδ.] What does this reduce to in the Newtonian limit with
Tαβ = ρuαuβ?

2 A perfect fluid has 4-velocity uα and particle number density n, density ρ and pressure p. The
particle flux density Nα and energy-momentum tensor Tαβ are given by

Nα = nuα, Tαβ = (ρ+ p/c2)uαuβ + pgαβ ,

and both are conserved: Nα
;α = Tαβ ;β = 0.

(i) Suppose first that the fluid has zero pressure. Show that the fluid flow lines (integral curves of uα)
are geodesics and that ρ is proportional to n on each such geodesic.

(ii) Now consider a general perfect fluid and the weak-field metric

ds2 = −e2ϕ/c
2

c2dt2 + dx2 + dy2 + dz2 ,

with ϕ/c2 ∼ v2/c2 � 1, where v is a typical speed, so that uα ≈ (1,u). Show that, to lowest order,

∂n

∂t
+ ∇ · (nu) = 0,

where ∇ is the usual 3-dimensional flat space derivative. What is the corresponding equation for ρ?
[Recall (sheet 2) that Γββα = 1

2 (log(−g)),α.]

Show that
(ρ+ p/c2)uα;βu

β + p,α + c−2p,βu
βuα = 0

and hence that, in the Newtonian limit, ρui;βu
β = −p,i (i = 1, 2, 3) i.e.

∂u

∂t
+(u·∇)u = −∇φ− 1

ρ
∇p.
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3 The Friedman-Lemâıtre-Robertson-Walker (FLRW) metric is given by

ds2 = −c2dt2 + a2
(

dr2

1− kr2
+ r2dΩ2

)
and

Gtt =
3(ȧ2 + kc2)

a2
, c2Grr = −2aä+ ȧ2 + kc2

1− kr2
.

For a dust universe (Ttt = ρc4), show that ρa3 = ρ0, where ρ0 is a constant.

(i) In the case k = 0, show that aȧ2 = A2, where A is a constant and deduce that the universe expands
for ever. Without further calculation, explain how this conclusion is affected in the case k < 0.

(ii) In the case k > 0, we define a new coordinate η by
dη

dt
=

c

Ra
, where R2 = k−1. Derive the equations

a(η) = B(1− cos η) ct(η) = BR(η − sin η) ,

where B is a constant. Hence show that the universe recollapses within a finite time. Now set r = R sinχ
in the line element and use the formula for the 3-space volume element

dV =
√
gχχgθθgφφ dχ dθ dφ

to determine the volume of the universe at a given scale factor (the angular coordinates run from 0 to π
for χ and θ, and from 0 to 2π for φ). Hence find the maximum volume in terms of MG, where M is the
total mass of the universe, and c.

4 Obtain the geodesic equations for the closed (k = 1) FLRW dust universe, using η, χ, θ, φ coordinates
and show that there are null geodesics with θ = χ = 1

2π. How many times can a photon encircle the
universe from the time of creation to the moment of annihilation?

5 Show that the Einstein-Maxwell equations (i.e. the Einstein equations with energy momentum
tensor for an electromagnetic field Tαβ = FαγF βγ − 1

4F
γδFγδg

αβ) can be written

Rαβ = κ
(
FαγFβ

γ − 1
4gαβFγδF

γδ
)
.

You are given that, for a line element of the form

ds2 = −f(r)c2dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θ dφ2),

the only non-zero components of the Ricci tensor are

c−2Rtt/f = −fRrr = 1
2f
′′ + f ′/r, Rθθ = Rφφ/ sin2 θ = 1− rf ′ − f.

In the case

Ftr = −Frt =
Q

r2
, with Fαβ = 0 otherwise,

show that a solution can be found that reduces to the Schwarzchild solution for Q = 0.

Find an analogous solution in the case Rαβ = Λgαβ .
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6 A spacecraft is freely falling radially into a Schwarzschild black hole. It has 4-velocity V α and proper
time τ . It emits monochromatic radio of wavelength λe. Its signals propagate radially outwards and are
received, with wavelength λo, by a distant observer who is at rest with respect to the Schwarzschild
coordinates.

A retarded time coordinate u is defined by u = ct− r∗ where dr/dr∗ = F (r) and F (r) = 1− 2M/r.
Show that

ds2 = −F du2 − 2du dr + r2(dθ2 + sin2 θ dφ2) .

Show that
λo
λe

=
∆to
∆τ

=
∆uo
c∆τ

=
∆ue
c∆τ

≈ V u/c

where, for example, ∆to is the proper time interval during which the observer receives one cycle of the
signal and ∆τ is the time for the spacecraft to emit one cycle.

Show next that Vu = −K, where K is a constant, and that

V u =
K +

√
K2 − Fc2
F

, V r = −
√
K2 − Fc2.

Deduce that on the world line of the spacecraft near the horizon du/dr ∼ −2/F , and that u ∼ −2r∗

and F ∼ e−u/(4M).

Conclude that, just as the transmitter is about to cross the event horizon, the observer sees the
frequency red-shifted with an observer-time dependence ∝ exp(−ct/(4M)).

7 Show that, for an observer with proper time τ moving in the Schwarzschild space-time,

c2 = Fc2ṫ2 − ṙ2/F − r2(θ̇2 + sin2 θ φ̇2),

where ṫ = dt/dτ etc., and F = 1 − 2M/r. Show, that for an observer within the Schwarschild horizon,
ṙ2 ≥ −c2F however the observer moves. Deduce that any observer crossing the Schwarzschild horizon will
reach r = 0 within a proper time πM/c.

8 Let M be the torus (S1 × S1) and define the metric gαβ on M by

ds2 = sin θ(dφ2 − dθ2) + 2 cos θdθdφ,

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ 2π. Show that, for a null geodesic,

φ̇2 + 2φ̇θ̇ cot θ − θ̇2 = 0,

where dot is differentiation with respect to an affine parameter, and deduce that the curves given by
φ = −2 ln sin(θ/2) + φ0 and φ = −2 ln cos(θ/2) + φ0 are null geodesics. Use another first integral of
Lagrange’s equations to show that in both cases θ = pλ, where λ an affine parameter and p is a constant.

Show that one family of null geodesics wraps round the torus an infinite number of times within a
finite affine parameter, never reaching the null curve θ = 2π, and that the other family of null geodesics
crosses this curve.

Is this space geodesically complete? Is the Riemann tensor well-behaved (no calculation required)?
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9 A weak gravitational field has the spacetime metric gαβ = ηαβ + εhαβ + O(ε2), where ηαβ is the
Minkowski metric and ε small. Show that

Rαβγδ = 1
2ε[hαδ,βγ + hβγ,αδ − hαγ,βδ − hβδ,αγ ] +O(ε2).

Let h = hγγ and define hαβ = hαβ − 1
2h ηαβ . Show that hαβ = hαβ − 1

2h ηαβ . Show also that

Rαβ = 1
2ε[−�hαβ + hα

γ
,βγ + hβ

γ
,αγ + 1

2ηαβ�h ] +O(ε2).

where � = ηαβ∇α∇β . What are the linear vacuum equations for hαβ?

An infinitesimal coordinate transformation (which may be called a gauge transformation) is given
by xα → xα + εfα(x). Show that

hαβ → hαβ − fα,β − fβ,α +O(ε),

but that the curvature tensors are unchanged (to leading order in ε). Deduce that if fα is chosen to satisfy
�fα = hαβ,β , then in the new coordinates hαβ,β = 0. Conclude that the linearised Einstein equation for
weak fields in vacuum is the wave equation

�hαβ = 0 .

Consider a gravitational wave hαβ = Hαβ e
ikβx

β

in the above gauge, where Hab,c = 0. (Note:
we really mean hαβ ∝ Hαβ here unlike in the lecture where we started setting hαβ ∝ Hαβ). Show
that Hαβk

β = 1
2kαHβ

β and that kα is null. Show also that through remaining gauge freedom there is
arbitrariness in Hαβ → Hαβ + kαvβ + vαkβ for any vα. How many degrees of freedom are there for a
gravitational wave propagating in a given direction?

Show that Rαβγδk
δ = 0 to lowest order in ε.

If kα = k(1, 0, 0, 1), show that we may take the independent components to be H11 = −H22, H12 =
H21.

4


