Mathematical Tripos Part II Lent term 2020
General Relativity, Examples sheet 4 Dr U Sperhake

Comments and corrections: e-mail to U.Sperhake@damtp. cam.

1 A static space-time has line element
ds? = —e2¢/ 2qe? 4 hijd:cidxj (i,7=1,2,3)

where ¢ and h;; are independent of ¢. Show that
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where V,, = (1,0,0,0).
Let u® be the 4-velocity of a co-moving observer (i.e. an observer at rest in these coordinates, so
that u* = 0 and u’ug = —c?). Show that

1
Vgua = _C*Q'LLQVQQS

and deduce that V¢ = v Vguq. Show further that
9*PV o V56 = Rasu®u’

and hence that )

EAVAVIORE ?hijviwm = Ropuu’
[The Ricci identity is ¢a.py — Uayg = R? apyUs.] What does this reduce to in the Newtonian limit with
Top = puaug?
2 A perfect fluid has 4-velocity u® and particle number density n, density p and pressure p. The
particle flux density N and energy-momentum tensor T%? are given by

N = nu®, T = (p +p/02)uauﬁ +pg®?,

and both are conserved: N¢,, = 7% 5 = 0.

(i) Suppose first that the fluid has zero pressure. Show that the fluid flow lines (integral curves of u®)
are geodesics and that p is proportional to n on each such geodesic.

(ii) Now consider a general perfect fluid and the weak-field metric
ds? = 2/ 2d@t? + dz? + dy?® + dz*
with ¢/c? ~ v?/c? < 1, where v is a typical speed, so that u® ~ (1,u). Show that, to lowest order,

on
E+V~(nu)—0,

where V is the usual 3-dimensional flat space derivative. What is the corresponding equation for p?
[Recall (sheet 2) that I, = L (log(—g)),a.]

Show that
(p+ 1/ ua:pt’ +po+c2p suluy, =0

0 1
and hence that, in the Newtonian limit, pu;.gu”® = —p; (i = 1,2,3) i.e. a—ltl—i—(uV)u =—-V¢——Vp.
)



3 The Friedman-Lemaitre-Robertson-Walker (FLRW) metric is given by
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For a dust universe (Ty; = pc*), show that pa® = py, where p is a constant.

(i) In the case k = 0, show that aa®? = A?, where A is a constant and deduce that the universe expands
for ever. Without further calculation, explain how this conclusion is affected in the case k < 0.

d
dit] = é, where R? = k~!. Derive the equations

a(n) = B(1 —cosn)  ct(n) = BR(n —sinn),

(ii) In the case k > 0, we define a new coordinate 7 by

where B is a constant. Hence show that the universe recollapses within a finite time. Now set r = Rsin x
in the line element and use the formula for the 3-space volume element

AV = \/Gxx96696¢ dx A0 do

to determine the volume of the universe at a given scale factor (the angular coordinates run from 0 to =
for x and 6, and from 0 to 27 for ¢). Hence find the maximum volume in terms of MG, where M is the
total mass of the universe, and c.

4 Obtain the geodesic equations for the closed (k = 1) FLRW dust universe, using ), x, 6, ¢ coordinates

and show that there are null geodesics with 8 = x = %77. How many times can a photon encircle the

universe from the time of creation to the moment of annihilation?

5 Show that the Einstein-Maxwell equations (i.e. the Einstein equations with energy momentum
tensor for an electromagnetic field T7%% = FCWFﬁ,Y - %F“"sF,ﬂ;go‘B) can be written

Rop = K(FayF" — 1905 F s F°).
You are given that, for a line element of the form
1
f(r)

the only non-zero components of the Ricci tensor are

ds? = —f(r)Edt® + ——dr? + r%(d6* + sin? 0 d¢?),

¢ ?Ru/f=—fRw=3%f"+F/r. Rop=Rpy/sin®0=1—rf"—f.

In the case

F, =—F, = with F,3 = 0 otherwise,

7,72 ’
show that a solution can be found that reduces to the Schwarzchild solution for @ = 0.

Find an analogous solution in the case Rog = Agag-



6 A spacecraft is freely falling radially into a Schwarzschild black hole. It has 4-velocity V¢ and proper
time 7. It emits monochromatic radio of wavelength A.. Its signals propagate radially outwards and are
received, with wavelength A,, by a distant observer who is at rest with respect to the Schwarzschild
coordinates.

A retarded time coordinate u is defined by u = ¢t — r* where dr/dr* = F(r) and F(r) =1—2M/r.
Show that
ds* = —F du® — 2du dr + r*(d6?* + sin® 0 d¢?) .

Show that
Ao _ At, _ Au, _ Au, ~ Ve
Ae AT cAT AT
where, for example, At, is the proper time interval during which the observer receives one cycle of the

signal and A7 is the time for the spacecraft to emit one cycle.
Show next that V,, = —K, where K is a constant, and that

2 __ 2
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Deduce that on the world line of the spacecraft near the horizon du/dr ~ —2/F, and that u ~ —2r*
and F ~ e~ u/(4M),

Conclude that, just as the transmitter is about to cross the event horizon, the observer sees the
frequency red-shifted with an observer-time dependence o exp(—ct/(4M)).

7 Show that, for an observer with proper time 7 moving in the Schwarzschild space-time,
& = Fci? — 72 JF — r2(62 + sin? 0 ¢?),

where ¢ = dt/dr etc., and F = 1 — 2M/r. Show, that for an observer within the Schwarschild horizon,
72 > —c?F however the observer moves. Deduce that any observer crossing the Schwarzschild horizon will
reach r = 0 within a proper time 7wM/c.

8 Let M be the torus (S! x S1) and define the metric g,5 on M by
ds® = sin 0(d¢? — db?) + 2 cos 0dfdo,
where 0 < 6 < 27 and 0 < ¢ < 27. Show that, for a null geodesic,
$% + 240 cot 6 — 62 = 0,

where dot is differentiation with respect to an affine parameter, and deduce that the curves given by
¢ = —2Insin(0/2) + ¢ and ¢ = —21Incos(6/2) + ¢ are null geodesics. Use another first integral of
Lagrange’s equations to show that in both cases § = p\, where A an affine parameter and p is a constant.

Show that one family of null geodesics wraps round the torus an infinite number of times within a
finite affine parameter, never reaching the null curve § = 27, and that the other family of null geodesics
crosses this curve.

Is this space geodesically complete? Is the Riemann tensor well-behaved (no calculation required)?



9 A weak gravitational field has the spacetime metric gog = 7Tap + €hapg + O(€2), where 1,5 is the
Minkowski metric and € small. Show that

Ropys = 3€lhas.py + Bgy.as — hav,ps — hps.ay] + O(€9).

Let h = b7, and define Eag = hap — %hnag. Show that hag = Eag — %h Nag- Show also that
Rap = 3€[~Ohag + " gy + 15" 0y + 37as0R] + O(€2).

where O = n# VaV. What are the linear vacuum equations for Eaﬂ?

An infinitesimal coordinate transformation (which may be called a gauge transformation) is given
by x® — % + ef*(x). Show that

hocﬁ — haﬁ - fa,,B - fﬁ7a + 0(6)’

but that the curvature tensors are unchanged (to leading order in €). Deduce that if f* is chosen to satisfy
Of® = h*P 4, then in the new coordinates h®? 5 = 0. Conclude that the linearised Einstein equation for
weak fields in vacuum is the wave equation

Oa = 0.

Consider a gravitational wave hog = Hap ¢*3” in the above gauge, where Hgp . = 0. (Note:
we really mean h,g o« H,pg here unlike in the lecture where we started setting Eag x Hyp). Show
that H,gk? = %k‘aH 5”7 and that k% is null. Show also that through remaining gauge freedom there is
arbitrariness in Hog — Hag + kqvg + vokg for any v,. How many degrees of freedom are there for a
gravitational wave propagating in a given direction?

Show that Ra375k5 = 0 to lowest order in e.

If k> = k(1,0,0,1), show that we may take the independent components to be Hyy = —Haa, Hia =
H21.



