
Gravitational Waves and Numerical Relativity: Example Sheet 1
Part III, Easter Term 2025

U. Sperhake

Comments are welcome and may be sent to U.Sperhake@damtp.cam.ac.uk.

1. Riemann tensor in linearized theory
Show that in linearized theory, the components of the Riemann tensor,

Rµνρσ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂ρ∂µhνσ − ∂σ∂νhµρ) ,

are invariant under first-order coordinate transformations x̃α = xα− ξα where ξα = O(ε), ε�
1.

2. Advection equation
Consider the advection equation

∂tf + λ∂xf = 0 , λ ∈ R ,

for a function f on the domain (t, x) ∈ R2.

(i) Show that f remains constant along curves x(t) = λt + x0, where x0 = const. These are
the characteristic curves of the advection equation.

(ii) Consider Gaussian initial data

f(0, x) = e−(x−x0)2 .

Sketch the characteristic curves in the (t, x) plane (with t pointing upwards and x horizon-
tally. Also graphically sketch the solution f(t, x). Quantitative precision is not required
in this sketch and there are multiple ways to generate a graphic illustration; one figure is
sufficient.

(iii) Now consider the case of a varying λ = λ(t, x) where we write the advection equation in
the form

∂f

∂t
+

∂

∂x

(
λ(t, x)f

)
= 0 .

The characteristic curves of this differential equation are solutions of

dx

dt
= λ(t, x) .

Show that the advection equation can be written as an ordinary differential equation along
the characteristic curves.

3. Burgers’ equation
A more dramatic variation of the advection equation arises when we allow the flux term λf
to be a non-linear function of the evolution variable f , i.e. where λ itself depends on f . This
results in so-called quasi-linear PDEs which are linear in the derivatives but not in the function
f itself. The prototypical example for this type of PDEs is Burgers’ equation, where λ(f) = 1

2f .
In a more common notation, this is written as F ..= λf = 1

2f
2, so that

∂tf + ∂xF = ∂tf + ∂x
(
1
2f

2
)

= 0 .
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(i) Determine the characteristic curves for this PDE, i.e. the curves along which the PDE
can be written as an ordinary differential equation. Write down this ordinary differential
equation.

(ii) Sketch the characteristic curves in the (t, x) plane (with t pointing upwards and x hori-
zontal) for Gaussian initial data

f(0, x) = e−(x−x0)2 .

(iii) Sketch the time evolution of the Gaussian initial data. Compare the result with that ob-
tained for the advection equation in Question 2.

4. Quasi-linear first-order PDE systems
Let f : RN → RM and let us use the notation

f =

 f1
...
fM

 , ∂αf ..=
∂

∂xα
f =

 ∂αf1
...

∂αfM

 , α = 1, . . . , N .

The general quasi-linear first-order PDE for f is

Aµ(x,f)∂µf + b(x,f) = 0 ,

⇔ Aµmn(xα, fi)∂µfn + bm(xα, fi) = 0 (sum over µ, m, n) , (†)

where b is a vector valued function, each Aµ is an M ×M matrix and initial data for f are
given on a surface S defined as the level set of a function θ(xα) = 0 with∇θ 6= 0. We introduce
coordinates adapted to this hypersurface S by

ξα = ξα(xµ) for α = 1, . . . , N − 1 ,

ξN = θ(xµ) .

(i) Show that the initial data f on S determine all derivatives ∂fi/∂ξα for α = 1, . . . , N − 1.
Show that the PDE (†) also determines the derivative ∂fi/∂ξN if and only if

det

(
Aµ

∂θ

∂xµ

)
6= 0 .

(ii) The characteristic equation associated with the PDE (†) is

det

(
Aµ

∂θ

∂xµ

)
= 0 , (∗)

and a level surface S defined through θ(xα) = 0 by a solution to this equation is a characteristic
surface.

(a) Determine the matrices Aα for the advection equation ∂tf + ∂xf = 0 and write down the
characteristic equation. Note that the Aα are just scalars in this case.

(b) Introducing ψ ..= ∂tf and λ ..= ∂xf , write the 1+1 dimensional wave equation ∂2t f −
c2∂2xf = 0, c > 0 as a first-order system of two equations, one each for ∂tψ and ∂tλ. [Hint:
Partial derivatives commute.] Determine the Aα and the characteristic equation.

(c) Introducing ψ ..= ∂xf and λ ..= ∂yf , write the 2 dimensional Laplace equation ∂2xf+∂2yf =
0 as a first-order system of two equations, one each for ∂xψ and ∂xλ. Determine the Aα

and the characteristic equation.
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5. Classification of first-order PDE systems
(This question directly proceeds from question 4 and employs all definitions therefrom.)

For the classification of first-order PDE systems, we define for an N dimensional vector ζ,

C(x,f , ζ) ..= det [Aµ(x,f)ζµ] .

We furthermore introduce a linear mapping

ζ = Mη , where η = (η1, . . . , ηN−1, κ) ,

with a non-degenerate matrix M, and write

C(x,f ,η) = C(x,f , η1, . . . , ηN−1, κ) ..= C
(
x,f , ζ(η1, . . . , ηN−1, κ)

)
.

This reparametrization of the vector ζ is necessary to single out a specific parameter κ that
does not necessarily coincide with a single component of ζ in the coordinates xµ.

We then define the PDE
Aµ(x,f)∂µf + b(x,f) = 0

to be

• hyperbolic at x if there exists a regular linear mapping ζ = Mη, such that there existM real
roots κi = κi(x,f(x), η1, . . . , ηN−1), i = 1, . . . ,M of C(x,f ,η) = 0 for all (η1, . . . , ηn−1).
Note that the number of roots required equals the number of independent variables in f ,
not the dimensionality N of the domain.

• parabolic at x if there exists a linear mapping ζ = Mη such that C is independent of κ,
i.e. depends on fewer than N parameters.

• elliptic if C(x,f , ζ) = 0 only if ζ = 0.

Determine the type of the advection equation, the 2-dimensional wave equation and 2-dimensional
Laplace equation from question 4 according to this classification.

6. The constraint equations
Let (M, g) be a globally hyperbolic spacetime with a foliation Σt. Let xα = (t, xi) denote
coordinates adapted to this foliation.

(i) Show that the components of the Ricci tensor can be written as

R00 = −1

2
gmn∂20gmn +M00 ,

R0i =
1

2
g0m∂20gim +M0i ,

Rij = −1

2
g00∂20gij +Mij ,

where M00, M0i and Mij are a collection of terms that include at most first time derivatives of
the metric gαβ .

(ii) Show that the components Gα0 of the Einstein tensor can be written as

G0
0 =

1

2
g00M00 −

1

2
gmnMmn ,

Gi
0 = g00M0i + g0mMim ,

and therefore contain no second time derivative of the metric.
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7. The Bondi metric
The Bondi metric is given by

gαβ =


−V
r e

2β + r2U2e2γ −e2β −r2Ue2γ 0
−e2β 0 0 0
−r2Ue2γ 0 r2e2γ 0

0 0 0 r2e−2γ sin2 θ

 . (1)

Use the cofactor matrices to compute the inverse Bondi metric gαβ .

8. Bianchi identities
LeM be a Lorentzian manifold with metric gαβ . Show that the contracted Bianchi identities
∇µGαµ can be written as

gµρ
(
∂ρRαµ − ΓσµρRασ −

1

2
∂αRµρ

)
.

4


