
Gravitational Waves and Numerical Relativity: Example Sheet 2
Part III, Easter Term 2025

U. Sperhake

Comments are welcome and may be sent to U.Sperhake@damtp.cam.ac.uk.

1. Series expansion
Consider the leading-order expansion of the functions

γ(u, r, θ) = c(u, θ)r−1 +O(r−2) ,

β(u, r, θ) = H(u, θ)− c(u, θ)r−2 +O(r−3) ,

and the second main equation of the Bondi formalism,

∂r

[
r4e2(γ−β)∂rU

]
− 2r2

[
∂r∂θβ − ∂r∂θγ + 2∂rγ ∂θγ − 2 cot θ ∂rγ − 2

∂θβ

r

]
= 0 , (1)

Taking into account functions of integration, show that the leading-order behaviour of the
function U(u, r, θ) is given by

U(u, r, θ) = L(u, θ) + 2e2H(u,θ)∂θH(u, θ) r−1 +O(r−2) . (2)

2. The metric and its determinant
Let gαβ be a metric of Lorentzian signature gαβ and g ≡ det gαβ its determinant. Show that

∂g

∂gαβ
= ggαβ ,

∂g

∂gαβ
= −ggαβ ,

where gαβ denotes the inverse metric. Conclude that the derivative of the determinant g can
be written as

∂αg = g gµν∂αgµν = −g gµν∂αgµν = 2gΓµµα .

3. Absence of conical singularities
The Bondi metric for an axisymmetric spacetime that is invariant under azimuthal reflection is

ds2 =

(
−V
r
e2β + U2r2e2γ

)
du2 − 2e2βdu dr − 2Ur2e2γdudθ + r2(e2γdθ2 + e−2γ sin2 θ dφ2) ,

where β, γ, U and V are functions of the coordinates (u, r, θ). Consider the case of asymp-
totically flat spacetimes with no incoming radiation, so that the series expansion of γ at large
radius r is given by

γ(u, r, θ) = c(u, θ)r−1 +O(r−3) ,

where c(u, θ) is the Bondi news function.
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Show that for spacetimes with no conical singularity on the polar axis, the news function sat-
isfies

lim
θ→0

c = lim
θ→π

c = 0 .

[Hint: Consider spheres of constant u and r in the limit of large r. Compute the proper circumference
and the proper radius of circles with small constant θ = ∆θ around the North Pole and show that their
ratio equals 2π if and only if the first of the above conditions is satisfied. Repeat the same for the South
Pole.]

4. The Bondi mass
Let (M, g) be an asymptotically flat, axisymmetric spacetime that is invariant under azimuthal
reflection and contains no conical simgularities. In the Bondi formalism for such spacetimes,
the mass aspect M(u, θ) arises as one of the functions of integration. By the supplementary
equations, the evolution of the mass aspect is given in terms of the Bondi news c(u, θ) by

∂uM = −∂uc+
1

2
∂2θ∂uc+

3

2
cot θ∂θ∂uc− (∂uc)

2 .

The Bondi mass is defined as the integral of the mass aspect,

m(u) ..=
1

4π

∫ π

0

∫ 2π

0
M sin θdφdθ .

Using the result from question 3, show that the Bondi mass evolves according to

∂um = −1

2

∫ π

0
(∂uc)

2 sin θdθ .

Briefly interprete this result.

5. Spatial covariant derivative
Let (M, g) be a globally hyperbolic spacetime with Levi Civita connection ∇α and spatial hy-
persurface Σ (i.e. the gradient dt is timelike), and let Tα...β... be a rank

(
r
s

)
tensor that is tangent

to Σ in all components, i.e. Tα...β...nα = . . . = Tα...β...n
β = . . . = 0. The three-dimensional or

spatial covariant derivative of T is defined as the rank
(
r
s+1

)
tensor

DµT
α...

β...
..= ⊥ρµ⊥ασ⊥τ β . . .∇ρT σ...τ ... .

(i) Show that Dµ satisfies the defining criteria for a covariant derivative, i.e. for spatial vector
fields X , Y , V and a scalar function f on Σ the following conditions hold,

(1) Dµf = ∂µf ,

(2) DfX+gY V = fDXV + gDY V ,

(3) DXV +DXW = DX(V + W ) ,

(4) DX(fV ) = fDXV + (DXf)V .

(ii) Show that Dµ is compatible with the three-dimensional (spatial) metric γαβ , i.e. Dµγαβ = 0.

(iii) The torsion tensor associated with Dµ is defined by

T : (X,Y ) 7→ T (X,Y ) = DXY −DY X − [X,Y ]

2



or Tµν
αXµY ν = XµDµY

α − Y µDµX
α − [X,Y ]α ,

where X , Y are spatial vector fields and [X,Y ]α = Xµ∂µY
α − Y µ∂µX

α is the commutator of
X and Y . Show that Dµ is torsion free, i.e. its torsion tensor vanishes.

6. Lie derivative of the projector
Given a hypersurface Σ of a globally hyperbolic spacetime with unit normal nα and projector
⊥αβ = δαβ + nαnβ , show that

Ln⊥αβ = nαaβ + nβaα + 2Kαβ ,

Ln⊥αβ = nαaβ ,

Ln⊥αβ = −2Kαβ ,

where Ln is the Lie derivative along nα. Conclude that for a spatial tensor Tαβ ,

LnTαβ = ⊥µα⊥νβLnTµν ,

i.e. the tensor’s Lie derivative along n is also spatial.

7. Ricci equation
Let Σ be a spatial hypersurface of a globally hyperbolic spacetime with unit normal nα, accel-
eration vector aα = nµ∇µnα and extrinsic curvature Kαβ .

(i) By projecting the (spacetime) Ricci identity applied to the unit normal,

∇ρ∇σnµ −∇σ∇ρnµ = Rµνρσn
ν ,

twice onto space and once onto time, show that

⊥αµnν⊥ργnσRµνρσ = −KασK
σ
γ +Dγaα + aαaγ +⊥µα⊥ργnσ∇σKρµ . (†)

(ii) Compute the spatial projection of the Lie derivative of the extrinsic curvature along the
unit normal, ⊥µα⊥νβLnKµν , to substitute for the last term on the right-hand side of Eq. (†),
and thus derive the Ricci equation

⊥µαnν⊥ργnσRµνρσ = LnKαγ +
1

α
DαDγα+KργKα

ρ .

You may use without proof that aµ = Dµ(lnα), where α is the lapse function.

8. The evolution equation for the energy density
The energy- and momentum density and stress associated with the energy momentum tensor
Tαβ are defined as

ρ ..= Tµνn
µnν , jα ..= −⊥µαTµνnν , Sαβ ..= ⊥µα⊥νβTµν ,

⇔ Tαβ = ρnαnβ + jαnβ + nαjβ + Sαβ ,

where nµ denotes the unit normal of a spatial hypersurface Σ and ⊥µα = δµα + nµnα. The
equation for conservation of energy-momentum is∇µTµα = 0.
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By projecting the energy conservation law onto nα, derive the evolution equation for the en-
ergy density,

Lnρ = −2jµDµ(lnα) + ρK + SµνKµν −Dµj
µ .

Show that in coordinates adapted to the spacetime foliation, this equation becomes

∂tρ = βm∂mρ− 2jmDmα+ α
(
ρK + SmnKmn −Dmj

m
)
.

Here K is the trace of the extrinsic curvature, α the lapse and βµ the shift vector.

9. Strong hyperbolicity
Consider the partial differential equation

A∂tu + Pi∂iu + Cu = 0 (sum over i) , (?)

for a function u : Ω ⊂ Rd+1 → RN , where A, Pi, C are real N ×N matrices and A is invertible.
This PDE is weakly hyperbolic if for all vectors k̂i with |k̂| = 1, all Eigenvalues of

Q(k̂i) ..= −A−1Pmk̂m

are real. The PDE is strongly hyperbolic if furthermore Q(k̂i) is diagonalizable for all k̂i.

(i) Let J2 =

(
λ 1
0 λ

)
. Show that

eiJ2 t̂ = eiλt̂
(

1 i t̂
0 1

)
.

(ii) Assume that the PDE (?) is weakly hyperbolic but that the Jordan normal form of Q(k̂i)
contains a Jordan block of the form J2. Argue why for such a PDE, there exists no regular
function f(t) such that ∣∣∣∣∣∣eiMt∣∣∣∣∣∣ ≤ f(t) , (‡)

where M = A−1(−Pmkm + iC).
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