Gravitational Waves and Numerical Relativity: Example Sheet 3

Part II1, Easter Term 2025
U. Sperhake

Comments are welcome and may be sent to U.Sperhake@damtp.cam.ac.uk.
Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

1. The BSSNOK equations 1
The BSSNOK variables are defined by
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derive the following BSSNOK equations,
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* 2. The BSSNOK equations 2
Derive the remaining BSSNOK equation
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where G := " — 34™"T" and o is some function.

3. Constraints in the conformal traceless split
The Hamiltonian and momentum constraints in the ADM formalism are
H = R4+K?—Knp K™ —2A —167p =0,
M; = D;K — DpK;"™ +87j; =0.

In the conformal-traceless York-Lichnerowicz split, we introduce the conformal spatial metric
7ij and the conformal traceless extrinsic curvature through the definitions
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We furthermore split the extrinsic curvature variable A;; into a transverse traceless and a lon-
gitudinal part according to
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where Q;; is symmetric, transverse (D,,,Q™ = 0) and traceless (Q™,, = 0), and X; is a vector
potential. D; and R;; are the covariant derivative and Ricci tensor associated with 7;;.

Show that the Hamiltonian and momentum constraints expressed in these new variables are
given by
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You may use without proof general relations from the lecture for conformal transformations but should
state these clearly.

4. Isotropic Schwarzschild

(i) Show that the spatial part of the Schwarzschild metric in isotropic coordinates,
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solves the constraint equations in their conformal transverse traceless form (i.e. the constraint
equations derived in the previous question) for the case of time symmetry (;; = 0), conformal
flatness (;; = d;;), asymptotic flatness (A = 0) and vacuum (j; = 0).

(ii) Give a brief physical interpretation of the point » = /22 + y2 + 22 = 0, for example in
terms of its location in the Kruskal diagram. [Hint: Write the isotropic Schwarzschild metric in
spherical coordinates and consider the coordinate transformation o = M?/(4r).]

. Bowen-York data

Consider the momentum constraint in the conformal traceless split,
P . 2 . .
M' = D™D X" + S D'Dp X7 4 R X" = Sy K — 879105 = 0.

(i) Write down the momentum constraint for the case of vacuum (p = 0, j; = 0), asymptotic
flatness (A = 0), conformal flatness (;; = ¢;;), vanishing trace of the extrinsic curvature and a
vanishing transverce traceless part (K =0, Q;; = 0).

(if) We introduce the vector potential
X' =gy, ()
r

where €7* is the totally antisymmetric Levi-Civita symbol, z; = (x,y, 2) are Cartesian coordi-

nates, r = /22 + y? + 22, and Jj, is a constant vector. Show that this vector potential solves
the constraint equations on the domain R? \ {0}.

(iii) The total angular momentum of an asymptotically flat spacetimes is given in terms of the
extrinsic curvature K;; by
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where (¢,,)" = €,;'27. Show that for the extrinsic curvature of the vector potential (1), the
total angular momentum equals the constant vector J,,, J° = Jy,. [Hint: You may rotate your
Cartesian coordinate system such that Jj, points in the z direction. Also e;jpe"™™ = §;"0;" — ;03]

. Observers falling into a black hole

The Schwarzschild spacetime
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is transformed to Kruskal-Szekeres coordinates by the sequence of coordinate changes
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The trajectories of observers falling radially into the black hole is given by the geodesic equa-
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where E is a constant of motion and " := d/dr denotes the derivative with respect to the ob-

server’s proper time.

(i) Show that for an observer starting at rest at initial position rq > 2M,
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(ii) Can the resulting function v(7) be evaluated beyond the observer’s crossing of the event
horizon at r = 2M? Justify your answer.

. Christoffel symbols in adapted coordinates

In coordinates adapted to the 3+1 split, the spacetime metric is given by
ds? = (—a® + B;8)d? + 28idt da’ + ~;jda’ da? .

Show that the components 'Y 5 of the spacetime Christoffel symbols can be written as
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. Time evolution of the volume element

Show that
d

dt
where «, 37, 7i; are the ADM variables, v := det v;;, and L3 denotes the Lie derivative along
the shift vector.

V2= (8 — La)y? = —an'/?,

. The distortion tensor

The distortion tensor is defined as
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where 7;; is the conformal metric from the BSSNOK formulation and x the conformal factor.

(i) Show that the distortion tensor can be written as
g g L : 2 o
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and has zero trace, ,,, X" = 0.

(ii) Show that
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