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1. Establish Stirling’s formula. Start with

N ! =

∫ ∞

0

e−xxNdx ≡
∫ ∞

0

e−F (x) dx.

Let the minimum of F be at x0. Approximate F (x) by F (x0)+F ′′(x0)(x−x0)
2/2 and,

using one further approximation, show that

N ! ≈
√
2πNNNe−N

We will mostly be interested in N ∼ 1023. But what is the accuracy of Stirling’s

formula for the paltry value of N = 5?

2i. Show that a system in the microcanonical ensemble maximises its entropy only if

the heat capacity is positive.

ii. In the canonical ensemble, show that the fluctuations in energy ∆E2 = 〈E2〉−〈E〉2
are proportional to the heat capacity.

iii. Show that in the canonical ensemble the Gibbs entropy can be written as

S = kB
∂

∂T
(T logZ)

3. Consider a system consisting of N spin-1
2
particles, each of which can be in one of

two quantum states, ‘up’ and ‘down’. In a magnetic field B, the energy of a spin in the

up/down state is ±µB/2 where µ is the magnetic moment. Show that the partition

function is

Z = 2N coshN

(

βµB

2

)

Find the average energy E and entropy S. Check that your results for both quantities

make sense in at T = 0 and T → ∞.

Compute the magnetisation of the system, defined by M = N↑ − N↓ where N↑/↓ are

the number of up/down spins. The magnetic susceptibility is defined as χ ≡ ∂M/∂B.

Derive Curie’s Law which states that at high temperatures χ ∼ 1/T .
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4. Consider a system of N interacting spins. At low temperatures, the interactions en-

sure that all spins are either aligned or anti-aligned with the z axis, even in the absence

of an external field. At high temperatures, the interactions become less important and

spins can point in either ±ẑ direction. If the heat capacity takes the form,

CV = Cmax

(2T

T0
− 1

)

for
T0

2
< T < T0 and CV = 0 otherwise .

determine Cmax.

5. Compute the partition function of a quantum harmonic oscillator with frequency ω

and energy levels

En = ~ω

(

n+
1

2

)

n ∈ Z , and n ≥ 0

Find the average energy E and entropy S as a function of temperature T .

Einstein constructed a simple model of a solid as N atoms, each of which vibrates with

the same frequency ω. Treating these vibrations as a harmonic oscillator, show that at

high temperatures, kBT ≫ ~ω, the Einstein model correctly predicts the Dulong-Petit

law for the heat capacity of a solid,

CV = 3NkB

At low temperatures, the heat capacity of many solids is experimentally observed to

tend to zero as CV ∼ T 3. Was Einstein right about this?

6i. A quantum violin string can vibrate at frequencies ω, 2ω, 3ω and so on. Each

vibration mode can be treated as an independent harmonic oscillator. Ignore the zero

point energy, so that the mode with frequency pω has energy E = n~pω, n ∈ Z, n ≥ 0.

Write an expression for the average energy of the string at temperature T . Show that

at large temperatures the free energy is given by,

F = −π2

6

k2
BT

2

~ω

(Hint: You may need the value ζ(2) = π2/6)

ii∗. Show that the partition function of the quantum violin string can be written as

Z =
∑

N

p(N)e−βEN

where EN = N~ω and p(N) counts the number of partitions of N . It can be shown that

this formula also applies to a relativistic string if we use EN =
√
N~ω. Show that the
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relativistic string has a maximum temperature, known as the Hagedorn temperature,

kBTmax =
√
6~ω/2π.

(Hint: Google the Hardy-Ramanujan formula).

7. The purpose of this question is to provide a universal way of looking at all the

ensembles, starting from the Gibbs entropy for a probability distribution p(n),

S = −kB
∑

n

p(n) log p(n)

i. By implementing the constraint
∑

n p(n) = 1 through the use of a Lagrange multi-

plier show that, when restricted to states of fixed energy E, the entropy is maximised

by the microcanonical ensemble in which all such states are equally likely. Further

show that in this case the Gibbs entropy coincides with the Boltzmann entropy.

ii. Show that at fixed average energy 〈E〉 =
∑

n p(n)En, the entropy is maximised

by the canonical ensemble. Moreover, show that the Lagrange multiplier imposing the

constraint is proportional to β, the inverse temperature. Confirm that maximizing the

entropy is equivalent to minimizing the free energy

iii. Show that at fixed average energy 〈E〉 and average particle number 〈N〉, the

entropy is maximised by the grand canonical ensemble. What is the interpretation of

the Lagrange multiplier in this case?

8. Let ZN be the canonical partition function for N particles. Show that the grand

partition function Z can be written as

Z(µ, V, T ) =
∞
∑

N=0

ξNZN(V, T )

where ξ = eµβ is called the fugacity. (It will be denoted z in the lecture notes but I

wanted to save you from having to write three different types of z). Show that

〈N〉 = ξ
∂

∂ξ
logZ , (∆N)2 =

(

ξ
∂

∂ξ

)2

logZ .

If ZN = ZN
1 /N ! show that Z(ξ, V, T ) = eξZ1(V,T ). For this case, show also that

∆N

〈N〉 =
1

〈N〉1/2
.

9. Make use of the fact that the free energy F (T, V,N) of a thermodynamic system

must be extensive, to explain why

F = V
∂F

∂V

∣

∣

∣

∣

T,N

+N
∂F

∂N

∣

∣

∣

∣

T,V

.
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The Gibbs free energy is defined as G = F + pV . Use the result above for F to show

that the Gibbs free energy can be expressed as G = µN . Explain why this result was

to be expected from the scaling behaviour of G.

10. A neutral gas consists of Ne electrons e
−, Np protons p

+ and NH Hydrogen atoms

H . An electron and proton can combine to form Hydrogen,

e− + p+ ↔ H

At fixed temperature and volume, the free energy of the system is F (T, V ;Ne, Np, NH).

We can define a chemical potential for each of the three species as

µi =
∂F

∂Ni

By minimizing the free energy, together with suitable constraints on the particle num-

bers, show that the condition for equilibrium is

µe + µp = µH

Such reactions usually take place at constant pressure, rather than constant volume.

What quantity should you consider instead of F in this case?
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