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A Background Material

A.1 Complex numbers

Complex numbers: z ∈ C: z = x+ iy = reiφ = r cosφ+ i r sinφ , where

i =
√
−1 = “Imaginary unit”

x = Re(z) = r cosφ = “Real part”

y = Im(z) = r sinφ = “Imaginary part”

r = |z| =
√
x2 + y2 = “Modulus”

φ = arg z = “Argument”

z̄ ..= x− iy = “Complex conjugate” of z

Comments: • arg z only defined up to adding 2nπ, n ∈ Z

• Principal argument ..= the value φ = arg z that falls in (−π, π]

• “φ = arctan y
x
” does not in general work, since arctan : R→ (−π

2
, π

2
)

E.g. arg
(
− 1

2
+ i
√

3
2

)
= 2π

3
, but arctan y

x
= −π

3

• We have: |z|2 = r2 = zz̄ , Re(z) =
z + z̄

2
, Im(z) =

z − z̄
2i

.

Triangle inequality: |z1 + z2| ≤ |z1|+ |z2| for all z1, z2 ∈ C .

Setting z1 = ζ1 + ζ2 and either z2 = −ζ2 or z2 = −ζ1, we also find:∣∣|ζ1| − |ζ2|
∣∣ ≤ |ζ1 + ζ2| for all ζ1, ζ2 ∈ C .

Geometric series

For z ∈ C, z 6= 1 and n ∈ N0:
n∑
k=0

zk =
1− zn+1

1− z

• Proof by induction

• For |z| < 1, the series converges:
∞∑
k=0

zk =
1

1− z

• This is the Taylor series of f(z) =
1

1− z around z = 0.



A BACKGROUND MATERIAL 5

Def.: A set D ⊂ C is an open set if:

∀z0 ∈ D ∃ ε > 0 : the ε sphere |z − z0| < ε lies in D.

A neighbourhood of z ∈ C is an open set D that contains z.

A.2 Trigonometric and hyperbolic functions

Euler’s formula: eiφ = cosφ+ i sinφ ⇒ e−iφ = cosφ− i sinφ

⇒ cosφ =
eiφ + e−iφ

2
∧ sinφ =

eiφ − e−iφ

2i

Hyperbolic functions: eφ = coshφ+ sinhφ ⇒ e−φ = coshφ− sinhφ

⇒ coshφ =
eφ + e−φ

2
∧ sinhφ =

eφ − e−φ
2

We have: cos(ix) =
e−x + ex

2
= coshx ⇔ cosh(ix) = cos x ,

sin(ix) =
e−x − ex

2i
= i sinhx ⇔ sinh(ix) = i sinx

Addition theorems: cos(α + β) = cosα cos β − sinα sin β ,

sin(α + β) = sinα cos β + cosα sin β ,

cosh(x+ y) = cosh x cosh y + sinhx sinh y ,

sinh(x+ y) = sinhx cosh y + coshx sinh y .

A.3 Calculus of real functions in ≥ 1 variables

Sometimes, we regard a complex function as 2 real functions on R2: f(z) = u(x, y) + iv(x, y)

Def.: Cm(Ω) ..= set of functions f : Ω ⊂ Rn → R whose partial derivatives up to order m
exist and are continuous.
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Note: Existence of partial derivatives does not mean much! E.g. :

f(x, y) =


x for y = 0
y for x = 0
arbitrary for x 6= 0 and y 6= 0

⇒ ∂f

∂x
(0, 0) = 1 =

∂f

∂y
(0, 0) , but f is not even continuous at (0, 0)!

Def.: f : Ω ⊂ Rn → R is differentiable at x ∈ Ω if: ∃ a linear function A : Rn → R with

f(x + ∆x)− f(x) = A(∆x) + r(∆x) with lim
∆x→0

r(∆x)

||∆x|| = 0 .

f is continuously differentiable if furthermore the partial derivatives are continuous.

This generalizes to vector-valued f : Ω→ Rm by considering each component fi sepa-
rately.

One can show that:

f is continuously differentiable ⇔ all partial derivatives
∂f

∂xj
are continuous

⇒ f is differentiable

⇒ f is continuous and all partial derivatives
∂f

∂xj
exist ,

Def.: A sequence of functions fk : Ω ⊆ Rn → R is uniformly convergent with limit f

:⇔ ∀ε>0 ∃N∈N ∀k≥N, x∈Ω |fk(x)− f(x)| < ε

This allows: lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx

Example: The geometric series
∞∑
n=0

xn converges uniformly for |x| < 1.
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B Analytic functions

B.1 The Extended Complex Plane and the Riemann Sphere

We can identify C with R2: z ↔ (x, y) is bijective with z = x+ iy

Addition: z = z1 + z2 ⇔ (x, y) = (x1 + x2, y1 + y2)

Multiplication: z = z1 z2 ⇔ (x, y) = (x1x2 − y1y2, x1y2 + x2y1)

Easier to see with i2 = −1: z1 z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1)

Def.: The extended complex domain is C∗ ..= C ∪ {∞}

Comments: • z =∞ is a single point!

• “z = −∞” means we approach this point along the negative real axis

• This is best seen in the Riemann sphere:

P ↔ z via the line NP

South pole P 7→ z = 0

North pole N 7→ z =∞

S

N

z

P

• In practice: f has a property at z =∞ if f(1/ζ) has this property at ζ = 0

B.2 Complex differentiation and analytic functions

Def.: f : C→ C is differentiable at z ∈ C

:⇔ f ′(z) = lim
δz→0

f(z + δz)− f(z)

δz
exists and is independent of the direction of

approach.
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Direction independence is a strong requirement!

In R, we only have 2 directions. E.g. f(x) = |x| is not differentiable at x = 0.

In C, we have ∞ directions.

Def.: A complex function f is analytic at z ∈ C
:⇔ ∃ a neighbourhood D of z where f is differentiable.

Comments: • We will see that analyticity implies a lot!

• E.g. an analytic function can be differentiated ∞ many times. This is not
true for real functions:

∫
|x|dx can be differentiated exactly once.

• Good news: Many rules for differentiation of real functions hold for complex
ones, too.

Let us consider 2 directions for the derivative of f(z) = u(x, y) + iv(x, y),

(1) Real direction: δz = δx

f ′(z) = lim
δx→0

f(z + δx)− f(z)

δx

= lim
δx→0

u(x+ δx, y) + iv(x+ δx, y)− u(x, y)− iv(x, y)

δx

=
∂u

∂x
+ i

∂v

∂x
. (B.1)

(2) Imaginary direction: δz = iδy

f ′(z) = lim
δy→0

f(z + iδy)− f(z)

iδy

= lim
δy→0

u(x, y + δy) + iv(x, y + δy)− u(x, y)− iv(x, y)

iδy

=
∂v

∂y
− i

∂u

∂y
. (B.2)

For a differentiable function, these must be equal!

Proposition: A differentiable function f(z) = u(x, y) + iv(x, y) satisfies the Cauchy Riemann

conditions
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

The reverse does not hold; we need that u and v are differentiable.

In practice we often use:
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Proposition: If f(z) = u(x, y) + iv(x, y) satisfies
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

at z = z0 and the partial derivatives are continuous in a neighbourhood of z, then
f is differentiable at z0.

The proof (and others) are discussed in IB Complex Analysis.

Alternative viewpoint: Using x =
z + z̄

2
, y =

z − z̄
2i

= −i
z − z̄

2
,

we can write any complex function as g(z, z̄).

Then g is differentiable if g(z, z̄) = g(z); cf. example sheet 1.

Product rule: The product of two analytic functions f, g is analytic with

(f g)′(z) = f ′(z)g(z) + f(z)g′(z) .

Proof. We can directly compute the derivative. Let

$ ..=
f(z + h)− f(z)

h
− f ′(z) ,

w ..=
g(z + h)− g(z)

h
− g′(z) ,

so both $ → 0 and w → 0 as h→ 0, and

(g f)′ = lim
h→0

g(z + h)f(z + h)− g(z)f(z)

h

= lim
h→0

{g(z) + [g′(z) + w]h} {f(z) + [f ′(z) +$]h} − g(z)f(z)

h

= lim
h→0

[g′(z) + w]h f(z) + [f ′(z) +$]h g(z) + [g′(z) + w]h [f ′(z) +$]h

h
= g′(z) f(z) + f ′(z) g(z) .

Chain rule: The composition of two analytic functions f, g is analytic with

(f ◦ g)′(z) = f ′
(
g(z)

)
g′(z) .

The proof works analogous to that for product rule; cf. long script.
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Examples

(1) f(z) = z = x+ iy is entire ..= analytic in all C:

∂xu = 1 = ∂yv , ∂yu = 0 = −∂xv , and they are continuous.

The definition of f ′(z) gives us immediately f ′(z) = 1.

(2) ez = ex eiy = ex(cos y + i sin y) is also entire:

∂xu = ex cos y = ∂yv , ∂yu = −ex sin y = −∂xv , and they are continuous.

Computing f ′ along the x direction gives:

f ′(z) = ∂xu+ i∂xv = ex cos y + iex sin y = ez

(3) f(z) = zn, n ∈ N is also entire. This follows by induction using product rule and
example (1), which also give us f ′(z) = nzn−1.

A linear combination αf + βg , α, β ∈ C of two analytic functions is also analytic.

⇒ Polynomials are analytic.

(4) f(z) =
1

z
=

z̄

zz̄
=

x− iy

x2 + y2
is analytic everywhere except z = 0:

∂xu =
y2 − x2

(x2 + y2)2
= ∂yv , ∂yu =

−2xy

(x2 + y2)2
= −∂xv .

Evaluating f ′ along the x direction, we get:

∂

∂x

x− iy

x2 + y2
=
−x2 + y2 + 2ixy

(x2 + y2)2
=
−(x− iy)2

(x2 + y2)2
= − z̄2

z2z̄2
= − 1

z2
.

With product and chain rule, this also gives us the Quotient rule:

(
f

g

)′
=
f ′ g − g′ f

g2

Also: If P (z), Q(z) are polynomials, then
P (z)

Q(z)
is analytic except where Q(z) = 0.

(5) cos z =
eiz + e−iz

2
, and sin z =

eiz − e−iz

2i
are analytic everywhere with

(sin)′(z) = cos(z) , (cos)′(z) = − sin(z) .

We likewise find cosh′ = sinh , sinh′ = cosh.

(6) (tan)′(z) =
1

cos2(z)
by quotient rule; is analytic except where cos(z) = 0.

(7) One can show that log′ z =
1

z
where log z is defined. This is more subtle; cf. below.

Examples of non-analytic functions

(1) f(z) = Re(z) ⇒ ∂xu = 1 6= ∂yv, so Re(z) is nowhere analytic.

(2) f(z) = |z| ⇒ u =
√
x2 + y2 , v = 0
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⇒ ∂xu =
x√

x2 + y2
, ∂yu =

y√
x2 + y2

, ∂xv = ∂yv = 0

⇒ The Cauchy-Riemann Eqs. are nowhere satisfied.

(3) f(z) = z̄ ⇒ u = x , v = −y ⇒ ∂xu = 1 6= ∂yv ⇒ z̄ is nowhere analytic.

(4) f(z) = |z|2 = x2 + y2

⇒ ∂xu = 2x , ∂yv = 0 , ∂yu = 2y , ∂xv = 0

⇒ The Cauchy Riemann Eqs. are satisfied only at z = 0.

Analyticity requires differentiability in a neighbourhood, so |z|2 is nowhere analytic.

B.3 Harmonic functions

Def.: A function f(x, y) is harmonic if it satisfies the Laplace equation 4f = ∂2
xf+∂2

yf = 0

Def.: Two functions u, v satisfying the Cauchy-Riemann Eqs. are harmonic conjugates.

The Cauchy-Riemann equations relate u and v. If we know one, we can construct the other up
to a constant and, thus, the analytic function f .

Example.: Let u(x, y) = x2 − y2

⇒ ∂yv = ∂xu = 2x

⇒ v(x, y) = 2xy + g(x)

Also

∂yu = −2y
!

= −∂xv = −2y − g′(x)

⇒ g′(x) = 0 ⇒ g(x) = c0 = const

⇒ f(z) = u+ iv = x2 − y2 + 2ixy + ic0 = (x+ iy)2 + ic0 = z2 + ic0 .

Note: You should compute f(z), not merely u(x, y), v(x, y).

Proposition: The real and imaginary parts of any analytic complex function are harmonic.

Proof. Let f(z) = u(x, y) + iv(x, y) be analytic

⇒ ∂x(∂xu) = ∂x(∂yv) = ∂y(∂xv) = ∂y(−∂yu)

⇒ ∂2
xu+ ∂2

yu = 0

We likewise find 4v = 0.

B.4 Multi-valued functions and branch cuts

B.4.1 Single branch cuts

Recall: log z = log
(
reiθ
)

= log r + iθ
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Problem: θ = arg z defined only up to adding 2nπ, n ∈ Z

E.g. log i = i
π

2
or i

5π

2
or − i

3π

2
or . . .

Consider the curves C1, C2, C3

x

y

x

θ

z

C3

C

2C

1

• On C1 : θ = arg z ∈
(
0, π

2

)
; fine!

• On C2 : θ ∈
(
π
2
, 3π

2

)
; fine!

• On C3 : θ increases by 2π everytime we go around the circle.

⇒ θ is not single valued.

We could require θ ∈ [0, 2π), but then θ is not continuous!

Def.: A branch point of a function f(z) is a point z0 that cannot be encircled by a curve C such
that f is single-valued and continuous along C. z0 is a branch point singularity of f .

Examples

(1) f(z) = log(z − a) , a = const ∈ C has a branch point at z = a

(2) f(z) = log
(
z−1
z+1

)
= log(z − 1)− log(z + 1) has two branch points at ±1

(3) Consider f(z) = zα = rαeiαθ along a circle of radius r0 around z = 0.

At θ = 0 : f = rα0

At θ = 2π : f = rα0 e
iα2π

Equal only if eiα2π = 1 ⇔ α2π = 2nπ ⇔ α ∈ Z.

⇒ For non-integer α, f(z) has a branch point at z = 0.

(4) f(z) = log z has a branchpoint at z =∞ because log 1
ζ

= − log ζ has one at ζ = 0.

Likewise, zα has a branchpoint at z =∞ if α /∈ Z.

(5) f(z) = log z−1
z+1

does not have a branch point at z =∞:

f(z = 1/ζ) = log z−1
z+1

= log 1−ζ
1+ζ

stays near log 1 = 0 for all ζ ≈ 0.
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We handle branch points with branch cuts: “red” lines in C which no curve C is allowed to
cross.
Example.: Consider log z = log |z|+ i arg z with a branch cut along the negative real axis.

θ

x

z

x

y

Then log z is continuous with derivative d
dz

log z = 1
z

along any curve that
does not cross the cut!

E.g. θ ∈ (−π, π] or θ ∈ (π, 3π]

Either way, θ jumps by 2π across the cut!

We could also choose other branch cuts:

θ

x

z

x

y

θ

x

z

x

y
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Summary: • We have 3 branch “thingies”:

1. branch point: A point we cannot encircle.

2. branch cut: a red line we are not allowed to cross.

3. branch: the choice of values f(z) is allowed to take on.

• We have freedom in choosing branch cuts and branches, but not branch points.

• We can specify the branch of a function in two ways.

1. Specify the function and range of values.

E.g. f(z) = log |z|+ i arg z , arg z ∈ (−π, π].

2. Specify the function, the branch cut and f(z) at one point.

E.g. f(z) = log z with a cut on R≤0 and log 1 = 0.

B.4.2 Riemann surfaces*

Are branch cuts quite satisfactory?

Riemann suggested: Regard the branches of f(z) as copies of C stacked on each other.

E.g. for log z = log |z|+ iθ

Crossing a branch cut now carries us from one sheet to the next.
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B.4.3 Multiple branch cuts

How to handle multiple branch points?

Examples

(1) g(z) = [z(z − 1)]1/3 has branch points: z = 0, z = 1

Let z = reiθ, z − 1 = r1e
iθ1

⇒ g(z) = 3
√
rr1e

i(θ+θ1)/3

θ

x

z

x x

0 1 x

y

θ1

r r
1

We must avoid either θ or θ1 completing a full circle.

→ 2-segement branch cut (−∞, 0] ∪ [1,∞)

(2) f(z) = log
z − 1

z + 1
= log(z − 1)− log(z + 1) has 2 branchpoints: z = ±1

Let z + 1 = reiθ, z − 1 = r1e
iθ1 , and avoid full circles in θ, θ1

2-segment branch cut: (−∞,−1] ∪ [1,∞). But we can also use [−1, 1]!

x

z

x

1 x

y

θ1

r r
1

−1

x

θ
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Which is better? Depends...

(−∞,−1] ∪ [1,∞) does not handle legitimate curves encircling both z = ±1

[−1, 1] does not handle legitimate “little” curves between z = 1 and z = −1

Why are curves encircling both z = ±1 ok?

Let θ, θ1 ∈ [0, 2π). Then, as we cross the real axis ...

(i) to the left of −1: All ok, since θ, θ1 vary smoothly across π.

(ii) to the right of +1: both θ and θ1 jump by 2π, but

f(z) = log |z − 1| − log |z + 1|+ i(θ1 − θ) does not jump!

(3) Could we have used the branch cut [0, 1] in example 1?

No! So what’s the difference between f and g?

Answer: g also has a branchpoint at z =∞, f doesn’t.

[0, 1] would still allow us to encircle the branch point z =∞ of g(z).

Proposition: Let f(z) have branch points z1, z2, . . .. A complete branch cut of f is a set of cuts
with: (i) Every branchpoint has a cut ending on it. (ii) Both ends of each cut end
on a branch point. (iii) Any curve in C that does not intersect the branch cut either
encloses all or none of the branchpoints.

Comments: • Regard z =∞ as a single point!

• The branch cut (−∞,−1] ∪ [1,∞) in example 2 is really a single curve across
the North Pole of the Riemann sphere! The cut [−1, 1] is a cut across the
South Pole of the Riemann sphere!

• z =∞ may also be a branch point, as in example 1.

B.5 Möbius maps

Def.: Möbius map: a map M : C→ C , z 7→ w =
az + b

cz + d

where a, b, c, d ∈ C with ad 6= bc.

Comments: • If ad = bc, M maps all C to a single point

• M is analytic everywhere except z = −d
c

• Regarded as M : C∗ → C∗, M is bijective with

M−1 : C∗ → C∗ , w 7→ z =
−dw + b

cw − a , also a Möbius map! (†)

Def.: A circline is either a circle or a line.
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Proposition: Any circline in C is given by the points z with

|z − z1| = λ|z − z2| with z1 6= z2 ∈ C, λ ∈ R+

Proof: long script.

Proposition: A Möbius map maps a circline to a circline.

Proof. Plug (†) into a circline |z − z1| = λ|z − z2|.∣∣∣∣−dw − bcw − a − z1

∣∣∣∣ = λ

∣∣∣∣−dw − bcw − a − z2

∣∣∣∣
∣∣∣∣∣ · |cw − a|

⇒ | − dw + b− z1(cw − a)| = |dw − b+ z1(cw − a)| = λ|dw − b+ z2(cw − a)|
⇒ |w(cz1 + d)− (az1 + b)| = λ|w(cz2 + d)− (az2 + b)| . (B.3)

If cz1 + d = 0 or cz2 + d = 0, this trivially gives a circle. Otherwise,∣∣∣∣w − az1 + b

cz1 + d

∣∣∣∣ = λ

∣∣∣∣w − az2 + b

cz2 + d

∣∣∣∣ . (B.4)

A circline is determined by 3 points. This suggests:

Proposition: Let α 6= β 6= γ 6= α ∈ C and α̃ 6= β̃ 6= γ̃ 6= α̃ ∈ C.

⇒ There exists a Möbius map that sends α 7→ α̃, β 7→ β̃, γ 7→ γ̃.

Proof. M1(z) =
β − γ
β − α

z − α
z − γ sends α 7→ 0, β 7→ 1, γ 7→ ∞.

M2(z) =
β̃ − γ̃
β̃ − α̃

z − α̃
z − γ̃ sends α̃ 7→ 0, β̃ 7→ 1, γ̃ 7→ ∞

M−1
2 ◦M1 is the required map.

It is also a Möbius map (who form a group!)

B.6 The circle of Apollonius*

see long notes.

B.7 Conformal mappings

B.7.1 Simple operations in the complex plane

Let’s first get some intuition about operations in the complex plane.
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Examples

(1) Square function: z = reiθ 7→ z2 = r2ei2θ

θ

2θ

r

r2

r

r2

θ

2θ x

y

x

θ

r

θ

r

r

θ/2
θ/2

r

y

2 effects: • Rotation from θ to 2θ

• Points are pushed away from the unit circle (towards∞ or 0)

Likewise for z 7→ zα with α > 1, but we need to choose a branch if α /∈ Z.

(2) Square root: z = reiθ 7→ √z =
√
rei

1
2
θ

2 effects: • Points rotate to half their original angle.

• Points are dragged towards the unit circle.

Likewise for any z 7→ zα with 0 < α < 1. We always need to chose a branch!

(3) Exponential function: z = x+ iy 7→ ez = ex+iy = reiy with r = ex.

• real part x determines radius, imaginary part y the angle.

• Horizontal lines y = const → constant angle θ, i.e. radial rays

• Vertical lines x = const → constant r, i.e. circle segments

x1

π

y

−π

x+iy
0

yθ=

r=e
x

0

x1

π

y

−π

x +iy
0

r=e x
0

θ= y



B ANALYTIC FUNCTIONS 19

⇒ Rectangles map to sectors of annuli!

(4) log map: z 7→ ln z is the inverse, provided we choose a branch.

sectors of annuli → rectangles

B.7.2 Conformal maps

Def.: f : U → W , U, W ⊆ C open, is a conformal map :⇔ f is analytic with f ′(z) 6= 0
throughout U . If f is also bijective, it is called a conformal equivalence.

Proposition: A conformal map preserves the angle in magnitude and direction between in-
tersecting curves.

Proof. Let z1(t) be a curve in C with z0 = z1(t0).

⇒ θ = arg z′1(t0) = angle of the curve with the x direction

x

y

z (t)

x

1

θ

0 0
z  :=z  (t  )

1

z’ (t )
01

Let f be a conformal map ⇒ ζ1(t) = f
(
z1(t)

)
is a new curve with tangent

ζ ′1(t0) =
df

dz1

∣∣∣∣
t=t0

dz1

dt

∣∣∣∣
t=t0

= f ′(z0)z′1(t0) .

Angle with x direction: ϑ = arg
(
ζ ′1(t0)

)
= arg

(
z′1(t0)f ′(z0)

)
= θ + arg f ′(z0) .

The rotation angle arg f ′(z0) is well defined since f ′(z0) 6= 0.

Let z2(t) be a second curve through z0. It also gets rotated by arg f ′(z0).

⇒ the angle between z1 and z2 is unchanged.
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Comments: • Without proof: The reverse of this proposition is also true!

⇒ Conformal maps and angle preserving maps are the same thing.

• We often determine the image V ..= f(U) by taking the image of the bound-
ary ∂V = f(∂U). But which side of ∂V is V ? Take one example point to
find out.

Examples

(1) f(z) = az + b with a b ∈ C, a 6= 0 is conformal everywhere:

it rotates by arg a, translates by b and rescales the radius by |a|
(2) f(z) = z2 is a conformal map except at z = 0. Consider

U =
{
z ∈ C

∣∣∣ 0 < |z| < 1 ∧ 0 < arg z <
π

2

}
⇒ V = f(U) =

{
w ∈ C

∣∣∣ 0 < |w| < 1 ∧ 0 < argw < π
}

U
V

f

Note: The right angles of ∂U at z = 1, i are preserved at w = 1, − 1

The right angle at z = 0 is not! Because f ′(0) = 0.

(3) Often, we know U , W and want to find f : U → W .

E.g. U =
{
z ∈ C

∣∣∣ Re(z) < 0
}
, W =

{
w ∈ C

∣∣∣ − π

4
< argw ≤ π

4

}



B ANALYTIC FUNCTIONS 21

U
f g

V

W

1. Half the angular range: f(z) = z1/2

We need a branch cut. This must not intersect U , so f is analytic.

E.g. arg z ∈
(
−π

2
, 3π

2

)
2. We need to rotate f(U) by −π/2: g(ζ) = e−iπ/2ζ = −iζ.

⇒ g ◦ f : U → W , g ◦ f(z) = −iz
1
2

(4) f(z) = ez is conformal throughout C. It maps rectangles to sectors of annuli

f

e x
e

x1 2

y
1

y
2

V

x x

y

y

i

i

1 2

2

1

U

With an appropriate branch, log z does the reverse.

(5) Möbius maps x 7→ az + b

cz + d
are conformal on C \ {−d

c
}

Recall: they map circlines to circlines.

Consider f(z) =
z − 1

z + 1
, on U = {z ∈ C : |z| < 1} “unit disk”

Let’s find ∂V = f(∂U): −1, i, 1 ∈ ∂U :

f(−1) =∞ , f(i) = i , f(1) = 0 ⇒ ∂V = imaginary axis

Also: f(z = 0) = −1 ⇒ V = left half plane Re(w) < 0
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U

f

V

We can compute more points, e.g. f
(
z = 1+i√

2

)
= . . . =

i

1 +
√

2

One can show that f maps regions 1-8 (1, 4, 5, 8 exterior to unit disk!) of

1

23

4

5

67

8

according to the pattern: 1 7→ 2 7→ 3 7→ 4 7→ 1 7→ . . .

5 7→ 6 7→ 7 7→ 8 7→ 5 7→ . . .

Agrees with unit disk
f−→ left half plane

(6) f(z) = 1
z

is another Möbius map; cf. example sheet.

(7) Let’s map the upper half disk |z| < 1, Im(z) > 0 to the full disk |z| < 1

f(z) = z2 doesn’t work: no point gets mapped to R+ (e.g. to 1
2
) since z ∝ eiπ /∈ U

Use Möbius maps...
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W

ff
1 2

f
3

f
4

• f1(z) =
z − 1

z + 1
takes the upper half disk to the 2nd quadrant

• f2(z) = z2 takes the 2nd quadrant to the lower half plane

• Rotate by π
2
: f3(z) = iz

• f4(z) = f1(z) =
z − 1

z + 1
maps the right half plane to the full circle

Looks like magic but works: E.g.

1

2

f−1
4−→ 3

f−1
3−→ − 3i

f−1
2−→

√
3ei3π/4 f−1

1−→ somewhere in region 3

B.7.3 Laplace’s equation and conformal maps

Let U ⊆ R2 be a “tricky” domain, V ⊆ R2 a “nice” domain.

We write: z = x+ iy ∈ U , ζ = u+ iv ∈ V .

Let f : U → V conformal: ζ ..= f(z) = u(x, y) + iv(x, y)

Recall: G(ζ) = Φ(u, v) + iΨ(u, v) is analytic ⇒ Φ, Ψ are harmonic: 4Φ = 4Ψ = 0.

Clearly: g ..= G ◦ f is also analytic: g(z) = G
(
f(z)

)
= φ(x, y) + iψ(x, y)

⇒ φ, ψ are also harmonic
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U

x

f

x

V

G

g

x

z = x+ iy ζ = f(z) = u+ iv

= G ◦ f(z) = G(ζ) = Φ(u, v) + iΨ(u, v)

g(z) = φ(x, y) + iψ(x, y)

We can use this to solve the Laplace equations on complicated domains!

Goal: find solution of 4φ = ∂2
xφ+ ∂2

yφ = 0 on U with Dirichlet boundary conditions on ∂U .

1. Find simple domain V and conformal f : U → V , z = x+ iy 7→ ζ = u+ iv

2. Translate boundary conditions φ = φ0(x, y) on ∂U into conditions Φ = Φ0(u, v) on ∂V

3. Solve 4Φ = 0 on the nice domain V

4. φ(x, y) = Φ
(
u(x, y), v(x, y)

)
solves 4φ = 0 on U

Example

Solve 4φ = 0 on U = the 1st quadrant of R2 with φ(x, 0) = 0, φ(0, y) = 1
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f

V

U
π/2

0

φ=1

φ=0

Φ=1

Φ=0

• U is part of an annulus with: r ∈ (0,∞), θ ∈
(
0, π

2

)
.

• f(z) = log z maps U to the “strip” 0 < Im(z) < π
2
:

u(x, y) = Re(log z) = log |z| ∈ (−∞,∞), v(x, y) = Im(log z) = arg z .

• So we need to solve ∂2
uΦ + ∂2

vΦ = 0 with Φ(u, 0) = 0, Φ
(
u, π

2

)
= 1

• Easy: Φ(u, v) =
2

π
v .

⇒ φ(x, y) = Φ(u, v) =
2

π
arg z =

2

π
arctan

y

x

Note: arg z = arctan y
x

is ok here, since arg z ∈
(
0, π

2

)
.
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C Contour integration and Cauchy’s theorem

C.1 Contours and integrals

Complex differentiation: We had ∞ directions.

Complex integration: We have ∞ paths from a to b; unlike in R!

In contrast to differentiation, we do not demand path independence of integration!

Let’s define integration in C...

Def.: A curve γ is a continuous map γ : [0, 1]→ C.

Comments: • Without loss of generality, we use a parameter range I = [0, 1]. Use λ(x) =
a+ (b− a)x to switch to I = [a, b].

• We sometimes also denote by γ the image γ(I).

• A curve has a direction: from γ(0) to γ(1).

Def.: A closed curve is a curve γ with γ(0) = γ(1).

Def.: A simple curve is a curve γ that does not intersect itself except at the end points γ(0),
γ(1).

Def.: A contour is a piecewise differentiable curve.

Notation: • −γ ..= reversed γ: t 7→ (−γ)(t) = γ(1− t) .

• We can join two curves γ1, γ2 if γ1(1) = γ2(0),

t 7→ (γ1 + γ2)(t) =

{
γ1(2t) for t < 1

2

γ2(2t− 1) for t ≥ 1
2

Def.: The contour integral of a function f along the contour γ is:∫
γ

f(z)dz ..=

∫ 1

0

f
(
γ(t)

)
γ′(t)dt .

Cf. the integral of a vector field in Rn:

∫
C
F (r)dr =

∫ B

A

F
(
r(t)

)
· r′(t)dt .

Alternatively: Dissect [0, 1] into 0 = t0 < t1 < . . . < tn = 1

Let δtk = tk+1 − tk , δzk = zk+1 − zk, where zk = γ(tk). Then∫
γ

f(z)dz ..= lim
∆→0

n−1∑
k=0

f(zn)δzn , where ∆ = max
k=0,...,n−1

δtk .
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Example.: Let f(z) = 1
z

and γ1, γ2 be unit half circles, z = γ(θ) = eiθ, γ′(θ) = ieiθ,

θ

γ

γ
1

2

1−1

⇒ I1 =

∫ 0

π

ieiθdθ

eiθ
= −iπ , I2 =

∫ 0

−π

ieiθdθ

eiθ
= iπ .

Rules of integration: (without proof)

(1) Joint contour:

∫
γ1+γ2

f(z)dz =

∫
γ1

f(z)dz+

∫
γ2

f(z)dz ; same as in R :
∫ c
a

=
∫ b
a

+
∫ c
b

(2) Reversed contour:

∫
−γ
f(z)dz = −

∫
γ

f(z)dz ; as in R :
∫ b
a

= −
∫ a
b

(3) If f is differentiable along a contour γ from a to b, then∫
γ

f ′(z)dz = f(b)− f(a) .

Note: This does not contradict the above path dependence of
∫

1
z
dz (Why?)

(4) Integration by parts and substitution work as in R.

(5) Length of a curve: L =

∫
γ

|dz| =
∫ 1

0

|γ′(t)|dt .

If |f(z)| ≤ f0 along γ, then:

∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ f0L .

Closed contours: • We denote integrals over closed contours by
∮

.

•
∮
γ
f(z)dz depends on the direction, but not on the strating point

• Convention: traverse γ counter clockwise

⇔ interior of γ is on the left
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Def.: An open set D ⊆ C is a connected domain if each pair z1, z2 ∈ C can be connected by
a curve whose image is in D. D is simply connected if if is connected and every curve
in D encloses only points in D (“no holes”!).

is not simply connected

Note: A single point is enough to make a hole.

C.2 Cauchy’s theorem

Theorem: If f(z) is analytic in a simply connected domain D and γ is a closed contour in D,∮
γ

f(z)dz = 0

Proof. (slightly simplified)

Green’s theorem for functions P , Q with continuous partial derivatives on D ⊇ M, where M
is the interior of a simple closed contour γ in R2:∮

γ

(Pdx+Qdy) =

∫ ∫
M

(
∂Q

∂x
− ∂P

∂y

)
dx dy . (†)

Write the complex f(z) = u(x, y) + iv(x, y), so:

∮
γ

f(z)dz =

∮
γ

(u+ iv)(dx+ idy) =

∮
γ

(udx− vdy) + i

∮
γ

(vdx+ udy)

(†)
=

∫ ∫
M

(
−∂v
∂x
− ∂u

∂y︸ ︷︷ ︸
=0

)
dx dy + i

∫ ∫
M

(
∂u

∂x
− ∂v

∂y︸ ︷︷ ︸
=0

)
dx dy = 0 ,

thanks to the Cauchy-Riemann conditons.
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C.3 Deforming contours

Proposition: Let γ1, γ2 be contours from a to b in C, and f(z) be analytic on both contours and
the region bounded by the contours. Then∫
γ1

f(z)dz =

∫
γ2

f(z)dz .

γ

γ
1

2

x

x

a

b

Proof. Let γ1, γ2 not intersect each other except at a, b.

⇒ γ1 − γ2
..= γ1 + (−γ2) is a simple closed contour

⇒
∮
γ1−γ2

f(z)dz = 0 .

If γ1, γ2 intersect each other, dissect the curve at each crossing point and apply the proof to
each individual closed curve.

Comments:

• Compare with exact differentials in R2: Write

df = f(z)dz = (u+ iv)(dx+ idy) = (u+ iv)︸ ︷︷ ︸
=..P

dx+ (−v + iu)︸ ︷︷ ︸
=..Q

dy

⇒ ∂yP = ∂y(u+ iv) = ∂x(−v + iu) = ∂xQ by C.R. ⇒ df is exact!

⇒ The integral of f is path independent.

• Cauchy’s theorem lets us deform contours:

Let γ1, γ2 be closed contours that can be continuously deformed into each other.

Let f(z) be analytic on and between γ1, γ2
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γγ

γ
2

1

Cut out a tiny piece from γ1, γ2 to get a single closed contour γ.

Use Cauchy’s theorem on γ and let the gap shrink to zero width,∮
γ

f(z)dz = 0 ⇒
∫
γ1

f(z)dz =

∫
γ2

f(z)dz.

C.4 Cauchy’s integral formula

Integration along closed contours: Functions with singularities inside are more interesting!

Theorem: Cauchy’s integral formula: Let f(z) be analytic on an open domain D, z0 ∈ D, and
γ a simple closed contour inside D that encircles z0 counter clockwise.

⇒ f(z0) =
1

2πi

∮
γ

f(z)

z − z0

dz , and f (n)(z0) =
n!

2πi

∮
f(z)

(z − z0)n+1
dz (‡)

Proof. Let γε be a counter clockwise circular contour of radius ε inside γ

γ

γ
ε

x

z
0

⇒ f(z)

z − z0

is analytic between γ, γε. Write z = z0 + εeiθ and let ε→ 0, so:
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∮
γ

f(z)

z − z0

dz =

∮
γε

f(z)

z − z0

dz =

∫ 2π

0

f(z0 + εeiθ)

εeiθ
iεeiθdθ = lim

ε→0
i

∫ 2π

0

f(z0 + εeiθ)dθ = 2πif(z0)

That’s the first Eq. (‡). For the second, take
d

dz0

n times

⇒ f ′(z0) =
1

2πi

∮
γ

f(z)

(z − z0)2
dz , etc.

Comments: • Knowing f on γ gives us f(z) for every point inside. How?

f(z) = u(x, y) + iv(x, y) is analytic

⇒ u, v are uniquely determined as solutions to the Laplace equation with

Dirichlet boundary conditions on γ

This does not work for z0 outside γ: Then
1

2πi

∮
γ

f(z)

z − z0

dz = 0

• If f is analytic at z0, by Eq. (‡) it is differentiable ∞ times at z0

Liouville’s theorem: If f is analytic on all C and bounded, it is constant.

Proof. ∃c0 ∈ R ∀z ∈ C |f(z)| ≤ c0

Let γr be a counter clockwise circular contour of radius r around z0.

|f ′(z0)| (‡)=

∣∣∣∣ 1

2πi

∮
γr

f(z)

(z − z0)2
dz

∣∣∣∣ ≤ 1

2π

∫
γr

c0

r2
dz =

c0

r

r→∞−→ 0

We can use any r.
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D Laurent series and singularities

D.1 Taylor series and Laurent series

Recall Taylor series in R: f(x) =
∞∑
n=0

1

n!
f (n)(x0)(x− x0)n

On C we have the more general:

Proposition: Let f(z) be analytic in an annulus R1 < |z − z0| < R2.

Then f has the Laurent series f(z) =
∞∑

n=−∞

an(z − z0)n

If f(z) is analytic at z0, it has the Taylor series

f(z) =
∞∑
n=0

an(z − z0)n with an =
f (n)(z0)

n!

Proof. Without loss of generality, z0 = 0.

Let z ∈ C with R1 < r1 < |z| < r2 < R2.

Let γ1, γ2 be counter clockwise circular contours of radius r1, r2.

Approximate with a closed contour γ:

x

z
0 γ

r

r

1

2

γ
1

2

x

z

x

z
0 γ

r

r

1

2

z

x

Use Cauchy’s integral formula (with z 7→ ζ, z0 7→ z) and infinitesimal gap

⇒ f(z) =
1

2πi

∮
γ

f(ζ)

ζ − zdζ =
1

2πi

∮
γ2

f(ζ)

ζ − zdζ − 1

2πi

∮
γ1

f(ζ)

ζ − zdζ .
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For γ1:

∣∣∣∣ζz
∣∣∣∣ < 1. Use geometric series in

ζ

z
, so

I1
..= − 1

2πi

∮
γ1

f(ζ)

ζ − z =
1

2πiz

∮
γ1

f(ζ)

1− ζ
z

dζ =
1

2πiz

∮
γ1

f(ζ)
∞∑
m=0

(
ζ

z

)m
dζ

=
1

2πi

∞∑
m=0

[
z−m−1

∮
γ1

f(ζ)ζmdζ

]

=
−1∑

n=−∞

anz
n , with an =

1

2πi

∮
γ1

f(ζ)ζ−n−1dζ .

For γ2:

∣∣∣∣zζ
∣∣∣∣ < 1 ⇒ . . . ⇒

I2
..=

1

2πi

∮
γ2

f(ζ)

ζ − zdζ =
∞∑
n=0

anz
n with an =

1

2πi

∮
γ2

f(ζ)ζ−n−1dζ

That’s the Laurent series.

If f is analytic at z0, then it is also analytic inside γ1 for small enough r1.

For n ≤ −1 (but not for n ≥ 0 !), ζ−n−1 is also analytic inside γ1

⇒ I1 = 0 by Cauchy’s theorem!

⇒ f(z) = I2 with an =
1

2πi

∮
γ2

f(ζ)

ζn+1
dζ

(‡)
=

1

n!
f (n)(0) Cauchy’s integral formula!

Comments: • One can show that the Laurent series is unique.

• The Taylor series is the same as for real functions.

Examples

(1) f(z) =
ez

z3
=
∞∑
n=0

z(n−3)

n!
=

∞∑
n=−3

zn

(n+ 3)!

(2) f(z) = e
1
z about 0: e

1
z = 1 +

1

z
+

1

2! z2
+

1

3! z3
+ . . . =

0∑
n=−∞

anz
n , an =

1

(−n)!

(3) f(z) =
1

z − a , a ∈ C, about 0:

|z| < |a| ⇒ 1

z − a = −1

a

1

1− z
a

= −1

a

∞∑
m=0

(z
a

)m
= −

∞∑
n=0

1

an+1
zn

|z| > |a| ⇒ 1

z − a =
1

z

1

1− a
z

=
1

z

∞∑
m=0

(a
z

)m
=

−1∑
n=−∞

a−n−1zn .
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(4) f(z) =
ez

z2 − 1
is singular at z = ±1. What is its Laurent series about z0 = 1?

Common trick: ζ = z − z0 = z − 1

f(z) =
eζ e

ζ(ζ + 2)
= e

eζ

2ζ

1

1 + ζ
2

=
e

2ζ

(
1 + ζ +

1

2!
ζ2 + . . .

)[
1− ζ

2
+

(
ζ

2

)2

∓ . . .
]

=
e

2ζ

(
1 +

1

2
ζ + . . .

)
=

e

2

(
1

z − 1
+

1

2
+ . . .

)
.

⇒ a−1 =
e

2
, a0 =

e

4
.

Often, we only need a−1...

(5) f(z) = z−1/2 about 0 does not work: f has branchpoints at 0 and ∞
⇒ Every annulus crosses the branch cut, so @ annulus where f is analytic.

D.2 Zeros and singularities

Theorem: Any polynomial P (z) of degree n ≥ 1 can be factorized as

P (z) = a(z − z1)m1(z − z2)m2 · · · (z − zk)mk ,
where m1 +m2 + . . .mk = n, a ∈ C.

Use the Taylor expansion to generalize this to other functions:

Def.: The zeros of a function f(z) are the points z0 where f(z0) = 0. A zero z0 is of order
n if in its Taylor expansion

∑∞
k=0 ak(z − z0)k, the first non-zero coefficient is ak or,

equivalently, if

f(z0) = f ′(z0) = . . . = f (n−1)(z0) = 0 , but f (n)(z0) 6= 0.

A simple zero is a zero of order n = 1.

Examples

(1) f(z) = z3 + iz2 + z + i = (z − i)(z + i)2:

a simple zero z = i and a zero of order 2 at z = −i.

(2) sinh z =
1

2
(ez − e−z) = 0 ⇔ e2z = 1 ⇔ z = inπ with n ∈ Z.

cosh(inπ) = cos(nπ) = ±1 ⇒ all zeros are simple.

(3) sinh z has a simple zero at iπ, so:

sinh3 z = [a1(z − iπ) + . . .]3 = a3
1(z − iπ)3 + . . . has a zero of order 3 at iπ.
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We get its Taylor series using ζ = z − iπ:

sinh3 z = [sinh(ζ + iπ)]3 = (− sinh ζ)3 = −
(
ζ +

1

3!
ζ3 + . . .

)3

= −ζ3 − 1

2
ζ5

= −(z − iπ)3 − 1

2
(z − iπ)5 + . . .

singularities are “the inverse of zeros”

Def.: A singularity of f(z) is a point z0 where f is not analytic.

isolated singularity: f is analytic in a neighbourhood of z0 (but not at z0).

non-isolated singularity: f is not analytic at z0 nor in any neighbourhood of z0

Examples

(1) f(z) =
1

sinh z
has isolated singularities at z = inπ, n ∈ Z, since sinh is zero there.

(2) f(z) =
1

sinh 1
z

has isolated singularities at z =
1

inπ
for n 6= 0.

f has a non-isolated singularity at z = 0, since for large enough n, another singularity
1

inπ
is arbitrarily close by

(3)
1

sinh z
has a non-isolated singularity at z =∞, since

1

sinh 1
z

has one at z = 0.

(4) f(z) = log z has a non-isolated singularity at z = 0: z = 0 must be connected to a
branch cut! This is also called a branch point singularity.

For isolated singularities, f is analytic in an annulus around it, so f has a Laurent series.

Singularity checklist:

1. Is z0 a branch-point singularity?

2. Is it a non-isolated singularity?

3. If neither, find the Laurent series and check:

(a) If an = 0 ∀ n < 0, then f(z) = a0 + a1(z − z0) + . . .

⇒ the singularity is removable by redefining f(z0) = a0.

(b) If ∃N > 0 ∀n < −N − 1 : an = 0 and a−N 6= 0

⇒ f has a pole of order N at z0.

For N = 1, 2, 3 we say Simple, Double or Triple pole

(c) If there is no such N , f has an essential isolated singularity at z0

Examples

(1) f(z) = 1
z−i

has a simple pole at z = i.
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(2) f(z) =
cos z

z
has a simple pole at z = 0:

cos z

z
= z−1 − 1

2
z +

1

24
z3 ∓ . . .

(3) g(z) =
z2

(z − 1)3(z − i)2
has a double pole at z = i:

Let G(z) =
z2

(z − 1)3
⇒ g(z) =

G(z)

(z − i)2

G(z) is analytic at z = i with Taylor series G(z) = b0 +b1(z− i)+b2(z− i)2 + . . ., b0 6= 0

⇒ g(z) =
b0

(z − i)2
+

b1

z − i
+ b2 + . . ..

We likewise show that g has a triple pole at z = 1.

(4) More generally: Let f(z) have a zero of order n at z0

⇔ 1
f(z)

has a pole of order n at z0

(5) f(z) = z2 has a double pole at ∞, since 1
ζ2

has one at ζ = 0

(6) e
1
z =

0∑
n=−∞

1

(−n)!
zn has an essential singularity at z = 0

(7) One likewise shows that sin 1
z

has an essential singularity at z = 0

(8) f(z) =
ez − 1

z
= 1 +

1

2!
z +

1

3!
z2 + . . . has a removable singularity at z = 0:

redefine f(0) = 1

(9) f(z) = sin z
z

also has a removable singularity at z = 0: redefine f(0) = 1

(10) Let P , Q be polynomials with zero of order m, n, respectively, at z0 and m ≥ n.

⇒ f(z) =
P (z)

Q(z)
has a removable singularity at z0 with f(z0) =

P (n)(z0)

Q(n)(z0)

This follows from l’Hôpital’s rule.

Proposition: Let f(z) have an essential singularity at z0

⇒ In any neighbourhood D of z0, f(z) takes on all possible complex values except

at most one.

E.g. e
1
z takes on any value except 0 around z = 0

D.3 Residues

Def.: The residue Res
z=z0

f of a function f with isolated singularity at z = z0 is the coefficient

a−1 in the Laurent expansion of f about z0.
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Proposition: Let f have a pole of order n at z = z0.

⇒ Res
z=z0

f(z) = lim
z→z0

1

(n− 1)!

dn−1

dzn−1
[(z − z0)nf(z)] (??)

For n = 1 Res
z=z0

f(z) = lim
z→z0

[(z − z0)f(z)] (?)

Proof. n = 1: The Laurent series starts f(z) = a−1
1

z − z0

+ a0 + . . .

⇒ lim
z→z0

[(z − z0)f(z)] = a−1

Use induction for n > 1 (example sheet)

There are many tools to compute residuals...

Examples

(1) f(z) =
ez

z3
= z−3 + z−2 +

1

2!
z−1 +

1

3!
+ . . . ⇒ Res

z=0
f(z) =

1

2

(2) f(z) =
ez

z2 − 1
⇒ Res

z=1

ez

z2 − 1

(?)
= lim

z→1
(z − 1)

ez

z2 − 1
= lim

z→1

ez

1 + z
=
e

2
(3) Brute force does not always work:

z8 = w8 ⇒ z = weinπ/4 with n = 0, . . . 7

Res
z=w

1

z8 − w8
= lim

z→w

z − w
z8 − w8

=
1

(w − weiπ/4) · · · (w − wei7π/4)
= hmm...

Better use l’Hôpital: Res
z=w

1

z8 − w8
= lim

z→w

z − w
z8 − w8

= lim
z→w

1

8z7
=

1

8w7

(4) sinh(πx) has simple zeros at z = ni, n ∈ Z

⇒ 1

sinh(πz)
has simple poles at z = ni.

Eq. (?) with l’Hôpital: Res
z=ni

1

sinh(πz)
= lim

z→ni

z − ni

sinh(πz)
= lim

z→ni

1

π cosh(πz)
=

(−1)n

π

(5) Recall sinh3 z = −(z − iπ)3 − 1

2
(z − iπ)5 + . . .

⇒ 1

sinh3 z
= −(z−iπ)−3

[
1 +

1

2
(z − iπ)2 + . . .

]−1

= −(z−iπ)−3

[
1− 1

2
(z − iπ)2 + . . .

]
= −(z − iπ)−3 +

1

2
(z − iπ)−1 + . . .

⇒ Res
z=iπ

1

sinh3 z
=

1

2
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What’s special about a−1?

Theorem: Let γ be a simple closed contour in counter-clockwise direction, and f(z) be analytic
inside γ except for an isolated singularity z0. Then∮

γ

f(z)dz = i2πa−1 = i2πRes
z=z0

f(z)

Proof. f(z) is analytic except for z0. Deform the contour γ into a circle γr inside γ:

γ
x

z
0

r

γ

⇒
∮
γ

f(z)dz =

∮
γr

f(z)dz =

∮
γr

∞∑
n=−∞

an(z − z0)ndz =
∞∑

n=−∞

an

∮
γr

(z − z0)ndz

The key point is∮
γr

(z − z0)ndz =

∫ 2π

0

rneinθireiθdθ = irn+1

∫ 2π

0

ei(n+1)θdθ

=

 i2π , for n = −1

rn+1

n+1

[
ei(n+1)θ

]2π
0

= 0 for n 6= −1
. (D.1)

Only the a−1 term survives.
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E The calculus of residues

E.1 The residue theorem

Theorem: Let f(z) be analytic in a simply connected domain D except a finite number of
isolated singularities z1, . . . , zn. Let γ be a simple closed counter-clockwise contour
in D that encircles all z1, . . . , zn.

⇒
∮
γ

f(z)dz = i2π
n∑
k=1

Res
z=zk

f(z)

Proof. Approximate γ with γ̃ with the zk cut out:

γ

x

x

x

z
1

z
2

z
3

γ
~

x

x

x

z
1

z
2

z
3

⇒ γ̃ encloses no singularities!

⇒ 0
!

=

∮
γ̃

f(z)dz =

∮
γ

f(z)dz +
n∑
k=1

∮
γk

f(z)dz

⇒
∮
γ

f(z)dz = −
n∑
k=1

∮
γk

f(z)dz =
n∑
k=1

i2πRes
z=zk

f(z) , since γk are clockwise!

E.2 Integrals along the real axis

We can compute many integrals along parts or all of R:

Complete with a circular segment and let radius →∞

Examples

(1) I =

∫ ∞
0

dx

1 + x2
. Use the closed contour γ0 + γR:
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−R

γ
R

−RR R

x
i

x
−i

γ

γ
0

R

γ
0

with z = γ0(t) = t, γ′0(t) = 1: lim
R→∞

∫
γ0

dz

1 + z2
=

∫ ∞
−∞

dt

1 + t2
= 2I

The only singularity inside γ0 + γR is the simple pole z = i:

Res
z=i

1

1 + z2
= lim

z→i

1

z + i
=

1

2i

⇒
∮
γ0+γR

dz

1 + z2
= i2π

1

2i
= π

Finally:
∣∣1− |z|2∣∣ ≤ |1 + z2|

⇒ lim
R→∞

∣∣∣∣∫
γR

dz

1 + z2

∣∣∣∣ ≤ lim
R→∞

∫
γR

|dz|∣∣1− |z|2∣∣ = lim
R→∞

∫
γR

|dz|
R2 − 1

= lim
R→∞

πR

O(R2)
= 0

⇒ 2I = π ⇒
∫ ∞

0

dx

1 + x2
=
π

2

We could also close the contour with the lower half circle γ̄R. Then:

Res
z=−i

1

z2 + 1
= lim

z→−i

1

z − i
= − 1

2i
,

but γ0 + γ̄R is now clockwise giving another minus, so I = π/2.

(2)
1

1 + x2
was conveniently symmetric. How about f(z) =

1

1 + z3
?

Still works! f(z) is symmetric under rotations by 120◦, so use
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R

γ
R

γ
0

γ
1

x
e

iπ/3

Using γ0(t) = t, γ1(t) = ei2π/3t, we get for R→∞∫
γ0

dz

1 + z3
=

∫ ∞
0

1

1 + t3
γ′0(t)dt =

∫ ∞
0

dt

1 + t3
= I∫

γ1

dz

1 + z3
=

∫ 0

∞

1

1 + (ei2π/3t)3
ei2π/3dt =

∫ 0

∞

1

1 + t3
ei2π/3dt = −ei2π/3I

limR→∞

∣∣∣∣∫
γR

dz

1 + z3

∣∣∣∣ ≤ 2

3
πR sup

z∈γR

∣∣∣∣ 1

1 + z3

∣∣∣∣ = O(R−2) = 0

f(z) has 3 singularities, einπ/3, n = 1, 3, 5: only eiπ/3 is inside the contour

l’Hôpital: Res
z=eiπ/3

1

1 + z3
= lim

z→eiπ/3

z − eiπ/3

1 + z3
= lim

z→eiπ/3

1

3z2
=

1

3
e−i2π/3

⇒
∫
γ1+γ0+γR

dz

1 + z3
= −ei2π/3I + I + 0 = i2π Res

z=eiπ/3

1

1 + z3
= i

2π

3
e−i2π/3

⇒ I = i
2π

3

e−i2π/3

1− ei2π/3
= . . . =

2π

3
√

3

(3) Consider I =

∫ ∞
0

dx

(x2 + a2)2
, with a > 0 ∈ R.

f(z) =
1

(z2 + a2)2
has 2 double poles at z = ±ia. We need

Res
z=ia

1

(z2 + a2)2
= lim

z→ia

d

dz

1

(z + ia)2
= lim

z→ia

−2

(z + ia)3
=

1

i4a3
. We use:
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−R R

x
i

γ

γ
0

R

a

∣∣∣∣∫
γR

dz

(z2 + a2)2

∣∣∣∣ ≤ πRO(R−4)→ 0 as R→∞

Symmetry of the integrand implies

2I =

∮
γ0+γR

dz

(z2 + a2)2
= i2π

1

i4a3
=

π

2a3
⇒ I =

π

4a3

E.3 Integrals of trigonometric functions

Consider integrals of the form

∫ 2π

0

f(cos θ, sin θ)dθ

Using z = eiθ , cos θ =
1

2
(z + z−1) , sin θ =

1

2i
(z − z−1) .

We get a contour integral along the unit circle:

γ : θ 7→ z = eiθ ⇒ dz

dθ
= ieiθ = iz ⇒ dθ = −i

dz

z

Example

(1) Let a > 1 ∈ R, I =

∫ 2π

0

dθ

a+ cos θ
=

∮
γ

−idz

z
[
a+ 1

2
(z + z−1)

] = −2i

∮
γ

dz

z2 + 2az + 1

z2 + 2az + 1 = 0 ⇒ z± = −a±
√
a2 − 1

One can show: z− < −a < −1 and −1 < z+ < 0

⇒ only z+ is inside the unit circle
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γ

x x

z z
+−

Res
z=z+

1

z2 + 2az + 1
= Res

z=z+

1

(z − z+)(z − z−)
=

1

z+ − z−
=

1

2
√
a2 − 1

⇒ I = −2i
i2π

2
√
a2 − 1

=
2π√
a2 − 1

E.4 Branch cuts and keyhole contours

Functions with a branch cut need contours that do not cross the cut! This often results in
keyhole contours

Examples

(1) Consider I =

∫ ∞
0

xα

1 +
√

2x+ x2
dx , 0 6= α ∈ (−1, 1)

Branch point: z = 0. Branch cut: we take R+.

Branch: 0 ≤ θ < 2π, so: z = reiθ ⇒ zα = rαeiαθ

Take the contour

x

x

γ

γ
R

ε

e
i 3π/4

e
i 5π/4

γ

γ

1

2

take the limit R→∞, ε→ 0 such that the circles traverse (0, 2π)
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4 contributions:

γR:

∫
γR

zα

1 +
√

2z + z2
dz = 2πRO(Rα−2) = O(Rα−1)→ 0 as R→∞

γε: Set z = εeiθ

⇒
∫
γε

zα

1 +
√

2z + z2
dz =

∫ 0

2π

εαeiαθ

1 +
√

2εeiθ + ε2ei2θ
iεeiθdθ = O(εα+1)

ε→0−→ 0 .

γ1: Let γ1(t) = teiδθ with the limit δθ → 0

⇒
∫
γ1

zα

1 +
√

2z + z2
dz = lim

δθ→0

∫ ∞
0

tαeiαδθ

1 +
√

2teiδθ + t2ei2δθ
eiδθdt =

∫ ∞
0

tα

1 +
√

2t+ t2
dt = I

γ2: γ2(t) = teiδθ with the limit δθ → 2π∫
γ2

zα

1 +
√

2z + z2
dz =

∫ 0

∞

tαei2απ

1 +
√

2t+ t2
dt = −ei2απI

In summary:

∮
γ1+γR+γ2+γε

zα

1 +
√

2z + z2
dz =

(
1− ei2απ

)
I . (†)

One can show: z2 + 1 +
√

2z = (z − ei3π/4)(z − ei5π/4)

ei3π/4 − ei5π/4 =
√

2i

⇒ Res
z=ei3π/4

zα

1 +
√

2z + z2
=

ei3απ/4

ei3π/4 − ei5π/4
=
ei3απ/4

√
2i

Res
z=ei5π/4

zα

1 +
√

2z + z2
=

ei5απ/4

ei5π/4 − ei3π/4
= −e

i5απ/4

√
2i

With (†), we get

i2π

(
ei3απ/4

√
2i
− ei5απ/4

√
2i

)
=
√

2πei3απ/4(1− eiαπ/2)
!

= (1− ei2πα)I

⇒ Ieiαπ(e−iαπ − eiαπ) =
√

2πeiαπ(e−iαπ/4 − eiαπ/4)

⇒ I =
√

2π
sin
(
απ
4

)
sin(απ)

Note: The two poles ei3π/4 and ei5π/4 are in our branch θ ∈ [0, 2π).

They must be! ei5π/4 = e−i3π/4, but e−i3πθ/4 would have given us a different residue
and a wrong I. Stay by your branch!
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E.5 Rectangular contours

Advantage: Rectangular contours can strecth to ∞ in selected directions.

Examples

(1) Consider I =

∫ ∞
−∞

eαx

coshx
dx , − 1 < α < 1

cosh(iz) = cos z ⇒ eαz

cosh z
has poles at z = i

(
n+

1

2

)
π , n ∈ Z

The contour with R→∞

x iπ/2

iπ

−R R

γ
R

γ

γ
1

0

γ
−R

encircles only one pole, z = i π
2
. We have 4 contributions to the integral:

γ0: z(t) = t ⇒
∫
γ0

eαz

cosh z
dz =

∫ ∞
−∞

eαt

cosh t
dt = I

γ1: z(t) = t+ iπ , cosh(z + iπ) = − cosh z, so∫
γ1

eαz

cosh z
dz =

∫ −∞
∞

eα(t+iπ)

cosh(t+ iπ)
dt = −eαiπ

∫ ∞
−∞

eαt

− cosh t
dt = eiαπI

γR: Parametrize z(t) = R + it

One can show: | cosh(R + it)| =
√

cos2 t+ sinh2R ≥ sinhR .

⇒
∣∣∣∣∫
γR

eαz

cosh z
dz

∣∣∣∣ ≤ ∫ π

0

|eαReiαt|
| sinhR|dt = eαR

∫ π

0

1

sinhR
dt =

πeαR

sinhR
= O

(
e(α−1)R

) R→∞−→ 0

since α < 1.

γ−R: Likewise, α > −1 ⇒
∫
γ−R

eαz

cosh z
dz

R→−∞−→ 0
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For γ = γ0 + γR + γ1 + γ−R we have:

∮
γ

eαz

cosh z
dz = (1 + eiαπ)I.

One simple pole at z = i π
2
. With l’Hôpital:

Res
z=i π

2

eαz

cosh z
= lim

z→i π
2

(z − i π
2
)eαz

cosh z
= lim

z→i π
2

(z − i π
2
)αeαz + eαz

sinh z
=

eiαπ/2

sinh i π
2

= −ieiαπ/2

⇒ I =
1

1 + eiαπ
2πi(−ieiαπ/2) =

2π

e−iαπ/2 + eiαπ/2
=

π

cos
(
απ
2

) .

(2) Consider I =

∮
γ

f(z)dz with f(z) =
1

z2 tan(πz)
and the contour

xxxxx x x x x

−(N+1/2)

−i (N+1/2)

i (N+1/2)

(N+1/2)

f has poles at z = n ∈ Z. z = 0 is a triple pole, the others are simple.

The Taylor series of tan gives us Res
z=0

f(z):

tan z = z +
1

3
z3 + . . .

⇒ z2 tan(πz) = πz3

(
1 +

π2

3
z2 + . . .

)
1

z2 tan(πz)
=

1

πz3

(
1− π2

3
z2 − . . .

)
=

1

π
z−3 −π

3︸︷︷︸
=a−1

z−1 − . . .

For n 6= 0: Res
z=n

f(z) = lim
z→n

z − n
z2 tan(πz)

= lim
z→n

1

2z tan(πz) + z2π
cos2(πz)

=
1

n2π

Along the right edge: z(t) = N + 1
2

+ it.

One can show:
∣∣tan

[
(N + 1

2
)π + iπt

]∣∣ ≥ 1

⇒
∣∣∣∣∣
∫ N+ 1

2

−N− 1
2

idt

z(t)2 tan[πz(t)]

∣∣∣∣∣ ≤
∫ N+ 1

2

−N− 1
2

∣∣∣∣ 1

z(t)2

∣∣∣∣ dt = O(N−1)
N→∞−→ 0
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Along the upper edge: z(t) = i(N + 1
2
) + t

One can show:
∣∣tan[tπ + i(N + 1

2
)π]
∣∣ ≥ tanh π

2

⇒
∣∣∣∣∣
∫ N+ 1

2

−N− 1
2

idt

z(t)2 tan[πz(t)]

∣∣∣∣∣ ≤
∫ N+ 1

2

−N− 1
2

dt∣∣z(t)2 tan[(tπ + i(N +
1

2
)π]︸ ︷︷ ︸

≥tanh π
2

∣∣ = O(N−1)
N→∞−→ 0

Likewise, the integrals along the lower and left edge vanish for N →∞. So:∮
γ

dz

z2 tan(πz)
= i2π

(
−π

3
+ 2

N∑
n=1

1

n2π

)
N→∞−→ 0

⇒
∞∑
n=1

1

n2
=
π2

6

E.6 Jordan’s Lemma

We have eliminated some integrals through falloff of the integrand.

E.g.

∮
γR

O(R−2)dz
R→∞−→ 0

An even stronger tool is Jordan’s lemma for contours γR, γ̄R

R

γ
R

−R

γ
R

x

x

x

Lemma: Let f(z) be analytic in C, except for a finite number of singular points, with f(z)→ 0
as |z| → ∞. Let λ, µ ∈ R, λ > 0, µ < 0. Then

lim
R→∞

∫
γR

f(z)eiλzdz = 0 , lim
R→∞

∫
γ̄R

f(z)eiµzdz = 0 .

Proof. One can show that: sinx ≥ 2

π
x for x ∈ [0, π

2
] (long script)
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Parametrize γR : θ 7→ Reiθ, so:∣∣∣∣∫
γR

f(z)eiλzdz

∣∣∣∣ =

∣∣∣∣∫ π

0

f(Reiθ)eiλReiθ iReiθdθ

∣∣∣∣ ≤ R

∫ π

0

∣∣f(Reiθ)
∣∣ ∣∣∣eiλReiθ

∣∣∣ dθ
= R

∫ π

0

∣∣f(Reiθ)
∣∣ e−λR sin θ︸ ︷︷ ︸

>0

dθ ≤ R sup
z∈γR
|f(z)| 2

∫ π/2

0

e−λR sin θdθ

≤ 2R sup
z∈γR
|f(z)|

∫ π/2

0

e−2λRθ/πdθ =
π

λ

(
1− e−λR

)
sup
z∈γR
|f(z)|

R→∞−→ 0 .

Likewise for µ < 0 and the contour γ̄R.

Examples

(1) Consider I =

∫ ∞
0

cos(αx)

1 + x2
dx , α > 0

Use contour γ = γ0 + γR

−R R

x

γ
R

i

γ
0

Trick: Use Re

∫
γ

eiαz

1 + z2
dz

Along γ0: this gives us 2I

Along γR: we get 0 by Jordan’s lemma

We have one simple pole z = i inside γ

⇒ I =
1

2
Re

(
i2πRes

z=i

eiαz

1 + z2

)
=

1

2
Re

(
i2π

e−α

2i

)
=
π

2
e−α.
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(2) Consider I =

∫ ∞
−∞

sinx

x
dx

For Jordan’s lemma we want
eiz

z
, but that’s not regular at z = 0.

Solution: Cut out z = 0 with

γ
ε

−R R

γ
R

−ε ε
x

γ
−

γ
+

⇒ I = lim
ε→0
R→∞

(∫ −ε
−R

sinx

x
dx+

∫ R

ε

sinx

x
dx

)
= Im

[
lim
ε→0
R→∞

(∫ −ε
−R

eix

x
dx+

∫ R

ε

eix

x
dx

)]

The closed contour encircles no singularity, so

∮
γ

. . . dz = 0 and

Iε,R ..=

∫
γ−

eiz

z
dz +

∫
γ+

eiz

z
dz = −

∫
γε

eiz

z
dz −

∫
γR

eiz

z
dz

γε: parametrize z(θ) = εeiθ

⇒
∫
γε

eiz

z
dz =

∫ 0

π

1 +O(ε)

εeiθ
iεeiθdθ

ε→0−→ − iπ

γR: We get 0 by Jordan’s lemma

⇒ I = lim
ε→0
R→∞

Im(Iε,R) = −Im(−iπ) = π.
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F Transform theory

F.1 Fourier transforms

Def.: Let f : R → C be absolutely integrable with bounded variation and a finite number of
discontinuities. The Fourier transform and its inverse are

f̃(k) = F
[
f(x)

]
(k) =

∫ ∞
−∞

f(x)e−ikxdx (†)

f(x) = F−1
[
f̃(k)

]
(x) =

1

2π

∫ ∞
−∞

f̃(k)eikxdk (‡)

Comments:

• There are many conventions: shifting minus signs, factors of 2π etc.

• We often use variable pairs (x, k) for space and (t, ω) for time.

k =
2π

λ
= wave number. ω =

2π

T
= angular frequency.

• Some non-square integrable functions can be handled with distributions.

In particular: f(x) = 1 ⇒ f̃(k) = 2πδ(k) =

∫ ∞
−∞

1e−ikxdx

• At discontinuities, the Fourier transform returns the average:

f(x+) + f(x−)

2
.

• We don’t quite need
∫∞
−∞.

Def.: The Cauchy principal value of an integral
∫∞
−∞ g(x)dx is

−
∫ ∞
−∞

g(x)dx ..= lim
R→∞

∫ R

−R
g(x)dx

Other notations: PV
∫

, p.v.
∫

, P
∫

−
∫

may exist even when
∫

does not. E.g.:

−
∫ ∞
−∞

x

1 + x2
dx = lim

R→∞

∫ R

−R

x

1 + x2
dx = 0

lim
R→∞

∫ R

−R2

x

1 + x2
dx = . . . = −∞ .

• Eqs. (†), (‡) stand for:

1

2
[f̃(k+) + f̃(k−)] = −

∫ ∞
−∞

f(x)e−ikxdx ,

1

2
[f(x+) + f(x−)] =

1

2π
−
∫ ∞
−∞

f̃(k)eikxdk ,

But we keep using (†), (‡)
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Examples

(1) Consider f(x) = e−x
2/2.

⇒ f̃(k) =

∫ ∞
−∞

e−x
2/2e−ikxdx =

∫ ∞
−∞

e−(x+ik)2/2e−k
2/2dx

∣∣∣ z = x+ ik

= e−k
2/2

∫ ∞+ik

−∞+ik

e−z
2/2dz

This is the contribution along γ0 for R→∞ in the contour

ik

−R R

γ
R

γ

γ
0

1

γ
−R

Along γR, γ−R: We get 0 as R→∞ since e−R
2 → 0

We have no singularity

⇒
∫
γ0

e−z
2/2dz = −

∫
γ1

e−z
2/2dz = +

∫ ∞
−∞

e−t
2/2dt =

√
2π (Gauss integral)

⇒ f̃(k) =
√

2πe−k
2/2

(2) Consider f̃(k) =
1

a+ ik
, a > 0.

⇒ f(x) =
1

2π

∫ ∞
−∞

1

a+ ik
eikxdk

Reminiscent of Jordan’s lemma! We use contours γR and γ̄R
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R

γ
R

−R

γ
R

x ia

0
γ

Case 1, x > 0: Use γR with Res
k=ia

eikx

a+ ik
= lim

k→ia

k − ia

a+ ik
eikx = −ie−xa

Use Jordan’s lemma with λ = x

lim
R→∞

∮
γR+γ0

eikx

a+ ik
dk = i2π(−ie−ax)

!
= lim

R→∞

∫
γR

eikx

a+ ik
dk︸ ︷︷ ︸

=0

+ lim
R→∞

∫
γ0

eikx

a+ ik
dk

⇒ f(x) =
1

2π
2πe−ax = e−ax .

Case 2, x < 0: Use γ̄R. Now γ̄R + γ0 encircles no singularity

f(x) =
1

2π

∫ ∞
−∞

eikx

a+ ik
dk = lim

R→∞

[ ∫
γ0

eikx

a+ ik
dk +

∫
γ̄R

eikx

a+ ik
dk︸ ︷︷ ︸

→0

]
= 0

So f(x) =

{
0 for x < 0

e−ax for x > 0

F.2 Laplace transforms

Motivation: Handle growing functions, e.g. et, and initial conditions.

F.2.1 Definition of the Laplace transform

Def.: Let f(t) be defined for all t ≥ 0. Its Laplace transform is

F (s) = L{f(t)} (s) =

∫ ∞
0

f(t)e−stdt , s ∈ C ,

provided the integral exists.
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Comments: • This works for functions that grow no more than exponential

• Some people use p instead of s

• If f(t) = 0 for t < 0, we have: F (s) = f̃(−is) (Fourier transform)

Examples

(1) f(t) = 1 ⇒ L{1}(s) =

∫ ∞
0

e−stdt =
1

s

Note: The integral only exists for Re(s) > 0.

But we may still take the result for all s where it is defined! Here s ∈ C \ {0}.
This is called analytic continuation and can be useful.

(2) Use integration by parts for f(t) = t.

⇒ F (s) =

∫ ∞
0

te−stdt =

[
t
−1

s
e−st

]∞
t=0

−
∫ ∞

0

−1

s
e−stdt = 0− 1

s2

[
e−st

]∞
t=0

=
1

s2

(3) L{eλt}(s) =

∫ ∞
0

e(λ−s)tdt =
1

s− λ for Re(λ) > Re(s).

But we can use again analytic continuation: F (s) =
1

s− λ for s ∈ C \ {λ}
(4) For λ = ±i, we get:

L{sin t}(s) = L
{

1

2i
(eit − e−it)

}
(s) =

1

2i

(
1

s− i
− 1

s+ i

)
=

1

s2 + 1

F.2.2 Properties of the Laplace transform

Let f(t), g(t) be functions with Laplace transforms F (s), G(s). Then:

(A) Linearity. For α, β ∈ C : L{αf + βg} = αL{f}+ βL{g} .

Proof. Directly from definition

(B) Translation. For t0 ∈ R : L{f(t− t0)H(t− t0)}(s) = e−st0F (s) ,

where H(x) =

{
0 for x < 0
1 for x > 0

“Heaviside function”

Proof. With t̃ = t− t0,∫ ∞
0

f(t−t0)H(t−t0)e−stdt = e−st0
∫ ∞
−t0

f(t̃)H(t̃)e−st̃dt̃ = e−st0
∫ ∞

0

f(t̃)e−st̃dt̃ = e−st0F (s) .

(C) Scaling. For λ > 0: L{f(λt)}(s) =
1

λ
F
(
s
λ

)
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Proof. With t̃ = λt :

∫ ∞
0

f(λt)e−stdt =

∫ ∞
0

f(t̃)e−
s
λ
t̃ dt̃

λ
=

1

λ
F
(
s
λ

)
(D) Shifting. For s0 ∈ C: L{es0tf(t)}(s) = F (s− s0)

Proof.

∫ ∞
0

es0tf(t)e−stdt = F (s− s0)

(E) Transform of derivatives. L{f ′(t)}(s) = sF (s)− f(0)

L{f ′′(t)}(s) = sL{f ′(t)}(s)− f ′(0) = s2F (s)− sf(0)− f ′(0) etc.

Proof.

∫ ∞
0

f ′(t)e−stdt =
[
f(t) e−st

]∞
t=0
−
∫ ∞

0

−sf(t)e−stdt = sF (s)− f(0)

(F) Derivative of transform. F ′(s) = L{−tf(t)}(s) , F (n)(s) = L{(−t)nf(t)}(s)
We often use this right-to-left.

Proof. F ′(s) =

∫ ∞
0

−tf(t)e−stdt = L{−tf(t)}(s)

(G) Asymptotic limits. If lim
t→∞

f(t) exists: lim
s→∞

sF (s) = f(0)

lim
s→0

sF (s) = f(∞)

Proof. sF (s)
(E)
= f(0) +

∫ ∞
0

f ′(t)e−stdt

For s = 0, this gives us f(t) with t→∞.

For s→∞, we use that f, f ′ grow at most exponential, so the integral vanishes.

Examples

(1) L{t sin t}(s) (F )
= − d

ds
L{sin t}(s) = − d

ds

1

s2 + 1
=

2s

(s2 + 1)2

(2) We already know L{1}(s) =
1

s

(F )⇒ L{tn}(s) = (−1)n
dn

dsn
1

s
=

n!

sn+1

Euler’s Gamma function: Γ(n) ..=

∫ ∞
0

e−ttn−1dt

⇒ Γ(n) = L{tn−1}(s = 1) = (n− 1)!

(3) For a > 0: L{sin(at)}(s) (C)
=

1

a
L{sin t}( s

a
) =

1

a

1
s2

a2
+ 1

=
a

s2 + a2

⇒ L
{

sin(at)

a

}
(s) =

1

s2 + a2
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(4) L{eiat}(s) =
1

s− ia
=

s+ ia

s2 + a2

(A)
= L{cos(at) + i sin(at)}(s)

⇒ L{cos(at)}(s) =
s+ ia

s2 + a2
− iL{sin(at)}(s) =

s+ ia

s2 + a2
− i

a

s2 + a2

⇒ L{cos(at)}(s) =
s

s2 + a2
.

F.2.3 The inverse Laplace transform

Proposition: We can compute the inverse Laplace transform f(t) of F (s) from the Bromwich

inversion formula f(t) =
1

i2π

∫ α+i∞

α−i∞
F (s)estds ,

where α ∈ R is chosen greater than the real part of all singular points of F (s).

Proof. By assumption, f(t) has a Laplace transform

⇒ ∃α ∈ R : g(t) = f(t)e−αt decays exponentially as t→∞

⇒ g(t) has a Fourier transform: g̃(ω) =

∫ ∞
−∞

f(t)e−αte−iωtdt = F (α + iω)

⇒ g(t) =
1

2π

∫ ∞
−∞

F (α + iω)eiωtdω
∣∣∣ s ..= α + iω , dω =

ds

i

⇒ f(t)e−αt =
1

2πi

∫ α+i∞

α−i∞
F (s)e(s−α)tds

⇒ f(t) =
1

i2π

∫ α+i∞

α−i∞
F (s)estds .

Why α > Re(s0) for all singularities s0 of F? This ensures f(t) = 0 for t < 0; cf. below.

In practice, we often have the case:

Proposition: Let F (s) be the Laplace transform of f(t) and have only a finite number of isolated
singularities sk ∈ C, k = 1, . . . , n. If lim

|s|→∞
F (s) = 0, then f(t) = 0 for t < 0 and

for t > 0,

f(t) =
n∑
k=1

Res
s=sk

(
F (s)est

)
Proof. (i) t < 0:

Consider the contour γ = γ0 + γ̄R
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x

x

x

α−i

α+iR

γ
R

0
γ

R

If F (s) = o(s−1), we get

∣∣∣∣∫
γ̄R

F (s)estds

∣∣∣∣ ≤ πReαt sup
s∈γ̄R
|F (s)| R→∞−→ 0 ,

since α ≤ Re(s) along γ̄R, so that for t < 0 we have αt ≥ Re(s)t ⇒ |eαt| ≥ |est|.
If F (s)→ 0 more slowly than o(s−1), one can show the same with Jordan’s lemma.

In any case: lim
R→∞

∫
γ̄R

F (s)estds = 0 ⇒
∫
γ0

F (s)estds =

∫
γ0+γ̄R

F (s)estds
!

= 0,

since γ0 + γ̄R encloses no singularities.

(ii) t > 0:

Use the contour γ = γ0 + γR

x

x

x

γ
R

0
γ

α−iR

α+iR

For R→∞, γ encircles all singularities!

As before,
∫
γR
. . .→ 0 as R→∞. The Bromwich formula and residual theorem give us

f(t) =
1

i2π
lim
R→∞

∫
γ0

F (s)estds =
1

i2π
lim
R→∞

∮
γ0+γR

F (s)estds =
n∑
k=1

Res
s=sk

(
F (s)est

)
.
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Examples

(1) F (s) =
1

s− 1
has a simple pole at s = 1 and F (s)→ 0 as |s| → ∞. Let α > 1.

⇒ f(t) = Res
s=1

(
est

s− 1

)
= et .

(2) F (s) = s−n, n ∈ N has a pole of order n at s = 0, and F (s)→ 0 as |s| → ∞ .

⇒ f(t) = Res
s=0

(
est

sn

)
= lim

s→0

[
1

(n− 1)!

dn−1

dsn−1
est
]

=
tn−1

(n− 1)!

F.2.4 Solving differential equations with the Laplace transform

Examples

(1) Solve tf̈(t)− tḟ(t) + f(t) = 2 , f(0) = 2 , ḟ(0) = −1 .

L{tḟ(t)}(s) (F )
= − d

ds
L{ḟ(t)}(s) (E)

= − d

ds
[sF (s)− f(0)] = −sF ′(s)− F (s)

L{tf̈(t)}(s) (F )
= − d

ds
L{f̈(t)}(s) (E)

= − d

ds

[
s2F (s)− sf(0)− ḟ(0)

]
= −s2F ′(s)− 2sF (s) + f(0)

L{2}(s) =
2

s
Transform the ODE

⇒ − s2F ′(s)− 2sF (s) + f(0) + sF ′(s) + F (s) + F (s) =
2

s

⇒ − s(s− 1)F ′(s)− 2(s− 1)F (s) =
2

s
− 2 =

2− 2s

s
= −(s− 1)

2

s

⇒ sF ′(s) + 2F (s)
!

=
1

s
(s2F )′ =

2

s

⇒ s2F = 2s+ A ⇒ F (s) =
2

s
+
A

s2
, where A = const

⇒ f(t) = 2 + At . With ḟ(0) = −1 we get: A = −1

(2) Solve the PDE
∂

∂t
f(t, x) =

∂2

∂x2
f(t, x) on 0 ≤ x ≤ 2, t ≥ 0 with

f(t, 0) = 0 , f(2, t) = 0 , f(0, x) = 3 sin(2πx)

Laplace transform in t with rule (E); x unaffected!

⇒ sF (s, x)− f(0, x) = ∂2
xF (s, x)

⇒ ∂2
xF (s, x)− sF (s, x) = −3 sin(2πx) . This is an ODE!

Homogeneous part: Fh(s, x) = c1e
√
s x + c2e

−
√
s x , c1, c2 = const

For the particular solution, we guess

Fp(s, x) = A cos(2πx) +B sin(2πx)
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⇒ − (2π)2A cos(2πx)− (2π)2B sin(2πx)− s[A cos(2πx) +B sin(2πx)]
!

= −3 sin(2πx)

⇒ − [(2π)2 + s]A = 0 ∧ − [(2π)2 + s]B = −3

⇒ A = 0 ∧ B =
3

4π2 + s

⇒ F (s, x) = c1e
√
s x + c2e

−
√
s x +

3

4π2 + s
sin(2πx)

Laplace transform the boundary conditions:

f(t, 0) = 0 ⇒ F (s, 0) = c1 + c2 = 0 ,

f(t, 2) = 0 ⇒ F (s, 2) = c1e
2
√
s + c2e

−2
√
s = 0 ,

So c1 = c2 = 0 and: F (s, x) =
3

s+ 4π2
sin(2πx)

⇒ f(t) = 3e−4π2t sin(2πx) .

F.2.5 The convolution theorem for Laplace transforms

Def.: The convolution f ∗ g of two functions f, g : R→ R is

(f ∗ g)(t) = (g ∗ f)(t) =

∫ ∞
−∞

f(t− u)g(u)du

If f(t) = g(t) = 0 for t < 0, this becomes

(f ∗ g)(t) = (g ∗ f)(t) =

∫ t

0

f(t− u)g(u)du

For Fourier transforms: F [f ∗ g] = F [f ]F [g]

Theorem: The Laplace transform of a convolution is

L{f ∗ g}(s) = L{f}(s)L{g}(s) = F (s)G(s)

Proof. L{f ∗ g}(s) =

∫ ∞
0

[∫ t

0

f(t− u)g(u)du

]
e−stdt =

∫ ∞
0

[∫ ∞
u

f(t− u)g(u)e−stdt

]
du

u

t

With x = t− u, dt = dx,

L{f∗g}(s) =

∫ ∞
0

[∫ ∞
0

f(x)g(u)e−sxe−sudx

]
du =

∫ ∞
0

[∫ ∞
0

f(x)e−sxdx

]
g(u)e−sudu = F (s)G(s)
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Examples

(1) Find the inverse of H(s) =
1

s(s2 + 1)
!

= F (s)G(s) with F (s) =
1

s
, G(s) =

1

s2 + 1
.

⇒ f(t) = 1, g(t) = sin t ⇒ h(t) = 1 ∗ sin t =

∫ t

0

sinudu = 1− cos t

(2) Consider the ODE 4f̈(t) + f(t) = h(t) , f(0) = 3 , ḟ(0) = −7 ,

with an unspecified forcing term h(t). Laplace transform the ODE using rule (E):

4
[
s2F (s)− sf(0)− ḟ(0)

]
+ F (s) = H(s)

⇒ (4s2 + 1)F (s)− 12s+ 28 = H(s)

⇒ F (s) =
12s− 28

4(s2 + 1
4
)

+
H(s)

4(s2 + 1
4
)

=
3s

s2 + 1
4

− 7

s2 + 1
4

+
H(s)

4

1

s2 + 1
4

The first two terms are inverted with our results for sin(at), and cos(at), the third with
convolution:

f(t) = 3 cos
t

2
−14 sin

t

2
+

1

4
h(t)∗

(
2 sin

t

2

)
= 3 cos

t

2
−14 sin

t

2
+

1

2

∫ t

0

sin
u

2
h(t−u)du .

Remarkably complete given that we have no information about h(t)!
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