Part II General Relativity

Lecture Notes

Abstract

These notes represent the material covered in the Part II lecture General Relativity
(GR). While the course is largely self-contained and some aspects of Newtonian Gravity
and Special Relativity will be reviewed, it is assumed that readers will already be famil-
iar with these topics. Also, calculus in N dimensions and Linear Algebra will be used
extensively without being introduced.

This set of notes differs from the long version by representing in almost verbatim style
how the material is presented in the lecture room. It is primarily designed to dispense
with the necessity to take notes during the lectures.

A more in-depth discussion of books is given in the long set of notes. Here we merely
discuss a few books seemingly most suitable for an introduction to general relativity.

e S. M. Carroll: “Spacetime and Geometry: An Introduction to General Relativity”
[2]; cf. also [1].

e R. d’'Inverno: “Introducing Einstein’s Relativity” [3].

e J. B. Hartle: “Gravity, An Introduction to Einstein’s General Relativity” [1].
e L. Ryder: “Introduction to General Relativity” [7].

e B. Schutz, “A first course in general relativity” [0].

I would not set any of them apart over the others, but recommend each reader to have a
look at them and find where the best chemistry is found.

Example sheets will be pointed to at some later stage, probably on

http://www.damtp.cam.ac.uk/user/examples

Lectures Webpage:

http://wuw.damtp.cam.ac.uk/user/us248/Lectures/lectures.html

Cambridge, Dec 10 2016

Ulrich Sperhake
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A  PRELIMINARIES

A Preliminaries

A.1 Units

SI units: e metres, second, kilogram etc.

e Adapted to “ourselves” — numbers O(1)

Natural units: e Take into account constants of nature.
— 1) unifies physical dimensions (space, time etc.)
2) indicate possible breakdown of theories

e Better adapted to extreme physics.

Speed of light

c=299792458 m/s ~ 3 x 10° m/s = const

Suggests to measure all speeds in units of c.

= ¢=3.00x10°m/s=1

= 15=3.00x10®m
Familiar from the light year: 1 yr = 9.4607 x 10* m
v<c=1 = QGalileo trafo, Newtonian kinematics accurate

v<1 = both break down — need special relativity (SR)

Gravitational constant

3

G = 6.67408 x 10~ 12

1
= const
kg s?

Setc=1, G=1 = 1m=13466 x 10> kg or 1s=4.0370 x 10*® kg

Example: Solar mass Mg = 1.4771 km = 4.9269 us —  ~ Schwarzschild radius of sun

=1 = Newtonian gravity (NG) accurate

~1 = NG breaks down — need general relativity (GR)
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Comment: If velocities determined by gravity, the regimes v &~ 1 and M/R =~ 1 overlap.

v GM M
E.g.: (1) Spherical orbit d M == = 2= _
g.. (1) Spherical orbit around mass 2T 2R v i
v2 2G M 2M
2)E locity f h f M: =" = 2=
(2) Escape velocity from sphere of mass 2= 2 f Ve = p
Planck’s constant
h kg m?
hi= —— = 1.0545718 x 1073 “220
2m S
1

Setc=1, h=1 =1kg=85223x10°Hz or 1m

~ 351767288 x 1013 kg

h 1

Compton wavelength: X = — = —
mc m

Compare Compton wavelength of a body with its size or available volume.

h X
B Sun: X = — = 0.177 X 107?m = R—@ <1
®© ©

h
Proton: X, = — = 0.210268 fm ~ radius of atomic nuclei ~ 1...10 fm
my,C

<1 = Classical physics accurate

~1 = Need quantum mechanics (QM)

Planck mass

GM h
' ith —— =1 ! = D.
Consider a system with 2R (GR!) and VR 1 (QM!)

h
= M= ,/5‘? — 218 x 1078 kg = 1.22 x 10" GeV

In this regime, quantum and GR effects are important.

The theory of quantum gravity for this regime remains unknown.
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A.2 Newtonian Gravity

A tale of 3 masses

Newtonian 2-body problem

/. mq
~ P 1
Fiona = Gmlame‘ = MyiT2 - ﬁ

T — 7’2‘3
m, = active mass:  source of grav. field, o
. e : —F
m, = passive mass: sensitivity to grav. fields,
m; = inertial mass:  resistance to change motion . ma

. . = To—T1 1 = Ty — T
“Actio = Reactio” = Iy = GmleQ“F—FP = —Flon2 = Gmyigmagy, ER=T
2 — T 2 — 711

T1, T are arbitrary, so:  my,me, = MiaMap

mip . Moy

Mmiq Mg

Ratio of passive to active mass is the same for all bodys. Without loss of generality (WLoG),

Mg = My

Note: Same holds for electric charge: ¢, = g,.

How about inertial mass?

~ 1590: Galileo: Balls of different mass need same time to roll down a slope.
1922: Eo6tvos: Torque from Sun’s gravity on torsion balance is < 5 x 107

+ many more, all compatible with m, = m, = m;. This leads to the...

Equivalence principles

Weak Equivalence Principle (WEP): Freely falling bodies with negligible gravitational self
interaction follow the same path if they have the same initial velocity and position.

Einstein promotes this to a more general level.

Def. : “local inertial frame" := coordinate frame (¢, =, y, z) defined by a freely falling observer
in the same way as an inertial frame is defined in Minkowski spacetime. “local” means
< length scale of variations in the gravitational field g (cf. figure).
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\ / Lab frame
—" -~ <o

Einstein Equivalence Principle (EEP): In a local inertial frame, the results of all non-gravitational
experiments are indistinguishable from those of the same experiment performed in an inertial frame
in Minkowski spacetime.

Strong equivalence principle (SEP): The gravitational motion of a small test body (that may
have gravitational self interaction) depends only on its initial velocity and position but not on its
constitution.

Comments: SEP = WEP; in general WEP = SEP

e Need “small” objects to avoid tidal effects. E.g. Moon drifting away from
Earth.

e SEP is related to equality of active and passive mass. Say Earth
and Moon have different m,/m,. They’'d fall differently in the Sun’s
field = “Nortvedt effect”

e SEP implies G = const everywhere.

e GR satisfies all three EPs. Gravity is a feature of spacetime!

Gravitational redshift

4
Consider: ¢ = (0,0, —g) , Alice at z=h, Bobat z=10 Alice $ g
Alice sends light to Bob.
EEP = equivalent to frame accelerated with (0, 0, +¢) in Bob
Minkowski spacetime X,y

Assumption: v of Bob, Alice < ¢
2

= ignore U—2 and higher-order SR terms
c
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1 1 !
= ZA<t>:h+§gt2 , ZB(t):§9t2 , wa=vp=gtLec.

Alice emits first signal at t;

1
= 21(t) = za(t1) —c(t —t1) = h+ 5gﬁ —c(t—t)

1 1
This reaches Bob at 71, i.e. h+ 5925% —c(ly —ty) = §gT12 (%)

Alice emits second signal at to =1t; + A7ya.
This reaches Bob at T, =T + A7g.

1 1
= h+ §g(t1 +ATA)? —c(T) + At —t; — ATy) = Eg(Tl + Atg)? subtract ()

1 1
= c(Aty — A7) + 59 ATy (2t + ATa) = 59 Atp (2T + ATp)

Assumption: A7y < t;, Arp < Ty, e.g period in light waves
= c¢(ATy — A1) + gATAL = g AT Ty
= ATB (gT1+C) = ATA (gt1 —|—C)

T\ t T, —t ¢
= ATt = <1+—g 1) (1—}—&) ATy =~ {1——9( ! 1)] ATy ' we used 9 <1
c c c c
h 1 t
o (xx) = ——(Tl—h)=§Q(T1+t1)(T1—t1)%0 ‘ we usedg—<<1
c c c
<1

h
= Ty —t; = — to leading order.
c

c2

o — ATB%(I—%)ATAéATA

h
= Signal appears blue shifted to Bob: c¢Arg = Ap =~ <1 — g_2> A
c

Confirmed in Pound-Rebka experiment (1960): light falling in tower.
Light climbing out of a gravity well is red shifted.

Redshift in curved spacetime

Recall: Invariant interval in SR:  2A72 = ¢ At? — Ax? — Ay? — Az?

For weak, static gravitational field, this generalizes to (cf. later):
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2 2
2dr? = {1 i ¢($723Jaz)} 2di? — {1 _ qﬁ(m,;y,z)} (dz? + di? + d2?) ; %<< 1
c c c

Alice: Z4, Bob: ¥p, at fixed positions!

Alice emits signals at t4, t4 + At

Bob receives the first at tg. When does he see the second?

The spacetime is static: ¢ does not depend on ¢
= The two signals travel on identical trajectories, just shifted in time

= Bob receives the second signal at tp + At.

But what proper times do Alice’s and Bob’s clocks measure?

204 208

2 2 2 2

ATA:(l—i—?) At, ATB:(l—i‘?)At

:>ATA%<1+¢—‘;> At , :>ATBz(1+¢—f) At
& &

-1
:>ATB%(1+¢—§) (1+¢—;) ATA%(l—l—w)ATA
c c

Cc

Newtonian gravity for matter fields

Index notation:

e Write vectors, matrices as components: x; = (21, xg,x3) = (2,9, 2); v; = (v1, V2, v3) ete.
3
e Repeated indices in a product are summed over: A;v; = E Aijv;
7j=1

e No index may appear more than twice: A;v; is not defined.
e We may rename indices summed over: A;jv; = Ay
e In an equation or a sum, free (not repeated) indices must match on both sides:

w; + Ajpvg = 0 is correct; w; = A;,vy is not.

e We denote partial derivatives by 0; = . Sometimes, we also use a comma:

85Ei
. 8vk
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Example: Motion of point particle in gravitational field g.
mz =mg(Z,t) = & = g(ap.t).
Let Z; be a non-inertial coordinate system: &; = x; — b;(t).
= &= G t) = g:(Tx, 1) — bi(t)
Comments: 1) If g; is uniform (z; independent) = 3 b; such that g; = 0.

2) g; not uniform = we can only get g; = 0 locally — freely falling frame

Index version of Newtonian gravity

Tidal forces on two particles at z;, z; + dx; :

d? d?
ﬁxi = gi(mj, t), ﬁ(% + 0m;) = gz‘@j + 0xj, t)
d2
= ﬁéxi = 0z Okgi + O(627)
d2
= @5@- + Eijjdoxr; =0 |,  Ej=—0;0;.
Jiscurl free =|g=-V¢ & g =—0¢

It follows: Eij = Eji .

Poisson equation: V - § = —ArGp = V3¢ = 0,0 = AdnGp | = E;=4nGp.

The definition E;; = —0;g; implies

1
Ok Eij = —0,0;9; = 0; By = Eilj = §(Emk: — Eixj) =0

The need for GR: not so much from experiment, but the incompatibility of SR with Newto-
nian space and time.
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A.3 Special Relativity

Extend index notation

e Distinguish upstairs and downstairs indices: v # v;.

3
e Summation only over one up and one downstairs index:  v/u; = E v
j=1

e Latin indices 7, 7, ... =1, 2, 3. Greek indices o, 3, ... =0 ...3.
Metric
Pythagoras as matrix equation: As? = Az? + Ay? + Az? = §;; Az’ Ax? (1)

9;; = diag(1, 1, 1) = flat Euclidean metric in Cartesian coords.

In polar coordinates: ds®> = dx? + dy? + dz?
= dr? +r2d6? + r?sin® 0 d¢?
= g;;di'd¥, g = diag(1, r?, r?sin®0).

Note: Unlike (1), this only works for infinitesimal distances!

Lorentz transformations

Consider inertial (non-accelerated) frames with Cartesian coords.
Proper distance between spacetime events (¢, x, y, z) and (t + At, z + Az, y + Ay, z + Az):
As? = —At2 + Az? + Ay? + AZ?

In SR, no inertial frame is prefered over another = same proper distance in %:
As? = —AP? + AZ? + Aj? + AP

Note: For As = 0, the events are connected by a light ray.

= All inertial frames measure the same speed of light.

Index notation: As* = n,zAr*Az’ = U&BAfdAfB

-1 0 00 -1 0 0 0
o 0 100 - of _ Gf _ 0 100
Tes=MNas =1 0 0 1 0 TS 0 0010
0 00 1 0 0 0 1

7" is the inverse of Nas.
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Inertial frames are related by &% = A% 2" + 2}, A%, = const

WLoG: zg = 0.

=

z
We want: n&BA:Z'dA:EB = %BAduAﬂfu Aﬁ,,Aa:” L N Azt Ax”
= N = A% A5
One can show that this is satisfied by the Lorentz transformations
7‘—71}00 7‘77)00
e R e N e
0 0 01 010 01

Comments e WLoG, coordinates oriented such that the velocity v points in the x direction

e One can show A%, AFgz=0%,  AGA%, =¥,

World lines and 4-velocity

Def.: The interval between two spacetime events ¢ and z® + Ax® is called
timelike = Nuw Azt Az? < 0
null = Nuw At Az? =0

spacelike & N Ak Ax” > 0.

Def.: Proper time A7? = —As? = At? — Az? — Ay® — A2?



A  PRELIMINARIES 13

Postulate: A clock moving on a world line z*(\), A € R, that is in every point timelike or null,
measures the proper time along this world line

A2 dxt dz*
= Dy ——d\.
T /)\1 TIIJ« dA d)\ (i)

Comments: e 7 is invariant under reparametrizing A — u(\).

e We often parametrize timelike curves with 7

/ dzt dzv ey dzt dx”
b (i) = dT = _n#y?EdT = T]HVI‘M;U = 77/’“’?? = —1

dx®
Def.: The four velocity along a timelike curve is  u® := e
-

By def. nufu” = -1
Geodesics

dx> dxP

Consider the action S[z%(\)] = _”aﬂﬁ -

Geodesics are curves that extremize this action.

They follow from the Euler-Lagrange (EL) equations

i%—% = :dzxa_o
d\ Ot Ox drz

One can derive the same equation for null and spacelike geodesics (cf. GR case below).

Postulate: Free massive (massless) particles in special relativity move on straight timelike (null)
curves,

d*z®

dr?

~0. (A.1)
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Time dilation

Let O, O be 2 observers with coordinates z#, 7.

Let @ move with v in the z direction relative to O.

Clock at rest in O: @® = <@ 0, 0, O>

dr’
dt dz*\ - dt dt
i f . H == _—, —/ = A'u'~ 0 = —_— R
Viewed from O: u (dT’ dT) &l <fyd7_, Yo 0, 0) (1)
u! component: dat _ d—f = a_
P Cdr ﬁydT dt 7
dt L
= dt = Wigawr : O sees the moving O age more slowly.
—v

Lorentz contraction

Def.: Length of a rod in O := proper distance As between two events A and B, where ', is the
position of the rod’s tail at a specified time ¢4 = to and x; is the position of the rod’s head
at the same time tg = ¢.

As = \[NapArAxP = \/0;;Axi Azl Az’ =z — oy (A.2)

Let the rod be at rest in O.

World lines of head and tail: z# = (L, ),  y* = (thead, Th + Ax?)
O will pick events with tiay = theaa = % = As* = §;;Az'Ax?
World lines in O: (£, 3%) = &% = A% 2"

(gheada gz) - ?j& - Ad#y# — Adu(xu -+ AI#)

O will pick events /Nl, B with fiai = thead.

A% At :
= ... = ltail = lhead + = = Thead — UiAx
AD
0
Proper distance AS%BZ xg = (theaa — ViAT", Y, xg = (thead, T + Az?)
72 2 o
= = Ashs = vz — xi)(xlé —z%)
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1 —0v2Ax

x

e
Il

Orient the rod along the z axis = (= Ax,
Comments: e The sign of v does not matter.

e Velocity perpendicular to the rod causes no contraction.

Four momentum and Doppler shift

(67 «

Def.: Four momentum of a particle with rest mass m and 4-velocity u*: p* = mu

%uU“U” =-1 = WMVP“]?V = —m?®

Let O move with v in 2 direction relative to ©; consider particle at rest in O.
= p°=(m,0,0,0)

p* = Aap® = ym(1, v, 0, 0)

ym = total relativistic energy of particle in O

ymuv = linear momentum of particle in O
= pt=(F, p0,0)

o CE24pt=—m? = E?=mlt 4 i

Comment: Null curves do not have a four velocity (unit tangent vector), but they have a

four momentum.
Recall for massless particles: E = hv, p = h/\.

= p*=hr(l,1,0,0) eg photon moving in x direction

Now consider such a photon and let © move with v in z-direction relative to O.

= in0O: p*=(K, E00), E=hv

= inO: pY=A%p'= (’}/E—’}/UE, —ywE +~E, 0, 0) =: (E, E,; 0, 0), E=hv

v FE 1—w
Redshift =% v(1 —v) o
Note: e Redshift if @ moves in same direction as photon. Blueshift if v < 0.

e Transverse Doppler shift if v perpendicular to propagation of photon.

More complicated to calculate!

15
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B Differential geometry
Goal: Extend Euclidean geometry to curved spaces.
Motivation: GR generalizes SR like Riemannian geometry generalizes Fuclidean geometry.

Conventions: e An upstairs index in a denominator counts as a downstairs index.

Eg 82 =

oxt

e (Contravariant indices: upstairs. Covariant indices: downstairs.

B.1 Manifolds and tensors

Strategy: Start with manifold M. Establish structure on M step by step.

Def.: n dimensional manifold M := set of points that locally resembles Euclidean space R™ at
each point. For our purposes, this means that there exists a one-to-one and onto map

p- M—-UCR", peM—z2z*cUCR", a=0,...,n—1, (B.1)

where U is an open subset of R". z¢ are the coordinates on M.
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Comments: e [t is sufficient if we can chop up M and map each piece separately to R".
Everything we will develop also holds for such subdivisions of M.

e Think of coordinates like house numbers in a street. Houses don’t change if
we change their numbers. Likewise, we will find objects on M to be invariant
under coordinate changes.

e Curves, vectors etc. live on M, not in the coordinate space. But ¢ is one-to-
one, so this distinction often blurred.

Functions and curves

Def.: Functionon M: f: M —=R

f is smooth :< ¥V coordinate systems x: f(z®) is a smooth function from R™ to R. If f
is invariant under a change of coordinates, it is a scalar.

Def.: Curve .= amap A: I CR — M, I open. X is smooth :< V coordinate systems z®: the
map x*o A : [ — R™ is smooth

Vectors

Def.: Let C* be the space of all smooth functions f : M — R, A be a smooth curve and
p = A\(0) € M. The tangent vector to the curve A at p € M is the map

V:C® =R, fHV(f):%f()\(t))

t=0

T,(M) = space of all vectors at p.
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A vector is a derivative operator! It obeys:
(i) Linearity: a, S €R, f, g€C>® = V(af+pg)=aV(f)+pV(g)
(i) Leibniz rule: f, g €C> = V(fg)=V(f)glp)+ f(p)V(g)

“w
Consider coordinates z* = V/(f) = %f(a:“ (A®)) = ddit \ % f(z%)
/! T N
vector components basis vectors
One can show: 7,(M) has dimension n and e, := 0, := % form a basis.
x
dz# dxz* 0 d
Components: VH = % = V = V“eu = V“@M = W@ = E
u 17
Coordinate change z# — 7% e, = % — €= 82’“ = g;a ai“ - gga €u
dz# ~ dz*  0x%dz¥ 0z
o o _ — — v
v dt v dt Oxv dt oxv

= V =VVe, =V"e, is invariant!

0, is a coordinate basis. Non-coordinate bases also exist but we do not consider them.

Covectors / one-forms

Def.: A covector or one-form is a linear map

n:THM) =R, Ve=nV)

18

T, (M) := Cotangent space of all covectors at p € M. T*(M) is an n dimensional vector

space. Let e, be a basis of 7,(M). The components of a covector 1 are 7, := n(e,).

Properties: Linearity: o, B € R, V, W € T,(M) = n(aV +W)=an(V)+ n(W)

Components: n(V) =n(Vte,) = Vin(e,) = Vi,

Transformation rule: We require (V') to be a scalar

I ce . 0T® . OzM
=nV)=nV" =10V = na@V” = 8= 5
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Def.: Gradient df of a smooth function f: df:7,(M) =R, % > Z—{
d df
let V=—ecT, (M = dfV)=-=<=V(f
dt dt
: (e (63 o 8 a$a «
Basis: Let f =2, afixed = dz%(eg) =dx (W) =55 = 0%

= 9 dz®(V) = n,dx*(VP03) = n,VPdz®(95) = n, VP64 = n, Ve = n(V
U] n 3) =1 5) =1 g =1, n

= n = n.dz®

Tensors
Def. : A tensor T at p € M of rank (g) r, s € Ny, is a multilinear map

T: T, (M) XTI (M) X Tp(M) x .. x T,(M) = R

Y [\

vV Vv
r factors s factors

Plug in r one-forms and s vectors and out pops a real number.

Examples: e Covector n = tensor of rank ((1]): input V', output n(V')
e Vector V can be viewed as:  V : T (M) =R, n=n(V)

1

:>Visa(0

) tensor.

Components of V: (V) = n,dz®(V) =n,V* = V*=dz*(V) = V(dz?)

This holds for all tensors: | T g5 5 =T (dz™, ..., dz%", es,, ..., €z,)

¢ T/ M) XT,(M) =R,  (n,V)=nV) Vel M), VeT,M)

ox®

is a (]) tensor with components §(dz®, d3) = dz®(95) = 907

One can show that tensors of rank (2) form a vector space of dimension n"** and transform
according to

e 0B 0EOrt 0rt
PrBs = Gum " Qghr 0P T OPs YLt
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Tensor operations

(1) Addition, scalar multiplication: Let ¢;, co € R, S, T (}) tensors

= aS+aT : T;(M)xT,(M)—=R, n,V=eaSnV)+eT(nV)
(2) (Anti-) symmetrization: E.g. for (J) tensor T'

1
symmetric part: S,p = E(Tag + T3a) = T(ap)
. 1
antisymm. part: §(Ta5 — Tsa) = Tiag

1
Index subset: T .= E(Taﬁ”’(; + T7%)

1
non-adjacent indices: T(q|g4|5) = §(Tam§ — Ts5pva)
Over n > 2indices: e sum over all permutations
e apply sign of permutation for anti-symm.

e divide by n!

o 1 (67 (e} o (67 o o
E.g.: T%gy = Q(T 8y6 + T%py + T 55 — Ty — T35 — T gsy)

(3) Contraction of (:) tensor := Summation over 1 upper and 1 lower index
— (Zj) tensor
Example: Let T bea (‘;) tensor
= (f) tensor S(w,n,V):=T(dz",w,n,0,,V)

This is basis independent:

0 O+ OxP 0
T+ B = _— @ _— = @
T<dx ,w, 1, ajﬂ,V) e (%MT(dx ,w, 1, axﬂ,V) T(dz% w,n,0,,V)

—58,
Components: S*, =T,
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(4) Let S bea (Z) tensor, T a (") tensor

“outer product” S®T is a (’Zj:) tensor with

(S®T)(w1, ey Wy My s My X, o, X, YY)
= S(wi, ..., wp, X1, ..., X)T(ny, ..., Y1, ..., Y)
One straightforwardly shows:

(1) (S ® T)a1...apﬁl--ﬂrylm‘uqyl'“ys — Salmap#l-n#q Tﬁl""gryl,._y

S

(i) In a coord. basis, a (%) tensor can be written as
T=T",e,®e, ®dzx’

likewise (r, s) tensor

Tensor fields

So far: tensors at point p € M

Def.: Tensor field of rank (’;) = collection of (Z) tensors at each p € M.
Like a map : p — T, of rank (7). The tensor field is smooth &
its components in a coordinate basis are smooth functions.

Sometimes we write X, = vector, X = field. Often it’s clear from context.
Example: Vector field (VF) X : M — T,(M), p— X,
For function f: X(f): M —= R, p+— X,(f) isa function

Henceforth we assume all tensor fields to be smooth.

Integral curves

Def.: Integral curve X\ of a VF V through p € M := curve through p whose tangent at every point
q along the curve is V.

dat (A(t
In coords: a4 =V = 2 (A®))

dt, o =VH(x*) with m“(/\(to)) = z"(p)

Has a unique solution by ODE theory.
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B.2 The metric tensor

Goal: Measure distances, volumes, etc. — need metric!

Def.: A metricat pe M = (g) tensor that is:
(i) symmetric: g(V,W)=g(W.,V) VV. W cT,(M) < gup= Gpa
(i) non-degenerate: g(V,W)=0 VW e T,(M) < V=0

Components: g = gopdz® @dz”, g, = g(9,,0,), ds* = gapdaz®dax”

A metric maps vectors to 1-forms:

VgV, )=V, ie V.T,(M)=>R, WV(W)=g(V.W)=V WH=g, VW
Components: V, =V =g, V"

g non-degenerate = g invertible

2

o) tensor g*? with ¢g*gs, = 6,

Def.: inverse metric g~ := symmetric (

Example: Line element on the unit sphere, 2% + 4% + 22 = 1 in R3: ds? = df? + sin” 0 d¢?,

1 0 5 1 0
Gap = : g =
0 SiIl2 9 O ﬁ

! maps 1-forms to vectors: (g~ (n, .))(w) =g '(n,w)

g
The metric mappings between vectors and 1-forms are inverses of each other:
g9V, .), . )=V, glg'tn, .), .)=m

— mnatural isomorphism

Signature
g symmetric = components of g at p € M are a symmetric matrix
= d basis where g, is diagonal
g non-degenerate = all diagonal elements are # 0
= we can rescale the basis such that the diagonal elements = +1

“orthonormal basis” < basis non-unique!
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“Sylvester’s law” = the number of +1 and —1 entries is independent of basis

Def.: Signature := sum +1, —1 over all diagonal elements

Riemannian metrics: signature = 4+ + ...+ or +n = # of dims.

Lorentzian metrics: —+ +...+ or n — 2. Some people use + — —...—

Note: Equivalence principle
= in a local inertial frame, the laws of SR hold
= dcoords: metric g, =n,, = diag(—1, 1, 1,1) “Lorentz invariant”
Only possible locally! At ¢ # p, g # 1w in general
Def.: A Riemannian (Lorentzian) manifold
= (M, g) where M is a diff. manifold and g a Riemannian (Lorentzian) metric

spacetime := Lorentzian manifold

Example: Minkowski metric in R* with Cartesian coords. 2%, x!, 22, 23

n = —(dz")? + (dz')? + (d2?)* + (dz®)?, (d2°)’=d2’®da?,...

Def.: Let (M,g) be a Lorentzian manifold, V € T,(M), V #0

V is timelke & g(V,V)<0 -

null

null = g(V,V)=0 / spacelike

spacelike & g(V,V) >0
local inertial frame: g¢,, = 7.
= locally we have the light cone structure of SR
Def.: Norm of spacelike vector V' € T,(M) is |[V| := /g(V,V).

Angle between spacelike V., W € T,(M) is § := arccos (%) :
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B.3 Geodesics

Curves

Def.: A curve is timelike (null, spacelike) at a point p € M
&< its tangent vector at that point is timelike (null, spacelike).

Note: This can change along a curve A(t).

Def.: Length along a spacelike curve

f f dz> dzP d
= [ gV, V)|, dt = s Ty v=2
° /to 9V Vil /to Job~ 0t "dt dt

Proper time along timelike curve A(t)
(t)-—/tl NEPas dt—/tl gt et
T(l1) = i g\v, A(t) = . Gap dt dt

. o dz*
Def.: Four velocity along timelike curves u" := I
-

A(T)

= guulu” = —1

Noether’s theorem

Action § = /E(qk, gk, A) dA is extremized by the curve satisfying the

Euler-Lagrange egs.: i 8_£ —8_£
sranse €@ 3 o) ~ 4

Noether’s theorem: (i) £ not explicitly dependend on g

oL :
= p := —— conserved along curve that extremizes S.
gk

(i) £ not explicitly dependend on parameter A

= [ := ¢y —— — L conserved along curve.
Oqk

24
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Geodesics, variation 1

Consider timelike curves from A to B.

WLoG: A =0 (1) at A (B).

1
5:/ LN, L= /—guiri”
0

dk

Note: S invariant under reparametrization x(\), Y

dr dr

dx* dxv B
I TN Tdn Gy

oL 1
8.i°‘ 2L
o1
or® 2L
d

_(_

Jpa !

EL .
eqs Ve

( g;u/(s axy - guujj'u(syoz) - -

— "% OnGyw)

)+

Change parameter:

JuaT!

L

TV On Gy

5z 0

=

dxt dx”

d\ d)\

7( — G —=

da +£dﬁﬁ
e dr 2 dr dr

detdot 1, dat dot
VYo dr dr 2 Gy dr dr

d

— =0
dr

= L ag/w

d?z
7 g e

dz* dx¥

d?zP
{ dr dr -

dr?

>0:

Def.: Christoffel symbols:

1
{uﬁu} = Egﬁp (0ugvp + Ougpp —

symmetric in pu, v !

L

\/ Gtz

For spacelike geodesics:

A
dr
— =L
R
=0 ’ - gPe
DY)
= Eq. (f) with 7 — s

25
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Geodesics, variation 2

5 B 4 dx® dz”
Alternatively: S :/ Ld\, L= gug———
A PN dA

Differences: (1) No restriction to timelike geodesics.

(2) Not invariant under reparamterization.

Euler-Lagrange Eqs. = ... = 1%+ {V“ﬁ} il =0, = o\ (%)
So far so good. But now take () and let
o, Tag o LB & Exd (AN P
T dr ~ dr d dr? ~drzdx | \dr) axv
e e }dx”d_xﬂ _ (T Pade dat (0)
dx>  WAhdx dx - \dr)  dr? dA d
That’s not (x) above! What’s going on?
Answer: S not invariant under parameter change =- Variation gives different curve
, d*\
Egs. (T), () only agree if =k 0 & A=acT+co, c1,co=const € R (t1)
T
Def.: The parameter A along a timelike (spacelike) curve is affine < it is related to

proper time 7 (proper distance s) by Eq. (). For a non-affine parameter, the geodesic
equation is ().

Summary for all curves (incl. null):
Def.: Ifacurve C:ICR—->M, A= 2z%)
(1) satisfies (x) — geodesic, A is affine.
(2) satisfies Eq. (**) with non-zero right-hand side — geodesic; A is non-affine.
(3) satisfies neither (x) nor (xx) — it is not a geodesic.
ODE theory = solutions to (x), (%) unique if %, & fixed at A = Ag

Geodesic postulate: Test particles with positive (zero) rest mass move on timelike (null)
geodesics.
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L gives an easy way to calculate {Vo‘ﬁ}:

Example: Schwarzschild metric in Schwarzschild coords.:

2M
ds* = —fdt* + f'dr® + r*d6* + r*sin®0de*, f=1—"——, M = const
.

= L= ft2— f? — r260% — r?sin® 9@2

d . .. d*t d
EL for ¢(7): E;(zfﬂ =0 = ———4—f‘13§

= ir=0
.

S == (=0 othervise

B.4 Covariant derivative

Physical laws involve derivatives.
Problem: Cannot take difference between vectors at different points:
UeT,(M), VeT(M)

— Covariant derivative V on manifold M

Def.: For functions: Vf: T,(M) = R, V= Vyf=V(f)=VO.f
Vifis ((1)) tensor: Vof = (Vf)a = 0af

Def.: For vectors: VV : T,(M) = T,(M), X +— VxV with
(1) VixigyV = fVxV +gVy V|
(2) Vx(V+W)=VxV +VxW
(3) Vx(fV)=fVxV +(Vxf)V  (Leibnitz rule)
Equivalently: VV : TX(M) X T,(M) =R, (n,X)~n(VxV)

VViis a (}) tensor: V< 53:=VgV*:= (VV)%

Def.: Let {e*} be a basis of T,(M).

Connection coefficients I', :  V,e, = Ve, e, =17

,uzxep
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We get for V = Vte,, W =Wte,
= VyW =Vy(Wte,) =V (WH)e,+ WHVye,
=V"e,(WH)e, + WHVyve €,
=Vve,(WF)e, + WHVY Ve,
e

uv€p

=V (9,We + Wi, e,

= (VyW)P =V"9W?+VTh WH ‘ V arbitrary

= Wp;u = VVW'D = (VW>pV = aVWp + FZVWM

Coordinate transformation z# — ¢
0% 0z OxP ) 0z 0%xP
dxP OFv Ot P Qxp 0TV OTH

= I'7, is not a tensor! But the difference of two connections is. E.g.:

= ... = I, =

Def.: Torsion tensor: 7T}, == F;}V - Fﬁu.
I is called torsion free :< T),,* = 0.

“w
is not a tensor either!

Comments: e O WH =
xl/

Second term in (f) just cancels this to make V,W* a tensor.

e Example: The Christoffel symbols are a connection.
e Convention: Derivative index = 2nd downstairs index in I'”
Some people use the first.

Covariant derivative of tensors

Obtained from Leibniz rule; (g) tensor T' — VT is (Sil) tensor

pv

28
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B.g. lform: Vv (n(W)) = (Vvn)(W) +n(VvW)
= (Vyn)(W) = Vy (n(W)) —n(VyW)
Vn isa (3) tensor since:
(Vn)(V.W) = (Vyn)(W) = Vv (V") = . (Vv W)"
= VP8, W) — 0, (VPO,WH + VOTE W)
= VIWEO,m, = T nuVIW™

= (Opnu — T0, ) VIWH

Components: | 1., = V1, = (Vn)pu = Opllu — sznu .

Covariant derivative of (r, s) tensor:

_ e 1 ou... 1.t 10
W THtn, = QyTHbr, g TR TORetin, g Dl Thbead

_T° H1ee _ _T° M-
Do TRt e — o= DO THb,

B.5 The Levi-Civita connection

Note: We need no metric for the covariant derivative.
But: A metric singles out a special connection.
Theorem: On a manifold M with metric g 3 unique connection with
(1) rg, =Ty, = {#"‘V} Christoffel symbols, torsion free
(2) Vg =0  “metric compatible”

This connection is called the Levi-Civita connection.

29
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Proof: “=7: Let I'z be metric compatible, symmetric
= Vagsy =0 = Oagpy = ooy + 150980

By definition the Christoffel symbols are

1 4
{ﬁuv} = §9u (989w + 0v9up — 0u9py)
1 4
= (Fsﬂgf’“ T L0s9r0 + Tha0ps + Uosoo = U9 = iﬁa)
_Tm
- FB“/

“”: Likewise: ng = { Ba"/}

=...=>I,, =17

R vagﬁv =0

In GR we use the Levi-Civita connection.

B.6 Parallel transport

A connection gives us a notion of “a tensor that does not change along a curve”

Def.: Let V' be a vector field and C an integral curve of V. A tensor T is parallel transported
along C & VyT =0 along the curve.

Comments: e The tangent of an affinely parametrized geodesic is parallel transported along

itself:
m «a m v
de* 0 dz® dx re dx 0

N Do AN AN Ay

UrV, U = U, U™ + UFTS,UY =

d?z> Lo da” dx"
d\? RN dN
with non-affine parameter: VyU = fU

=
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e VyT =0 determines T uniquely along the curve:
in coords. (z*) the curve is x#(\)
= VoV, ", =V0,T", + Tt TP, Ve —T0 T,V

d ag ag
= TV + DTV — T, T V7 =0

ODE theory = unique solution for all T*,

e parallel transport T" along a curve from p to ¢
— isomorphism between tensors at p, ¢
Unlike SR, this is path dependent in GR!

e Parallel transport preserves length of vectors:

d (0% 6% 6%
T WaW) = VIV, (W) = 2W, VIV, W

=0
= Geodesics do not change their timelike, spacelike or null character.
Def.: Acceleration along timelike curve:  a* := vV u"

The curve is a geodesic if a* = 0 or a® = fu®

B.7 Normal coordinates

Def.: Let M be a manifold, T" a connection, p € M.
“exponential map” :  e: 7T, = M, X, g with
q = point a unit affine parameter distance along
geodesic through p with tangent X,

Comments: 1) e can be shown to be one-to-one and onto locally

2) The vector X, fixes the parametrization of the geodesic:
One can show that A X,, 0 <A <1 ismapped to point at

affine par. distance A along the geodesic of X,,. (%)
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Def.: Let {e,} be a basis of 7,(M). “Normal coords. in nbhd. of p € M":
coords. that assigns to ¢ = e(X) € M the coordinates X*
Note: The coords. X* are not fixed by the vector X.

We still have the freedom to choose a basis for 7,(M).

Lemma: In normal coordinates, Fl(i/p) =0 at p.

If " is torsion free, then F’ij =0.
Proof: From (x%) = affinely parametrized geodesic is given by

z#(A) = A X} in normal coords.

, dz” dz? Y
= geodesic eq.: 0+T%, N X, X0 =0 atp VX € T,(M)

=

wp) =0

torsion free = I =0 = T} =0

Note: in general I') ) # 0 away from p!
Lemma: With Levi-Civita connection = in normal coords. at p: 9,9, =0

Proof: T%,=0 = 29,0, = 0,90y + 0pgve — OsG =0

symmetrize on o, i, add = 0,95, =0
Lemma: Let (M, g) be a spacetime with LC connection

= I coordinates at p with: 0,9, =0,  gu =1, = diag(—1, +1, +1, +1)

Proof: Choose an orthonormal basis {e,} for T,(M)

= at p: X = X%y + ...+ X3e; defines normal coords. z* = X*

(¥%) = point an affine par.distance along geodesic through p with

tangent ey has coords. A (ep)” = (A, 0, 0, 0)
= The geodesic is z#(\) = (A, 0, 0, 0)
In any coordinate system, the tangent to the curve (), 0, 0, 0) is 9y = 9/0x°

Likewise 0, = e, = {0,} is orthonormal = ¢,, = g(0,,0,) =1, at p.

32
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Summary: Locally, we can choose coordinates such that the metric is 7, = diag(—1, 1, 1, 1)
and its first derivatives vanish.

Def.: ‘“local inertial frame at p € M” := normal coord. chart with these properties

B.8 The Riemann tensor

The commutator

Def.: Commutator of 2 vectorfields V', W: [V, W|*:=V+9,W* - WHI,V*

[X.,Y] is indeed a vectorfield:

o L OFt
One shows  V*O,WF — W9, V" = ... =2 (VP9 — WPa,V)

oz
Properties: [V, W] = —[W,V]
V.W + U] =[V,W]+[V + U]
V. fW]=[fIV.W]+V(/)W
U, [V, W] +[V,[W,U]|+ [W,[U,V]]=0 “Jacobi identity”

0

0
Note: |—,=——| =0 (coord. basis = commutators vanish)
Ozt Oz

Conversely, one can show:
If Vo,..., Vo1, m <dim(M) are vector fields which are

lin. indep. Vp e M with all [V;,V,;] =0

= Inanbhd. of p 3 coords. (z"): Vi=—, i=0,...,m—1

Second derivatives

For function f: V,V,f= ... =V,V,f-2T V]apf =V,V,f for torsion free I

P
Iz
For vector V: V,VgV7 = VgV, V7 =

= 0, VP + T0,0,VP + T3,05V7 + T3,V — (o & )
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Def.: Riemann tensor: | R7 05 := 0,15 — 01}, + 151, — T4, L5 |.

= “Ricci Identity”:  V,VgV7? = VgV, V7 = R7,,5V*
Equivalently, we can define:
Def.: For 3VFsU, V, W: (R(U,V))(W)=VyVyW —VyVyW — Viy W
Proof: One shows for a function f: R(fU, V)W = fR(U,V)W
RU, fV)W = fR(U, V)W
RU,V)fW = fR(U, V)W

rhs of (1) is a vector = Contraction of R(U,V )W with one-form is linear.

Components: [e,,es] =0, V.ez=1%e,
= R(e.,ep)e, =V,Vge, —V;3Vae, =V, (I e,) — Vs(Ih,e,)

=...= [?argﬁ — gy, + LT, —Th T s e,

por pf
—RY,.p5 |

Symmetries of Riemann
(1) Ra/g,y(; = —Rag(;fy ~ Rag(,yg) =0 by def.
Torsion = 0, let p € M, (z*) normal coords. Then:
(2) IY,=0 atp, I, =0 everywhere

= R'ypoe = 0,1, — 0,17, ) antisymmetrize on vpo

= | RFppe) =0 tensorial equation!
(3)  V,RMyp = O.R", ) ] “OR = 99T — T I = 9oL”

— 0,0, — 0,0,T",

antisymmetrize on pot

= R')jpoir1 = 0 “Bianchi identity”

34



B DIFFERENTIAL GEOMETRY 35

(4)  Levi-Civita connection, p € M = in normal coords.: 0,6,, =0
= 0=0,0", = 0u(9" 9op) = 9op0ug”’ ’ g7

= 0,9 =0

T 1 T
= apFVO' = §g u(apao'g,ul/ + apauga,u - apaygya)

1
= Rupo = 9 (8,;(91,90“ + 050u9vp — 0s00Gpp — apaugva) + I - TT7

=0

= R;wpo - Rpa,uzl

It follows: Rogys = —Rgays

Parallel transport and curvature

Let X,Y be VFs with: lin. indep. everywhere and [X,Y] = 0; let torsion =0

0
= we can choose coords. (s, t,...)such that X = —, Y = —
0s ot
) . X r (9s,01)
Let p, ¢, r, u € M along integral curves of X, Y with coords. u (0,0t) ’
0,...,0), (ds,0,...), (ds,6t,0,...), (0,0t,0,...)
Let Z, € T,(M), parallel trapo Z along pgrup Y Y
to get Z,, € Tp(M)
(Z, - Z,)" p(0,0 X q (8s,0)

~ P P _(Ro By x 0
53,}5?10 ds ot (%30 Z7Y T X,

Proof: long script.
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Geodesic deviation

Goal: quantify relative acceleration of geodesics

Def.: Let (M,I") be a manifold with connection.

“l-parameter family of geodesics” := a map

v:IxI'"—- M with I, I’ C R, open and
(i) for fixed s, ~(s,t) is a geodesic with affine par. ¢
(ii) locally, (s,t) > 7(s,t) is smooth, 1-to-1 has smooth inverse

= the family of geodesics forms a 2-dim. surface ¥ C M

Let T be the tangent vector to y(s = const,t) and S to y(s,t = const)

dz*
I d . H . S‘u = —
n coords. (z*) 7
= 2t (s +0s,t) = x(s,t) + 6s S*(s,t) + 0(532) s=const

= 95 .8 points from one geodesic to a nearby one: “deviation vector”
= “relative velocity” of nearby geodesics: Vr(ds S) = ds VS

= “relative acceleration” of nearby geodesics: ds VoV S

Theorem: | VoVrS =R(T,S)T

& TV, (T"V,S%) = R, T T"S"
Lemma: V'V, ,W*—WHV,V* =V"9,W*+ VITO WP — WHF,V* — WHTS, VP
= VrIW® —WHI, V™ = [V, W]*
= VyW - V'V = [V, W]
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Proof: Use coords. (s,t) on ¥ and extend to (s,t,...) in nbhd. of ¥

0 0

No torsion = VS — VT =[T,S8]=0

= VrVrS = VrVsgT =VgVrT +R(T, S)T O
——

=0 geodesic!
Comments: e R%g,; measures geodesic deviation; manifestation of curvature.

o R%.,5 = 0 & relative acceleration = 0 for all families of geodesics.

e Tidal forces arise from geodesic deviation.

The Ricci tensor

Def.: The “Ricci tensor” is Ros = R'aup |

The “Ricci scalar” is R:=g¢""R,, |

1
The “Einstein tensor” is | Gop — §gagR :

Recall Bianchi Identity: Ragiys,) = 0 ‘ - g*7g”

1 Jo% 1)
= 69 795 [Raﬁw;u + Raﬁéuw + Raﬁwﬁ - Rab’év;u _Raﬁw;zS - Raﬁu&v] =0
——

:_Raﬁwé;u

1 (6
= gg 7955 [Raﬁw;u + Ragopy + Rab’w;é] =0

= R, — 9" Rayy — gﬁéRﬂuﬁ =0

1
= V,R—2V,R, = -2V (Rw - §gwR)

= | VG, =0 “Contracted Bianchi Id.”




C PHYSICAL LAWS IN CURVED SPACETIMES 38

C Physical laws in curved spacetimes

Goal: How do we use differential geometry to describe physics?

C.1 The covariance principle

What we have so far:
e Equivalence principle: freely falling frame = inertial frame in SR
e Normal coordinates: 3 coordinates: go5 = 7as; ng =0

e laws of SR invariant under Lorentz trafos

this motivates the

Covariance principle: The laws of GR are tensorial, i.e. coordinate invariant, and follow from
SR laws by replacing

(1) the metric: 9, — G-
(2) the derivative: 0 — V.
Example: Electromagnetic field in SR:
F., = Fy with Foy = -E;, Fj=epbBy, (4,5, k=1...3)
vacuum Maxwell eqs.: "0, F,, =0, 0pf,, =0
— in GR: ¢g*’V,Fs, =0, VoFs,=0

Note: Step SR — GR not unique since R,3 = 0 in SR

C.2 The energy momentum tensor

Postulate: Mass-energy, stress in GR is described by the “energy momentum tensor” with
(1) T := flux of & momentum across a surface of constant x”
(2) Top = 1pa VT, =0
Interpretation: 17 = T'(dz®, dz”)
TY = (0 momentum across ¢t = const = energy density
TP = x' momentum density
T = energy flux across surface 2° = const

TY = flux of 4 momentum across 7 = const
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T, often obtained from SR + covariance principle

Particles

1) in SR: Point like object with 4-momentum P* = mu* = (E, P")
4-velocity of observer in particle’s rest frame: w* = (1, 0, 0, 0)
particle energy measured by this observer: £ = —n,, wP"

particle’s rest mass: 7, P*P" = —E* + p? = —m?

2) in GR: Covariance = P*=mu® = g,zP*P? = —m?
Particle energy measured by observer: E = —g,5(p) w*(p) P?(p)

works only if both are at p!
electromagnetic field

1) pre-relativistic notation, Cartesian coordinates:

1
energy density: p = 3 (E;E; + B;B;)

™
momentum density, energy flux: j; = ﬁeijkEjBk “Poynting vector”

1|1

stress tensor: S;; = yp §(EkEk + ByBy)oi; — E;E; — B;B;
T
ap ‘ 07
Maxwell eqs. = 5 +0;5i =0, En +0;5;; =0
2) Special relativity:
1 p 1 oo
Tlu,j = E FHPFV — ZF Fpan,u,ll = TU‘LL

Too=p, Toi=—Jji, Ti=>954; from1)

Conservation: 0"T), = n"0,1,, =0

1 1
3) GR: Tup = (FWFBM—ZFWFWgaﬁ) with VAT, =0

7
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Dust

Continuum limit of non-interacting particles of rest mass m and number density n
= Particles are freely falling!

In comoving frame: u* =[1, 0, 0, 0],  locally gos = 7ap

=p=mn, T9=T%%=0, T9=0

= | 7% = puu® = mnu®u® |.

Perfect fluids

Def.: Continuous matter with (1) no heat conduction, (2) no viscosity in locally comoving
frame.

(1) = energy can only flow if the particles flow.

(2) = Force between particles only has radial component.
= For particles on z° axis, only p* momentum can flow.
= T # 0 only for i = j.

No direction preferred = T =722 =733 = p

In SR: In comoving frame 7% = diag(p, P, P, P); u®=(1,0,0,0), ¢*=n*

= T = (p+ P)u*® + Pp**

Covariance principle = | T = (p + P)u®u® + Pg*8

Conservation V7% = 0

= | u*Vap+ (p+ P)Vu* =0

(p + P)ueVu? = —(g*° + uuP)V,P GR’s version of Euler equation

Comments: o We still need an equation of state describing the matter. E.g. polytrope P o< p*

e P=0 = fluid moves on geodesics



C PHYSICAL LAWS IN CURVED SPACETIMES

C.3 The Einstein equations
Postulates of GR

(1) Spacetime is a 4-dim. Lorentzian manifold with metric and Levi-Civita connection.
(2) Free particles follow timelike or null geodesics.
(3) Energy, momentum and stress of matter is described by a symmetric,

conserved tensor T,z : Ve T,53=0.

(4) Curvature is related to matter by the Einstein egs.

1 G

Gap = Rop — §gaﬁR = 7Ta5 ;G = Newton’s constant

Comments: e Factor from Newtonian limit (cf. below)

ct

1
o Vacuum = Gog = Rap — gap R =10 g

2

=R=0 = Ra[j:O

e G = 87T represents 10 coupled, non-linear PDEs. Hard to solve!

Theorem: (Lovelock 1972) Let H,p be a symmetric tensor with

(
(i) in any coords. H,, = H,,(Guw, 09w, 050,9,,) at every p e M
(i) V¥Hup =0

(

iii) Hyy linear in 0,0,9,u

= Japer Hop = AGup + B gup

8rG
= we can modify Einstein’s eqs.: | Gag + Agag = —Tap
c

A = Cosmological constant

Act
G

Agap is equivalent to perfect fluid with p = —P =
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D The Schwarzschild solution and classic tests of GR

Einstein was pessimistic about finding solutions to G = 87T

But 1915 Schwarzschild found his “black hole” solution. Key simplification: symmetry.

D.1 Schwarzschild’s solution

Symmetric spacetimes

Def.: A spacetime (M, g) is "symmetric in a variable s" if 3 coordinates x® such that one of the
x“ = s and g,p are independent of s in this coordinate system.

Def.: A spacetime (M, g) is “stationary” if 3 coordinates x* such that z° is a timelike coordinate
and g, do not depend on z°.

Def.: A spacetime (M, g) is “static” if it is stationary and in that coordinate system go; = 0 for
1=1, 2, 3.

Note: Time reversal t — —t = ggdt da® — —go;dt da’

Invariance under time reversal implies go; = 0: static spacetimes.

Spherically symmetric spacetimes

d point O: spacetime is invariant under rotations about O
= ... = The angular part of the line element is oc 2-sphere metric: dQ? := d#? + sin® 0 d¢?
We assume the metric is invariant under reflection 8 - 7 —6, ¢ — —¢: no mixed ¢, 6 terms
= ds* = —Adi* + 2Bdi di + Cdi* + DdQ?

where A, B, C, D are functions of (£,7) and D > 0
(1) r= VD = ds’= —A(F,r)dP? + 2B(t,r)dt dr + C(L,r)dr? + r2dQ?

(2) ODE theory = 3 integrating factor I(¢,r) with

I(t,r)[ — A, r)dt + B(t,r)dr] = di

= ... = ds* = —j(t,r)df® + k(t,r)dr? + r2dQ* with j=-—, k=C+
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. . Ok
(3) Now Einstein egs.: R', = e 0 = k=k)
r
2 2
i ok + kT -k T B
Rf— ]{,‘27’2 =0 = ...= k’—m, M = const
—r0yj + jk —J r—2M , .
RTT‘ = =0 = = t
—jkr2 J . f(t)
(4) signature +2 = f(f) >0
Rescale £ such that y/ f(f)dt = dt
2M oM\
= | ds* = — (1 — —) dt* + (1 - —> dr® + r*(d6* + sin® 0 d¢?) (1)
r r
Comments: e (f) = unique solution in spherical symmetry and vacuum. It is static!
° TILIEO Gap = Nap: asymptotic flatness
e )M can be shown to be the mass-energy of the spacetime.
e (1) also describes the spacetime exterior to spherically symmetric stars.
= Birkhoff’s Theorem: Any spherically symmetric solution of the vacuum Einstein equations is

given by the Schwarzschild metric. It is static and asymptotically flat.

D.2 Geodesics in the Schwarzschild spacetime

; OM . oM\ ! . .
Ez—(l——)t2+(1——) 72 4+ 7262 4+ r?sin% 0 ¢?

r r

0 component: = i <%> — % = 2120 + 4ri0 — 21 sin b cos O ¢ = 0

A 00

a0
N .2
= 0+2— —sinf cosf¢p” =0
r

Rotate coordinates such that § = 7/2, 6 = 0 at A

= 0 = m/2 always WLoG!
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C 19L 2M
Noether = (i) 8_[3:0 = E:——a—ﬁ.: (1 )t—const

ot 2 0t r
(ii) %:O = L:%%—r sin?6 ¢ = r?¢ = const
5 1 —1 timelike
(iii) % =0 = Q= <1 - g) + <1 - %) i+ r?¢? =<0 null

1 spacelike

Meaning of &/, L: Consider r > M = gap = 1ag = SR

E: for timelike geodesics with A =7: FE = jt =
-

= Em=m~vy = FE = energy per rest mass m

: d
L: Likewise Lm = mr’¢ = myer—f = angular momentum per rest mass

Plug F, L into Eq. for )

1 oM oM
= —E2+1*2+—2(1——>L :(1--)@
T T

r

Comparison with Newtonian equations

Energy balance for particle in Newtonian gravity

1 5 1 5. 1 m L?
Ekin = §m7” + §mr QZﬁ 2 + ?ﬁ
M
Eyot = =G m , Let’'s set G =1
r
1 1 L2 M
= —mi® + —m— — m_ Eyin + Epor = const

2 2 r2 r
Eq. (1) for Q = —1: (E? —1)m/2 = Eyin + Fpot — W

L2

= GR has extra term — 3
,
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1
Summary: 57’“2 + VN/GR(T) — const . VN(T) - - _ =

2r r r3
Effective potential V' determines trajectories
Newtonian: For L #0: limV = oo, lim V=20
r—0 r—>00
L M L?
Extrema from: V{(r) = —3tE= 0 = r= i
3L? 2M
Vl\/T,(T):TT_T_s = V](I/(L2/M>:M4/L6>O
N ,
, Vv, ewtonian

= circular orbit at !
ircular orbi r=—
M

VN min. = orbit stable

45
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GR null: lin(l)V = —00, lim V=0
r—

T—00

L? MIL?
Extrema: Vig(r)=——5 +3——=0 = r=3M
r r
3L7 12ML? 2
ViR(r) = - = VGREBM)=———<0
GR( ) 7,,4 7,,5 GR( ) 81M4
v GR null geodesics
= circular orbit at r = 3M e
Vor max. = orbit unstable 1-_ )
0 — ..}';.:_}‘_‘_':'_‘_‘:'_—_:-_—_{:.__ __________ I____.____JI
/) // 5 10
[ r/m
1+ |1 I
[
Iy
2 1 [FELM=1
Lo |--L/M=2
Ly — L/M=4
3R - L/M=8
e
4L lll !
GR timelike: limV = —o0, lim V=0
r—0 r—00
L? LA

—3L2 >0 for L? > 12 M?

Ext : = = — &+
xtrema: r =1y oYi e

For L? > 12 M?: Vlix(ry) >0, Vir(r_) <0

v GR timelike geodesics

= stable circular orbit at r o
= unstable circular orbit at r_ b o
0
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D.3 Classic tests of GR

Mercury’s perihelion precession

) 1 ., 1 L? Mm
Newtonian: —mr°+ -—-m— —
2 2 72 T

= ¢ ©

¢=L/r> = ¢(t) monotonic — parametrize orbit with ¢

1 . dr B dy o ,
y-—T = ... = r-—dt— d¢_' Ly
d

(1) = (y)*L*+ L% —2My = 2€ —
do

= 2L%yy" + 2L%yy — 2My' =0
M

= y’zO V y”—i—y:ﬁ

M
= y= ﬁ(l + ecos¢) Keppler ellipse for € < 1: No perihelion precession

GR: Use again y(¢), @ = —1

d
=...=> L*y)*+ L% —2My—2ML%*’ = E* -1 %

M
:>y”—|—y: E—F?)Myz
2
Expand solution in « = SF ~ O(1077) for Mercury
= y=yo+oy +0()

L 2) +0(a*) =0

/! M !
= Yoty ——taly +y1—Myo

L2

M
Order a: yy + v =0 = y= ﬁ(l +ecos¢) Newtonian case!

T

Order o': Plug in yo and use cos? ¢ = (1 + cos2¢)/2

M €2 2M M
= =g (145 )+ recono t gppdaonzs

Ansatz: y; = A+ Bosing + C cos2¢

M €2 Me M 2
= = L2( +2>, 77 C e
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M M 1 1
Solution: y = yo + ay; = ﬁ(l + ecos @) +aﬁ {1 + epsin ¢ + €2 (5 — 6C082¢):|

Ignore last term o< €2

M
=y~ ﬁ(1+a+ecos¢+ae¢sin¢)

a1l = cos(¢p— ap) =cosd cosap + sin ¢ sinagp ~ cos P + apsin ¢

= |y~ %{1 + a+ ecos[p(1 — a)]}

Key result: y returns to the same value as (1 — a)¢ increases by 27

2 3M?
= Perihelion period: ¢, 11 — ¢, = T~ 2n(1 4+ o) = 27 (1 + >

1 -« L?
Circular timelike geodesic = r=r, = = [?= L ~ Mr
& ot T T 1-3M/r
M 43"
= Ap~rbr— =
T century

Light bending

1) Newtonian

1
Without gravitational field: ¢" +y=0 = y= b sin¢g, straight line

light from left (¢ = 7) to right (¢ = 0); b = impact parameter
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M
With field: Recall y = — (1 + € sing), we shifted Phase: cos — sin

12

Small deflection = y=0 at ¢ = —-A¢, 7+ A¢p with Ap < 1
= sin(-A¢) = —A¢ = = sin(m 4+ Ag) ~ —A¢ = !
€ €

1
It follows: — <1 = e>»1
€

1 M
Impact parameter 5= y(r/2) = —=(1+¢)

2 ~ 12

Angular momentum: mL = |F'x pl=bmc=bm = L=10

2 2M
Total deflection 2A¢ = — = -
€

‘\TF + Ao

\

\ - AO

2) GR
d

Geodesic equation for Q = 0: L*(y/)? + L*y* — 2M L*y* = E? P

= ' +y=3My?

Without field: M =0 = yl+yo=0 = yo= %singb (like Newtonian)
Small deflection: perturb around straightline yy = (sin ¢)/b

= y=yo+ %Ay +O(M?/b?)
31— cos2¢

Ay + Ay = —
= = Y+ Ay b 5

49
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Homogeneous DE: Ay” 4+ Ay =0 solved by Ay = Acos¢+ Bsin ¢
1

Particular solution: Ay = 5

(34 cos 2¢)

2
WithA:E, B=0,wegety=0for ¢ —>m

M 1 M 2M
= y=yo+—Ay= —sing + —(3+cos2¢) + —-cos¢

b b 2b? b?
Deflection d¢ from y =0 at ¢ =0+ d¢
op M 2M
$0~7+2—b2(3+1)+b—2
4M
= 00N T

For sun: My, =15 km, b~ Ry =7 x 10° km: |0¢| ~ 1.77"

Measured by Eddington expedition in 1919.

Shapiro time delay

Radio signal past sun to Venus and back. Measure time delay.

1) Without field: Pythagoras = T =2 <\/r% Iy =R/ - b2>

Sun
2) With field
IM\ L2 , oM\
Null geodesic (Q=0): 7%+ (1 - 7) = E?, t= (1 - T) E

20
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At point of closest approach: r =0, dr/dt=0

2M L? L? b2
o )peET T BETIom

eliminates L, E

B L dr "2 dr o _% _b_Qﬂ
=T=2] TOREA R ﬂﬂ—(l 71)¢1 r21—2M/b

Solve integral by Taylor expanding f(r) in M/r using M /b < 1

2 b2 2 _ 2
=...=>1T = 2(\/T%_b2+\/r%_bQ>+4M<lnrl+\/brli_klnw—i_\/br)

="TMink

oM ¢“_b+¢”_b.
ri+b ro+b

For Venus and Earth: AT =~ 77 km = 257 us

D.4 The causal structure of the Schwarzschild spacetime

2M oM\~
Recall Schwarzschild:  ds* = — (1 - —) dt* + <1 - —) dr® + r*(d6? + sin® 0 d¢?)
r

r

singular at r = 0, r = 2M; what’s happening?

Light cones
Timelike (null) curves travel inside (on) light cones

= Lightcones display causal structure of spacetime!

t

E.g. Minkowski

in spherical coords.: ><
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Radial null geodesics: df = d¢ = 0; Let X\ be an affine parameter

2M\ .
t component: We already know (1 — _) i = FE = const
r
d oL oL
t: EL L —— ===
r componen eqs o = o
oM\ 12
= ... = <1_7) TM?’:?Z—EQ

Solved by 7 = £ F
= r==2FX+ryis also an affine parameter. Let’s use r.

dt_i_ r

—=-=4
dr 7 r—2M

= ...=>|tlr)=x(r+2M In|r —2M|)+ k|, k= const

1o0M

=

0 2M aM
r

r > 2M: In/Outgoing null geodesics for the +/— sign.
Note: r = const timelike (inside light cone)

M -1 M
r < 2M: dsQZ—(2——1> dr2+(2——1)dt2
T T

= ¢+ <0, gy >0 = risthe timelike coordinate, t spacelike

Light cones tilted horizontally, but In/Outgoing direction unclear.

52
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Infalling observers
Consider timelike geodesic starting at large r:
OM . M\ . oM\
(1——)t:E, —(1——>t2+(1——> P =0Q=-1
r r r
2M
= -F* 4= 14"
r
Observer starting at rest at r > o00 = FE =1 (cf. Sec. D.2)
2M d /
Use proper time: 72 = - = d_: = — ﬁ < 0 infalling!
= ...=> T —Typ= 2 (7”3/2—7“3/2)
3V2M
How about coordinate time ¢?
dt t (e oM\
dr 7 2M r
2 e (v + vaxt) (vio - Vi)
= .= t—lg=———r= |77 =1y  + 6M (/1 — /T0)| +2M In
3v2M (vio+ van) (v - v2i)
70 T | | |
L
1 — )
60 i —- 1) 7
L E\\ |
SO 1N -
40F TS -
o .o i
20— \\\\ -
10+ \\\\ —
0 i L 1 L 1 L 1 L
0 5 10 15 20
r/m
Interpretation: e ¢ = proper time of observer at infinity

e geodesic crosses r = 2M at finite 7 but t — oo

e one falls in finite time, but process infinitely redshifted for outside observer
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Ingoing Eddington Finkelstein (IEF) coordinates

Ingoing null geodesics: t+ 2M In|r — 2M| = —r + const

dr

New time coordinate: ¢t =t 4+ 2M In|r —2M| = dt=dt+ 5
r —

r

2M AM _ oM
= ... = %2:—(1———)ﬁ?+——mm+<1+——>mﬂ+ﬁuW+aﬁewo
T T

Ingoing geodesics: t = —r + const
Outgoing geodesics: ¢ =1+ 4M In|r — 2M| + const

t
10M

i
I
1
1
1
I
I
I
I
I
I
i
SM i -
I
I
I
I
I
I
I
|
I
I
I
I
|
1

0 2M oM

Light cones tilt over inwards at » = 2M.

Def.: Event horizon: The outermost boundary of a region of spacetime from which no null geodesics
or timelike curves can escape to infinity.

Israel’s theorem: If a spacetime is static, asymptotically flat and contains a regular horizon then
it is a Schwarzschild spacetime.

We can use a null coordinate v =t+r = dt=dv—dr

oM
imé(M:—O——JMﬂMWM+ﬁM

r

Note: 0, is tangent to curves v = const. Clearly g(0,,0,) = 0.
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Outgoing Eddington Finkelstein (OEF) coordinates

Outgoing null geodesics: ¢t — 2M In|r — 2M| = r + const

2M
Mdr

New time coordinate: ¢t =t —2MIn|r —2M| = di =dt— 5
r —

2M 4M 2M
=...=> |ds*=— (1 - —) dt* — —dtdr + <1 + —) dr® + r*(d6* + sin® 0 do)
T r

r

We can use a null coordinate u=t—r = dt =du+dr

2M
= ... .= ds*=— (1— —) du® — 2dr du + r?dQ?
r
Ingoing geodesics: t=—r—4MIn|r — 2M| + const
Outgoing geodesics: t =7 + const
.
10M

M/;// pd :
L

0 2M oM

Now all light cones point outwards.

But above we showed that light cones point inwards at r < 2M. WTF?!?

On the other hand: Schwarzschild should be time symmetric. What’s going on?

95
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Kruskal-Szekeres coordinates

—2M
Step 1: Combine IEF and OEF: v =t +7r+2M In <T ) ;7. integration constant
T
—2M
u:t—r—2M1n<r )
T«

oM
= ds®=— (1 — —) du dv + r2d9?

r

Step 2: Use an exponential version of u, v:

V= eiM U = —e iM
— o~ v—u r — 2M _r_
= U = —e4M — — e2M
T
16M? o
=...= ds?=-— e~ 20 di dv 4 r2dQ?
/T,

Step 3: Go back to time and radius:

~ 1 1
o _16M2 o 2 792
=...=> |ds" = ; e M (—dt” +dr°) +r°dQ” |, from now on set r, =1
/Ty

r implicitly given through > — 2 = —e2a (r — 2M)

Comments: e Metric regular at r = 2M
e Radial null geodesics are: ¢ = +# + const
e Coordinate range:
a) r=2M = ?—-i?=0 = (=47
b) r=0 = #-/=2M = t=+Vi?+2M
¢) 2 — 72 = —e/CM)(r — 2M) monotonically decreasing in r

= 2 —72<2M forall r>0

d) No further restrictions on ¢, #: | 7 € (—o00,00), % <#*4+2M
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Kruskal diagram

(1) Curves r = ro:

A r t
(2) Curvest =to: t = (T)—i—&):\/r—QMeWsinhm

1

2
NS DR e t
rzi(v—U)Zme‘*MCOShm

Comments: e Spacetime extended: white hole, black hole, 2 asymptotically flat regions

e Resolves puzzle of light cones in IEF/OEF coordinates.
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D.5 Hawking radiation

GR is a classical theory and we do not yet have a quantum theory of gravity.

Semi-classical calculations: QM on curved background spacetime.
Hawking effect: Pair creation of virtual particles

— one falls into black hole; the other escapes

h 3
Hawking radiation depends on temperature T = m
1 dM *k}
A
A dt 60h3c?
e 76 nG?

= t =5120—M?; for My :

- -
dt 153607 G2 M? hcb
Note: Energy loss — higher 7' — more radiation!

t=0(10%) yr

o8
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E Cosmology

Goal: Simplified model of the entire universe.

E.1 Homogeneity and isotropy

Observations: e Electromagnetic observations of universe out to ~ 10 pc.
e Galaxies have R ~ 10° km —  point like on scale 10! pc.

e On scales ~ 10 pc, the universe looks the same on average and the same
in every direction.

e Hubble redshift — universe seems to expand.
= Model universe as an isotropic, spatially homogeneous spacetime with fluid matter.

Cosmological principle: At a given time, the universe is spatially homogeneous and isotropic
when viewed on large scales.

Weyl’s postulate: The world lines of the universe's fluid elements are orthogonal to hypersurfaces
of constant time, >;, to which the cosmological principle applies.

Comments: e [sotropy is observer dependent: a boosted observer will not see isotropy.
e Which observer sees isotropy? The one comoving with the cosmological fluid.
e We do not require homogeneity in time!

Adapted coordinates

Let x* be spatial coordinates comoving with the cosmological fluid.

Let t be proper time along the world lines of observers comoving with the fluid.
Isotropy = no spatial metric component has a prefered time dependency

= ds? = —dt* + goidt dz’ + a(t)*h;;(x¥)dz’ dad .

Consider basis ey = 0;, e; = 0;

= ¢y = four-velocity of comoving observers and e; are tangent to ¥,

By Weyl’s postulate, ej is orthogonal to %}, i.e. to the e;

= goi =9(ep, &) =0
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= ds? = —dt* + a(t)*h;(z")dz’ dx? (1)
Note: Observers moving relative to the fluid do not move orthogonally to ;.

= goi #0 = this observer does not see isotropy.
Recall: Spatial part of spherically symmetric metric: ~ d¢*> = C(t,r)dr* + D(t, r)dQ? (1)
Spherical symmetry = isotropy around one point
Isotropy around every point = “Maximal symmetry” = Spherical symmetry + more
= we can combine () and ()

= factorize O(t,r) = a(t)?**™) | D(t,r) = a*{t)r? = d*=d?(t) [e*Ddr? + r?dQ?]

Next use our differential geometry on the hypersurface ¢ = const

3-dimensional Ricci scalar R =RY, i=1, 2, 3

2 -
Spatial homogeneity = R =...= = [1— Oy (re )] = const =: k
r

No conical singularity = lin(l) dl* oc (dr* +r%d?) = A=0
r—

2

-
1 — kr?

= Robertson-Walker metric: | ds* = —dt* + a(t)? + 1r*(d6® + sin® 0 dp?)

Note: We can always rescale r, a so that k = +1, 0 or —1
1) k=0: d* =dr?*+r?dQ? = d2® + dy* + d2*
Flat metric on R3; %k = 0 models are called flat.
2)k=+1: r=siny = df?=dx®+ sin® ydQ?
Metric on a 3-sphere (w? + x? + y? + 22 = r? in R?); closed models
3)k=—1: r=sinhy =  d? = dyp? + sinh® dQ?

Metric of a “saddle”; open models
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E.2 The Friedmann equations
The matter fields

Recall: Perfect fluids are isotropic by definition!
We therefore set T, = (p+ P)u,u, + Py
Comoving frame: w* = (1,0,0,0) = T#, =diag(—p, P, P, P)

= T =1T",=—p+ 3P coordinate invariant!
Conservation: V, 7", =0 = ...= p= —32(/) + P)
a

Equation of state: Cosmological matter typically has P = wp, w = const
= P_ —3(1+ w)g =  pox a0
p a
(1) Dust
w=0 = P=0 = pxa?®

Pressure between galaxies ~ 0.

(2) Radiation
Statistical Physics: photons are a gas with P = p/3

1 —4
= wzg = pxa

Fourth power of a comes from redshift (cf. below).

(3) Dark energy

Recall Lovelock’s theorem: We can add Ag,s to the Einstein equations.

A
Perfect fluid with w = —1: 877, = 87Pg,, < —ANg = —P=p= 3
T

w=-1 = poad

Interpretation: Non-zero of the vacuum. Density = const, independent of volume

Do not confuse with dark matter!
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Def.: H:=2 isthe Hubble parameter.
a

aa . :
q:= —— s the deceleration parameter.

a

3H? . o .
Perit ‘= S is the critical density; its significance will be revealed below.
s

p 8T . .

Q= = ——p is the density parameter.
Perit 3H2

Note: These are time dependent variables. The “parameters” are their present day values.

The Einstein equations

Plug Robertson-Walker metric into Gog + Agaps = 8713

a?+k 2ad + a®> + k
=...=> |3 - — A =28mp 1), T—A:—swp (IT)
a 47 A
= 3P) + — 111
" 3(,0+ )+3 (1IT)

Note: Eq. (III) follows from (I), (II) but can be useful.

Differentiate (I) and combined with (I), (II)

= ... p+32(p+P)=0 a?
a
d 3 d 3
4 PLat=0
= gl TPy

Volume V o a?, energy £ = Vp, so this can be written as dE + PdV =0

E.3 Cosmological redshift
2
a dr?— 0 N dt _ L dr

1 — kr? a(t) V1—kr?

A galaxy at r = R emits at times t, and t. + At,.

Radial null curves: ds® = —dt? +

These reach an observer at r = 0 at times t,, t, + At,.
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o dt O dr ot &lo
R e

(‘=7 since ingoing geodesic)

to+At, dt te+Ate dt
= _ = -
to a te a

r=0 r=R

E.g. crests of light wave: At., At, <t,—t. = a = const

St A [a )
a(t,)  aflt,) e aft)

Nearby galaxies: Taylor expand a(t.) =~ a(t,) — (t, — te)a(t,)
a(t,) a(t,)
~14+ (t, —te =1+ (t, —t.)H(t,
S N1k (= 1) S = 1 = 1))

Hubble’s law with distance = ¢(t, — t.), c¢=1.

=

Luminosity distance: Surface of constant radius, time: ds? = a(t)?r%(d6? + sin® 0 dp?)
Area of sphere of constant r: 4mwa’r?

Intensity of light collected at » = 0 from source at r = R:

__energy E

I: =
area 4ma?R?(1 + 2)?

Factors (1 + z) from (i) redshift, (ii) reduced rate of photon hits.

E
Luminosity distance D3 := m
s z
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E.4 Cosmological models

General considerations

k A
1) Eq. (1 —=0-14+—
ForA=0: p>pay < Q>1 < k=41 “closed”

pP=paivr < Q=1 & k=0 “flat’

p<pair < Q<1 & k=-1 ‘“open”
(2) Consider A =0, p >0, P>0. Then: Eq. (III) = d<0.
Observations: Hy =~ 71 km/(sMpc) = a >0
Ifad=0,thena=0att=—13.8 Gyr (1)
“Big Bang”! ’

d <0 = Universe is less old

64

—-13.8 Gyr >-13.8 Gyr

0
8
(3) Again A =0, p>0, P> 0. Then Eq. (I) = a*= §a2p — k.
For k=0, —1: a®> > 0always = a > 0 always (since @ > 0 today)
Recall: i(agp) =—-P ia‘% = —3a*Pa <0
dt dt -

But: pa® > 0, so lim a®p =0
t—o0

8
Then: Eq. (I) = a2:a2H2:§a2p—k‘—>k = tlimd:\k'|
—00

Expansion never stops.

For k = +1: Eq. (I) = &= 8—7Ta2p — 1. As before lim a®p =0

3 a—00

= a=0at a = amax = \/3/(87p).

4
Eq. (II) = lim = —%(p+ P)amax < 0

a—>Amax

= contraction back to a = 0: “Big Crunch”
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now f

Let’s calculate solutions of the Friedmann Egs.

1) Flat, matter dominated: k=0, P =0

Recall: a®p = const for P = 0.

1
Eq. (I) = 8wa3p—3<ad2+ka—§Aa3)Lconst =3C = C—Sga?’p.
c 1
-2:_ —A 2—k
= a a+3 a (1)

A >0: Set k=0in () and use variable

_2A 4 N . 2A .
=35 U=-Fa'a

,2_4A24<C A, A3

4N?
=1 —ﬁa —+—a>:7a3+ﬁa6:6Au+3Au2

u

= 0% = 3A(2u + u?)

= 0 = V3A(2u + u?)/?

“ 1
Initial conditions: a =u=0att=0 = / ——du=V3At
0 V2u -+ u?
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Use u = —1 + coshw

/ “ du _/“’ sinh @ dw —/wdu?—w
\/u2—|—2u Va+1)2 -1 0 V/cosh*w —1

= u + 1 = coshw = cosh(V3At)

2A 5 3C
= %a = cosh(V3At) — = @’ =or [Cosh(\/ 3At) — 1]
2\
A : = ——
<0: Useu= 3Ca

g t_2 R N AN A
a3 T2 \a) \a) 2

“Finstein-de Sitter model”

P=0 k=0

///
—
—

— = “Einstein-de Sitter
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2) Matter dominated, no cosmological constant: A =0, P =0

Eq. (1) on page 65 = a° = ¢ —k

= ...= Fork=+1:

For k = —1:

a
i a a a
iny /= —/=4/1—=| ==+
C _arcsm C c C’] t+by |,
[ [a ] a , [a
C’_ ol 1+5—arsmh 6}—it+bi

For k£ = 0: Einstein-de Sitter model from above.

WLoG by = 0. Also ¢ > 0 for future oriented models.

P=0, A=0

—

—
-
—
—

-7 Einstein-de Sitter

3) The static Einstein Universe: ¢ =d =0, P =0

k
Egs. (I), (II) = 2_2 = A+ 8mp,

p>0

k
?ZA = k=dnd’p

=k = +1 necessarily for “sensible” matter.

Eq. (1) on page 65 = 3a =3C+ Aa’ =3C +a

i

=
=7

by = const
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Note: Conceptually nice model: homogeneous in time as well!

Problem: unstable to perturbations! Say, a = ag +¢, € << ag

cC . 4 .
Eq. () = @’ = -5 + 5=a’
. C 49
iage%\—§+2702(a%+3a§€+):chaE:E

~~
=0

Has solutions exp(%at), i.e. also exponentially growing modes.

4) de Sitter Universe: p=P =0, A >0

a2+k_

Eq. I) = 3 A

E=+1 = a(t)= \/gcosh <\/§t>

All three turn out to be the same spacetime, just in different coordinates.

de Sitter: p=0,A >0
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5) A =0, radiation dominated: P = p/3

R d 3 d 3 _
From Sec. E.2: in general E(a p)—i—Paa =0
d da 1d
P=p/3 0="(a S S
p/3 = (@) + pa— —pap)
8T 4
= B:= ?ap:COIlSt

We find k=0 = a=+v2BY*¢

k=+1 = a—\/ﬁ\/l—<1—%)2

2

k=-1 = a:\/E\/(lJré) —1

P=p/3 A=0

Summary: e Radiation dominated: pa* = const
Matter dominated: pa® = const
Dark energy: p oc A = const

e Radiation dominant in early universe, dark energy in late
expanding universe.

e Presently: ~ 75 % dark energy, 4 % visible matter, ~ 21 %
dark matter, radiation negligible
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F Singularities and geodesic incompleteness

Metric components are sometimes 0 or co. What happens there?

F.1 Coordinate vs. physical singularities

2M 2M\
Schwarzschild: ds* = — (1 — _) dt? + (1 _ _) dr? + r2d02

T r

r =2M: cured with Kruskal coordinates
Questions: 1) Can we predict when better coordinates exist?

2) Is there a “super-Kruskal” that cures r = 07

Note: Scalars are invariant under coordinate transformations!

Def. : “Kretschmann scalar” x:= R"" R, )»
. 48 M? . . . . .
In Schwarzschild: Kk =...= 5 = r =0 is a genuine, physical singularity.
r
80

Einstein-de Sitter Universe: k= ... = ¢ =0 is a physical singularity.

T Tt
F.2 Geodesic incompleteness

1
Consider geodesics in “Kasner V7 spacetime: ds* = —=dt? + 22(dz* + dy?®) + zdz*, 2z >0
z

t d
Noether ¢y = —, ¢ =2%, c=2%, =—, \=affine
z d\
e Loy | 2.2, .2 22
Y3 = ——t + 2537+ y7) 2t =e

¢; = const, € =+1,—1,0 for space, timelike, null geodesic (A = 7 or s)

2 2
]+ ¢ € 9

Geodesic Eq. = ... = 2%+ 5
z z

Consider null geodesics with z=9y=0, 2<0, z=2, t=0atA=0
= x=y=-const, 2z=—coA+ 29

Reaches z = 0 at finite .

12

k= — = singularity is physical.
z
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Def.: A geodesic is incomplete if it cannot be extended to arbitrarily large values of its parameter,
either to the future or the past. The termination point is a singularity.

Can this happen too at coordinate singularities? Yes! Example:
Rindler spacetime: ds® = —2%dt? + dz? + dy* +d2*, t,z,y,2, €R, 2>0
Noether: ¢y = 2*t, ¢ =&, ¢, =1 all const.

24?4 P+ =e=+41, —1lor 0 asin Kasner V

Consider timelike geodesics with 2 =y =0, 2<0, z=2z2, t=0 at 7=0

= ... = z(r)=+Z-72, t(T):artanhl

20

geodesic hits singular z = 0 at finite 7
T
Now transform coordinates: z =X, y=Y, z=+vZ2-T?, t= artanhg

= ... = ds*=—dT*+dX*+dY? +dZ?

Rindler spacetime is just a wedge of Minkowski spacetime!

Here the singular point z = 0 can be cured with better coordinates.
Is there a systematic way to find such better coordinates?

In 4 dimensions no, but in 2 dimensions (e.g. spherical symm.) there is: Sec. 6.4 in Wald.
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G Linearized theory and gravitational waves

G.1 Plane waves and pp metrics
Plane waves are common in physics. E.g. electromagnetic waves E, B o pilkE—wt)

Rotate coordinates such that k = (0,0, k) = E, B o eilhzwt) = gik(z—v0)

w
phase velocity: v = -

The components satisfy the wave equation Of = —02f + VZf =0

With foc i@t = 2 j2=0 = k=|k=4w = U:%:ﬂ:lzzl:c

SR notation:  f o< o™ with ko = (—w, k)

Of =n*0,05f =0 =  kk*=0

plane wave in +z direction: k&, = (—w, 0, 0, k)
Plane waves also exist in full GR!

Def.: Spacetimes admitting a covariantly constant vector field V' are called pp wave spacetimes.
They admit plane wave solutions.

Example: Brinkmann metrics: ds* = H(u,x,y)du® + 2du dv + dz* + dy?
V =9, satisfies VP =9,VP+T0 VF=0+T17 0", =T0,=...=0
Furthermore: R,, =0 = ... = 0*H+ 85]:7 =0
Clearly solved by H = Hye*e*"  Hy=const, k,=(-w,0,0,w)
pp metrics are important in the construction of analytic solutions in GR.

E.g. Aichelburg-Sexl metric: Schwarzschild BH boosted to the speed of light.

G.2 Linearized theory

Consider a system close to a known solution: Metric = background + perturbation
For us background is Minkowski, but idea works for general backgrounds: perturbation theory
= G =N + I, N = diag(—1, 1, 1, 1), hyw =0(e) < 1

We regard h,,, as a tensor field on Minkowski background
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inverse metric: g = n* + k*

= 0" Gy = "y + K* 0y + 1 Ry + KDy, L 5,

=0(e2)—0

= k" = =" h,, =0 =" = Oe)
1 g
To O(E): Flljp = 5”“ (aphm/ + al/hpo - aUhl/p> )

Ryvpe = Nur <8szT/a - QTFZP) ’ I'-T'=0(e)

= 1(0,0,hp0 + 00O hsy — 0,0l — DOyl

1 1
By = 0 uhiny = 50°phyn, = 5040, ‘ ho=ht,, 0= g"d,
P Lo 1 1 p A0 P !
G = 00y, — 56’ Ol — 5(9#(91,]1 - 577“”(8 0% hpe — 0°0,h) = 87T,
=T, <1
) T 1 - 1.
Def.: “trace-reversed perturbation” h,, = h,, — §hnu,, & hy = hy — §h77w,,

h=n",=—h
1 A h g 7 1 FT A
= = G = =500 + 0" 0wy — 5100 hyo = 87T,

Coordinate freedom

SO o o (% aia (0% « 837”
T =2"—-¢&", =0() = —— =0%—0%E", 558

Oh 5”5 + 855”

= G =+ Py | Py = B 4+ 0,6 + 0,6, + O(€2)

Note: e Background unchanged

e 4 free functions: We choose ¢, such that 0"0,§, = —(9”71W

= ... = 8”7LW

0 “Lorentz gauge”

>

= —2G,, = | Ohy, = 0°0,h,,, = —1677T,,

Wave equation!  drop ~ from now on.

73



G LINEARIZED THEORY AND GRAVITATIONAL WAVES 74

G.3 The Newtonian limit
Newtonian gravity: V2 = drp; D~ 0?1 (Sec. A1), e:=— =
= matter sources weak: p ~ O(e)

Newtonian matter: Tyy = p + O(€?)
Toi ~ Toov; ~ O(¥/?)
Tij ~ Too vivy ~ O(€?)
E.g. perfect fluid: T}, = (p + P)uyu, + Pgu,, P~ pv*> = 107° p in sun

In Newt. gravity temporal changes in ® are caused by motion of sources

O 0 D
=5~ Vam = O g

= Dhyy = 0°0,h,, = 80;h, = V2R, = —167T,

= 62]500 = —]_67TT[)0 == —1671',0 -+ 0(62) s }_LOi = 0(63/2> s }_Lij = 0(62)
Newton’s law with hgy = —4®

= h=n"h,, =49+ O(?) = —h

_ 1 - - 1 -
= hoo = hoo — §Tlooh = =20, hiy;=hi— §7h'jh = —20¢;;

or | ds* = —(1+2®)dt* + (1 —2®)(da* + dy® + dz*) | cf. Sec. A.2

Geodesics

L=(1420)2—6,;(1-20)i"i" =1 = = (14+20)""[1+8;id +O(e?)]
. 1 oo
=t=1—-—®+ §5ijj§'lit’j + O(E2)

d L d . oL : -

EL for aF: — " = —[ —20,4(1 — 20)i’| = == = 20, ({* + 6;;3" 3’

ore dr Oz dT[ i )a:] oxk ¥ (;M
=140(e)

dQIk . d2$k

T2 = gp —0k®  to O(e); test body in Newt. gravity
-
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G.4 Gravitational waves

weak field but now: vacuum; no longer “0; < 9,

= Ol = (82 = V)R, =0

Plane wave solution: BW = We““pmp ; H,, = const

(1) Ohw =0 = k,k*=0 — speed of light

(ii) Lorentz gauge: 9“h,, =0 = k*H,, =0 “transverse”

E.g. wave in z-dir.: k# =w(1,0,0,1) = H,p+ H,;3=0

Remaining gauge freedom: take ¢, = X, = 979,£, = 0
= = Huy o Hy + ik X + kX, — kX))
=...=> 3dX,: Hy,=0, H*, =0 ‘“traceless”

In this gauge: 1) h=0= h,, = h,,

2) plane wave in z-dir.: Hy, = H3, = H", =0

00 0 o0
0 H, H., 0
= Ho=10 v, —H, 0
00 0 o0

Effect on particles

Consider particle at rest in background Lorentz frame: u§ = (1, 0, 0, 0)

geodesic eq.: Eua + Iufu” = 4% + 15, =0

1 .
I = 577&5(5’0]1,30 + Oohog — Oghoo) =0 since Hp, =0
= u*=1(1,0,0,0) always

= particle stays at ' = const in this gauge
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Proper separation: ds? = —dt* + (1 + hy)da® + (1 — hy)dy? + 2hydx dy + dz?
Case1: Hy =0, H #0 = h, oscillates
2 particles at (—d, 0, 0), (,0,0) = ds* = (1+ h)46*

2 particles at (0, —d, 0), (0,4, 0) = ds* = (1— h,)46>

Case2: Hy =0, H #0
2 particles at (=8, —4, 0) /v/2, (6,9,0)/vV2 = ds* = (14 hy) 45>
2 particles at (6, —6, 0) /v/2, (=6,0,0)/vV2 = ds* = (1 — hy)46>

° ° ¢ o ° ° o ¢
[ ] [ ] i ° [ ] [ ° d
G.5 The quadrupole formula
Consider energy density p(t,7) with compact support
Def.: Quadrupole tensor I; := [ p(t, 9y’ y’ d*y
1
Reduced quadrupole tensor Q;; = I;; — gjkk d;j, sum over repeated indices!
' G e e o
Averaged energy flux in GWs: | (p); = ﬁ(@q@iﬂt—r sum over i, j
c

Emitted at t — r, observed at t, (.) = time average.
Example: Two equal point masses on Newtonian circular orbit
p(Z) = mo(¥ — 1) + md(Z — ),

vl =7 (cos¢, sing, 0), x5 =—r(cosg, sing, 0)
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m

Newtonian orbit: w = <j> = —
43

= I, = 2mr?cos? wt = mr?(1 + cos 2wt)
I, = 2mr?sin® wt = 2mr?(1 — cos? wt) = mr?(1 — cos 2wt)

Iy = I,e = 2mr? coswt sinwt = mr? sin 2wt
Qij = 1ij — gmrz = I;j — const

= Q,, = wmr?sin 2wt

ny = —8w3mr? sin 2wt

@xy = Qym = —8w3mr? cos 2wt

) 2G4 mb
Adding all up: (p); = R

Gravitational waves directly detected on 14 Sep 2015: New window to the universe!
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