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A INTRODUCTION AND CONVENTIONS

A Introduction and conventions

A.1 Introduction and Motivation

Main goals: e Understand how gravitational waves (GWs) arise in GR;
This took the community almost 50 years!!!
e How can we model their sources in full GR
— Numerical Relativity (NR)
— Formulation of the Einstein equations suitable for NR

— Structure of the Einstein equations — Diagnostics for GW observables

A.2 Definitions and conventions

GR in 20 seconds
e (M,g) = Lorentzian manifold with metric g,z

e Singature: —++ + = +2

e Greek indices o, 5, ... =0, 1, 2, 3 “spacetime indices”
e Latin indices i, 7, ... =1, 2, 3 “spatial indices”

e Derived quantities:

1
Levi-Civita connection: Ty = ~g"" (959, + 0,95 — 0pVsy)

2
- , — v p v
Riemann tensor: R pap = 0al' )5 — O}, + Tl — TR L
Ricci tensor and scalar:  Rop = R'q3, R:=R",,
o 1
FEinstein tensor: Gap = Rop — §gaf;R.

Properties of the curvature tensors:
Bianchi identities: R" 0 = VN R yjpe) = 0.

Contracted Bianchi identities: VV*G o = 0.

Einstein equations:

G

With matter: Gop = — Top = 811 up with G=1=c¢,
c

Vacuum: Ryp = 0.



B LINEARIZED THEORY AND GWS

B Linearized theory and GWs

B.1 The linearized Einstein equations

Consider small deviations from Minkowski in Cart. coords.

“Background”: Manifold M = R*, n,, = diag(-1, 1, 1, 1)

“Perturbation”: h,, = O(e) <1 = | g = Nw + hw

regard h,, as a tensor field on Minkowski background

2 metrics: 7, and the “physical metric” g,,.
inverse metric: g = " + k*

9" Gup =01, +O(*) = K = —h = TRy,
To O(e): T = %nw(aphw + Oyhpo — Oshy)

Ruvpo = (08,0000 + 0o 0uhsp — 0yl — DyOyhy)

1 1
Ry = 070, — §8paﬂhlw - §8M81,h ‘ hi=hty, 9" =g"o,
1 1 1

G = 8 uhiyp = 5Oyl = 50,050 = S0 (0 hpr = Dph) = 87T,

2
=T, <1
1

Def.: Trace-reversed perturbation: f_zm, = Ry — 5

_ 1-
My & hy = hp — ihnw,,

h=ht,=—h
1 A h g 7 1 A% 7,
=...=G, = —58 Ol + 0°0,hyy, — Enm,a 07 hpe = 8T,

Gauge symmetry

New coordinates 2% = x* — & & x* =%+ &

= o2 Ry = By = hy 4+ 0,6, + 0,6, |, &= Ole)

== 0h — 0% = 0", + 070,€,

_ 1 -
Now choose ¢, such that 00,&, = —0"h,, = G = —58"8th”
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= lin. Einstein eqs. (drop the tilde): | Oh,, = 0” 8pﬁm, = —1677T,, “Lorenz gauge”

B.2 Gravitational waves in the linear approximation

Linearized eqs. in vacuum: Ohy, = (=92 + V), = 0
Plane wave solution: h,, = H,,e**" ; H,, = const

(1) Ohy =0 = kk*=0 —  speed of light

(2) Lorenz gauge: 9"h,, =0 = ktH,, =0 “transverse”

E.g wave in z-dir.: k* =w(1,0,0,1) = Hyp+H,;=

Remaining gauge freedom: take &, = X,e** = 99,¢, = 0
=...= H,—>H,+ik,X, +EX,—n.,k'X,)
=...=> dX,: Hy =0, H*,=0 ‘traceless”

In this gauge: (1) h=0 = hu =hu,

(2) plane wave in z-dir.: Hy, = Hs, = H", =0

00 0 0
0 H. Hy, 0
= Huw 0 H —H, 0 |’
00 0 0

Effect on particles

0

L ik,xP
h_|_7>< = H+7><€ 4

Consider particle at rest in background Lorenz frame: u§ = (1, 0, 0, 0)

geodesic eq.: Euo‘nLFZ‘VU“UV =+ =0

1
I = 577““((90% + Oohoy — Ophoo) = 0 since

= u*=(1,0,0,0) at all times solves (})

= particle stays at x* = const in this gauge

HO#ZO
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Proper separation: ds? = —dt? + (1 + hy )dz? + (1 — hy )dy? + 2hydz dy + d2?
Case 1: Hy =0, H. #0 = h, oscillates

2 particles at (—d, 0, 0), (4,0,0) = ds*= (1+ hy)46?

2 particles at (0, —¢, 0), (0,4, 0) = ds*=(1— hy)4>

Case2: H =0, H, #0
2 particles at (=6, =4, 0) /v2, (6, 6,0)/vV/2 = ds? = (1 + hy) 46>
2 particles at (6, —0, 0) /v/2, (=6,8,0)/vV2 = ds*= (1 — hy) 45>

o [ )
[ ] [ ] ° [ ) [ ) °
[ ) [ )
[ ] [ ] ° [ ] [ ] °
B.3 Geodesic deviation s=const

Geodesic deviation: T along geodesic

S towards neighbouring geodesic

VrVrS = R(T,S)T

t= const

& THV,(T'V,S%) = R, TTrS°

We need to choose a frame: use the local inertial frame where

Guv = Thw = diag(_1> 1’ 17 1) and aﬂglﬂ/ =0 = ng =0

Ropys = O(e) = geodesic deviation small

= T = 9; at background order for particles initially at rest.

= 835"‘ = RaoogSU
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Comment: e The components R,z are gauge invariant at O(e)

= We can compute them in TT gauge!

) ) ,
= | Rloow = Rjoor = 5050 and R%00 = R%ox = Rg00 =0,

If SO = S0 = 0 initially, then S° = 0 always.

Also hyy =0 = Rigpe=0 = S%=5%=0 always if S* = 0 initially.

= 025" = L (02h.S* + 92hy SY)

A 0289 = L (02hy ST — 92, SY)

1
2
1
2

These are solved by

ST =dx + %h+dx + %hxdy,

SY =dy + %hxdx — %thdy.

Recall that we are working in the local inertial frame, so with S® = S* =0

GuSHSY = 1SS = (%) + (SY)? ] (14 €)%~ 1+ 2

dy dz

= dz?(1 + hy) +dy*(1 — hy) + 2Ry dyds + O(hi,x) ,

which at linear order is (}) above with dz = 0 = dt.

Benefit: The gauge invariant Riemann tensor is easy to compare with the characteristic formalism below.
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C Classification of Partial Differential Equations

Key difference between PDEs: propagation of information

C.1 Second-order PDEs of a single function

Order = order of highest derivatives
2nd-order PDES: Schrédinger equation, wave equation, Einstein equations, . ..

We can trade order for number of variables, e.g.:  9%f =0 & O.f=9g N 0,9=0.
C.1.1 Classification of second-order PDES
Def.: Let z; € RY, f:Q c RY — R. General 2nd-order PDE:

F(mwfaalf?aza]f> = 07

where F is a sufficiently regular function in its (IV + 1)? arguments.

A linear 2nd-order PDE is an equation of the form (sum over repeated indices)
Apin(2)OmOn | + by () O f + () f + d(x;) = 0. (%)

Without loss of generality: A symmetric: A, = Anm.

Main or principal part of the PDE: the set of terms that contain the highest derivatives.
For Eq. () this is A;,,00nf.

Characteristic surfaces

Let ¢(2") be a function with non-zero gradient, Vit := (0it, ..., Ont) # 0 everywhere.

Let S be the level surface t(z;) = 0.
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Suppose, f and 0, f are specified on S.

Question: Are all derivatives of f determined on S?

Let’s use new coordinates &, = &,(z;) fora=1,..., N -1,
N — t(l’z) .
These exist in a neighbourhood of S since Vt # 0. With 9, := % we get
_of 0% 0, (06, ) _ 0% g 98"
%f = ox;  Ox; Ouf %0;f = ox; % <(99(:j %)= Ox; Ox; K+ oxt OxJ uOhf
= Eq. () becomes: ~ A™" oc %&L&,f + lower order terms = 0. ()
ox™ Oz,
From the initial data we directly have
f(ga) = f(gla ) gN—h 0) = f(€a<l'z)) ’
0x,, Of
Ouf (&) = O, s Enl, 0) = — .
f(g ) f(fl €N 1 ) aéa axm S
Forb=1, ..., N —1 we also get the second derivatives via
. O s &+ hy oo €N, 0) — 0, s &N, 0
BOuf(Err - €1 0) = lim f(& &b Env-1,0) = 0. f (& En-1,0)
h—0 h
For b = N, we substitute all known derivatives in (), so that
2
Amn gf:]:; gi\i 8?&\]:)2 = terms known on 5. (sum over m, n, but not N)
0N O&n

£0

We can thus calculate the missing derivative if and only if — App——

or,, 0x,

If this condition is satisfied, we can differentiate the PDE to compute all third derivatives and so on.

Def.: Characteristic equation associated with the PDE (%):

If t(x;) with Vit # 0 solves (1), the surface t(z;) = 0 is a characteristic surface.

Example: If A,,,(z;) is positive or negative definite on €2, then for any ¢(x;) with Vit # 0,

10
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ApnOnt 0t >0 or  AppOnto,t <0,

OEn 0N
A 2SN
= Amn 0x,y, O0xy,

# 0 = the PDE has no characteristic surface.

Def.: The PDE
Apin(2) O f Onf + by () O f + () f + d(x;) =0,

is said to be of type («, 3,7) at z; € Q if « Eigenvalues of A,,,(z;) are positive, [
Eigenvalues are negative and  Eigenvalues are 0 with o+ 3+ v = N.

The PDE is:

e clliptic if it is of type (N, 0, 0) or (0, N ,0), i.e. if all Eigenvalues are non-zero
and have the same sign.

e parabolic if it is of type (N — 1,0, 1) or (0, N — 1, 1), i.e. if one Eigenvalue is
zero and all others are non-zero and have the same sign.

e hyperbolic if it is of type (N — 1, 1, 0) or (1, N — 1, 0), i.e. all Eigenvalues are
non-zero and exactly one of them has the opposite sign of all the others.

Comments:

e For parabolic and hyperbolic PDEs, we can always find non-vanishing linear combinations V,,, of
Eigenvectors such that A,,,V,,V,, = 0, so the PDE admits a characteristic surface.

e For elliptic PDEs, A,,, is positive or negative definite = no characteristic surface.
e 7 other types of PDEs; these are not relevant for us.

e The type of a PDE depends on x; and may change.

Examples

0
(1) Tricomi equation: yaif + ajf =0 = A™= (Zé 1) .

A, has Eigenvalues y and 1

= The Tricomi eq. is elliptic for y > 0 and hyperbolic for y < 0.

(2) Laplace eq. in 3 dims.: Af=07f +0;f+82f =0.

= A,n = 0mn and all 3 Eigenvalues are 1. Newsflash: the Laplace equation is elliptic.

(3) 3+1 wave equation: Of := =07 f +05f +02f +07f =0.

Is hyperbolic everywhere with Eigenvalues —1, 1, 1, 1.
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(4) 3+1 dmensional heat equation:  —0,f + 0>f + 8§f +0%f=0.

Is parabolic, since one Eigenvalue is 0 and the others are 1.

C.1.2 Principal axes

Cf. long lecture notes.

C.1.3 Second-order PDEs in 2 dimensions
C.1.3.1 Classification of PDEs in 2 dimensions

Consider the PDE

a(x,y)07 f + 2b(x,y)0:0, f + c(x,y)d2 f + lower-order terms =0 with a # 0
on a domain € C R?.

Characteristic eq. :  a(9,t) + 200,t Ot + c(0,t)* = 0 ()
Let t(x,y) be a solution of the char. eq.

Level sets {(z,y) | t(z,y) =const} are curves.

y
t(x,y)= const

(XpY,)

{(x,y)= const

X

Without loss of generality, we assume that 0,t # 0 at (zo,yo); otherwise swap = and y.
= We can write the curve t(z,y) = const as y(x) in a neighbourhood of (zg, o).
Parametrize t(\) = t(z(\),y()))

dt _otde  otdy
A\ Ord) | Oydr
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dy dy (dx)_l Oyt

dz — dx \dA B,
dy\* . d

= char. eq. (*) becomes a(d—i> —Zbd—i—i-c:()

2b
= () -2y + =0

a a

b b2 1
= === —Z—E:—<b:|:\/62—ac)

a > a a

= (1) Characteristic surfaces exist for b* > ac

(2) No characteristic surgaces for b* < ac

Eigenvalue criterion

Let us compare this result with the classification of Sec. C.1.1
a b
Amn - (b C)

Eigenvalues:

a— A\ b
=ac—(a+c) A+ N =" =0
b c— A

= M—(a+c)A—(b*—ac)=0

a+c (a+c)? a+c b2 —ac | !
= + —2 1 + ( (ZC) 5 + (CL i 6)2 €
b — ac 1 (a —c)* + 4b?
i 14+4 = 2040 —dac]l = —2 " >0
since 1+ CE LR [(a+¢)* + ac] Gror 2

= 1. elliptic if b < ac; A4+ have the same sign.
2. hyperbolic if b2 > ac; A+ have opposite signs.

3. parabolic if b*> = ac; in that case, A\_ = 0.

13
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C.1.3.2 The normal form of hyperbolic PDEs in 2 dimensions

Consider a PDE | adf + 2b0,0,f + ¢, f +1l.o.t. =0

hyperbolic in a neighbourhood of (z, yo).

Let u(z,y), v(z,y) be two independent solutions of the characteristic equation

a(0,t)? + 2b0,t Oyt + c(9,)* = 0 |.

With Vu # 0 # Vo, we can always rotate the coordinates such that d,u # 0 # O, v.

= We can write: Curves of constant u: y = y;(x)

Curves of constant v: y = yo(x)

B O,V
Oyv

Oz
ith: d == : =
wit yl (x) ayu ) y?(x)

= du+ydu=0 A v+ ydv=0.

y
u(x,y)= o,
u(x,y)= oy
v(x,y)= Bz
v(xy)= P 1
x
Lemma: (i) Curves from different families cannot touch, i.e. intersect each other with equal

tangent direction.

(i) The functions u and v obey the inequality

Oy uOyv — Oyu v # 0.

14

1

Proof. (i) From Page 13 the slope of characteristic curves is ¢y’ = — <b + Vb — ac) . Y1, Y2 belonging to
a

different families have different signs, so at the point of intersection:
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b2 _
Yy — Y = DA A # (0 since b? > ac for hyperbolic PDEs.
a
(ii) Plug (%) into y4 — ¢} # 0
o,v  Oyu
"o, + Dy #0 = 0u0w—0,v0u#0. O

Def.: The solutions u(z,y), v(z,y) are called characteristic coordinates.

Proposition: In characteristic coordinates, the PDE ad? f + 2b0,.0, f + c@jf +l.o.t. =0 has the
form

0,0, f = lower order terms |.

Proof. (Only sketched)

Writing f, == 0, f, uy = Oyu, f, = 0,f etc. chain rule gives us
Jo=tafutvafo, fy=uyfutuvyfo,

Foo = U3 fun + 2050 fuw + V3 foo + Uge fu + Vao fo

foy = Uay fu + Vay fo + Uyt fuu + (UyVs + UgVy) fuw + VaUy fou

Foy = U fuu + 200y fuw + V3 fou + Uy fu + Vyy fo -

The principal part of the PDE then becomes af,, + 26 fu, + 7V.fou, Where

a = v = 0 by the characteristic equation for u, v.

!
One also finds (Mathematica!): ay — 3% = (ac — b*)(uzv, — u,v,)* < 0,

since for a hyperbolic PDE b? > ac. So 3% > 0 and 3 # 0. O]
Example:
1D Wave equation with z =7, y =t:  0*f —0*f =0.
Characteristic eq. :  (Oyu)? — (9,u)? = (Qpu + Opu)(Opu — pu) = 0
= O =—0u V ou = O,u
= rit) =1, rh(t) = —1

= u(t,r)=t—r, v(t,r)=t+r

= Wave eq.: | 0,0,f =0 |.




C CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

Let f be a solution of the wave equation.

Clearly 0, f is a function of u only, say 0, f = ¢(u).

= fu) = [ ou)du+Glo) = Fw) +Glo).

—_——
=:F(u)

Conversely, every function of this type satisfies the wave eq., so:

fsolves 2f —0*f=0 &  f(u,v)=F({t—r)+ G(t+r) for some C' functions F, G.

We can also understand the deficiency of initial data on a characteristic surface.

Say, we specify initial data f(u,0) = fo(u) on the “surface” v = 0.

t

u (r = const)

(v = const) i

(u = const)

r
(t = const)

\\\><\P: (u,v)

V= const > 0

y =const=0

e This gives us d,f on the slice v = 0.
e The PDE predicts 0, f for neighbouring v # 0, e.g. on the green slice.

e But we cannot reconstruct f at v # 0 since we do not know the integration constant G(v).

This problem does not arise for initial data on non-characteristic surfaces like ¢t = 0.

C.2 Systems of PDEs

C.f. example sheets.

16



D THE STRUCTURE OF THE EINSTEIN EQUATIONS 17

D The structure of the Einstein equations

Three viewpoints for Gp = 871,35
1. Given 7,3, we look for g,3. This is done for the vacuum equations.
2. Specity go5, compute G,p which gives T,5. Rarely useful!
3. Regard the Einstein equations as 10 constraints on 20 functions (10 g3 and 10 Tp3).

Bianchi identies V,G** =0 = V,T** =0 “Energy momentum conservation”

Here we focus on the gravitational sector and set T,3 =0 = Ry =0 |.

D.1 The Einstein equations in vacuum

We immediately see:

e The contracted Bianchi identities relate the G (= Rap in vacuum).

= We have too few equations to determine all 10 g,g.

e This is expected, since coordinate transformations change the gaz,

ox* 0x”

g&ﬁ - 97 83&5 Guv
without altering the spacetime.

E.g. we can choose coordinates such that goo = —1, go; = 0 and the 6 independent Einstein equations
then determine the 6 components g;;.

Note: The metric functions only need to be differentiable twice (e.g. shocks or surfaces).

D.2 The Cauchy problem

Cauchy problem := process of constructing a solution to a PDE given data on some boundary or initial
hypersurface. In short: Start with a snapshot and evolve in “time”.

In GR: Equations are tensorial; how do we get an evolution system?
Def.: Let M be a Lorentzian manifold M with metric g,z of signature +2.

A Cauchy surface is a spacelike hypersurface ¥ in M such that each timelike or null
curve without endpoints intersects > exactly once.

The spacetime (M, g) is globally hyperbolic if it admits a Cauchy surface.
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Proposition: Let X be a Cauchy surface of a globally hyperbolic spacetime (M, g). Then there
exists a smooth function

t:M—=R with dt#0,
such that X is a level surface
S ={peM : tp) =to},
and two level surfaces 3, and X, are either disjoint or equal,
YoNE, =0 & ti#d,.

Def.: If (M, g) is a globally hyperbolic spacetime and M = tUREt, then the union of the Y,
€

is called a foliation of the spacetime.
t

From now on: Let (M, g) be a globally hyperbolic spacetime and ||dt||? < 0, i.e. the ¥; are spacelike.

= 3 coordinates z® with 2° = ¢ “time” and 2 label points inside the ;.
Question: Given g,3 and 9,9, 0n Xy, can we find all derivatives of the metric? Cf. Sec. C.1.1.

We answer this question for the vacuum equations R, = 0.
(1) Roo = Rfou0 = R°000 +R™0mo = Oy — OoLgr, + “T' x I
=0

'3, only involve first derivatives, so are known on .

O I'0y involves only first time derivatives of the metric; it’s also known on ¥;. Now,

1

aOFSFLm = a0 §gmp (aogmp + (9m9p0 - angm)

18
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1 1 1
= Ry = _§gmpa(2)gmp + §gm08390m + My = —égm”aggmn + Moo,

where My contains at most first time derivatives of g,g3.

(2) We likewise find Ry; = %gomaggim + My, ,

(3) and R;; = _%gooaggij + M;; . (1)

We note
(i) We have no terms 93go,, so the Einstein equations do not determine go,. Gauge!
(i) We have 10 equations for 6 unknowns 93¢;;. Constraints!

Note that gauge and constraints are directly related!
Preliminary insight:
o If g% # 0, Eq. () determines the missing 2nd derivatives 93g;;.
— time evolution of g;;.

o If ¢°° = 0 everywhere, the surface is characteristic; cf. Sec. E.

e Using Egs. (), we get

R=g"Ru=...= =" 03 gmn + 9" 9" 03 Gmn + 9°° Moo + 29" Mom, + ™" Mpss,
= @G 0 _ _ 1 OOM o 1 mn g1
0o —...= 39 00 g mn
2 2
AN G = =¢"My+¢"" M,

= G,° contain no second time derivatives!

— constraints.

e Summary: 6 evolution equations R,,, = 0 and 4 constraints G,° = 0.

Proposition: Let ¥ be a Cauchy surface of a globally hyperbolic spacetime (M, g). If the
constraints G,° = 0 are satisfied on ¥ and the evolution equations R,,, = 0
are satisfied on M, then the constraints are satisfied at all times by virtue of the
Bianchi identities.

Proof. See long script. O]
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E The Bondi-Sachs formalism

e Initial data on characteristic surfaces does not determine solution in a neighbourhood.
e We can still do characteristic evolutions!

e Boundary conditions provide the missing information; e.g. CCM.

E.1 Characteristic coordinates

Characteristic surfaces of the Einstein egs.:

surfaces ¥, where | ¢ = g(dz°,d2°) = ||d2°||* =0 = 2% =y is a null coordinate.

Def.: £:=dz’ = du
= {, = (d2?), = &%,
= (i) £is tangent to X,: £*(d2"), = ||d2°||* =0
(ii) £ is normal to ¥,,;: dz? is orthogonal to 2 = const by definition.

Proposition: The integral curves of (“ are affinely parametrized null geodesics.

Proof. 0.l = 0,05u = 0pl,,

= 0Vl = 0V 00t = 00, 00u — 1°T%, Dyu = ("N 40, = %va(zﬂzzu) =0,

since partial derivatives commute and I'j. is torsion free. O

The integral curves of £ are the curves of propagation of information, the characteristic curves of GR.
Def.: A spacetime (M, g) is asymptotically flat
< 3 Cartesian coordinates such that gag = 7ag + hag

with  lim has = O(r™ 1Y), lim 9,has = O(r™?), lim 8,0,hasO0(r™?),
r—00 r—00

r—00

where Nop = dlag(_L 1, 1, 1) and r = \Vi x? +y2 + 22.

Construction of coordinates

At r — oo, we recover the light cone structure of special relativity.
(1) Consider 2-sphere u = const, r — oo. Label each point with standard 6, ¢

(2) Integrate the null geodesic from this point inward, using r as a monotonic parameter.

0

(3) Each point has a unique 2° = u, 2t =r, 22 = 0, 2° = ¢
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Comments

r
parameter
along null
curve

in general
null rays
focus in
the interior

e The choice of £ is not unique

— Bondi-Metzner-Sachs group =~ Lorentz group for asymptotically flat spacetimes.

21

e Once £ is chosen, the congruence of null geodesics fills the characteristic surface without crossing in
a neighbourhood of infinity.

e The coordinate system breaks down when the geodesics cross at sufficiently small r:

— No unique 6, ¢.

But we only need a neighbourhood of infinity.

E.2 The Bondi metric

dx®

(1) Tangent vector along the null geodesics: = 5.

r

Null geodesics are integral curves of £

= (*=g*Pu =g, =¢"*=06" for c#0€R

= g% = g% = B

(2) Matrix inversion via co-factor matrix Cp.: g

where C,, = (—1)*™x determinant of g with row p and column v struck out.

0
Example: C*? = — |0
0

o
21

9
¢3!

0 o 0 0
11 12 13
ag _ |0 g g g
= =
g 0 o2t 922 923
0 931 932 g33
C, "

~ det gop’

0

g3 =0 = gu=g12=0.

g33
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Likewise: g11 = g13 = 0.
(3) Fix r as areal radius, i.e. 2-spheres u = const, r = const have proper area A = 4772
g22  go3

932 933
(4) Now we simplify: axisymmetry & azimuthal reflection symmetry (no rotation!)

= rtgin? 0

= ds? invariant under d¢ — —d¢ = g3 = g13 = go3 = 0.

A 3 coordinate ¢ such that Oyg.s =0.

goo Go1 Go2 0
g1 0 O 0
We thus get ¢.5 =
BEY Jap g2 0 g2 0
0 0 0 7*sin®6/g
—%em + r202%e2 —e?P —p2Ue 0
Bondi uses f iabl vV, U: = e 0 0 0
ondi uses four variables 8, v, V, U:  gap = 2 0 2,27 0 (1)
0 0 0 r2e=27 sin% 6
0 —e 28 0 0
L g0B —e™#  Yem2  _Ue 2 0
g = 0 Ue™28 p=2e=2v 0
0 0 0 r2eXsin~240

E.3 The characteristic field equations

(1) We consider vacuum = Field equations R,z = 0.

Plugging (1) in yields: | Rog = Ri3 = Ro3 =0 |.

(2) Next, assume we have somehow solved the main equations Ri; = Ris = Ras = R33 = 0.

Write the Bianchi identies as:

Lemma: V*G,, = g¢" (@Ray — I, Rao — %aaRup) (%)
Proof. Exercise O
Using g0 =g =¢"=0, Ro3 =0,

g3 =0, Riy =Ry =Ri3=0,

g =g¢®=0, Ro1 = Ry = Ry3 = 0,

=g =¢"?=0, R3p = R31 = R3o = R33 =0,
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Eq. (x) gives us 0 for o = 3 and
for a = 1: —g“pfngw =0,
for o = 2: 90181R20 — g“ngpRgo — 90182R01 = O,

for a =0:  ¢%0,Ru0 + g'*0,Ro1 + g0, Rz — g**T),,Roo — "I}, ,Ror — ¢"1"2,, Roa

1 1
—=g" 0y Ror — 29" 0 R0 = 0.
2 2
: : . J77) nl VR
Some crunching gives us: g™l = T >0

We conclude: fora=1: Rig= Ry =0

forao =2: ¢"0, Ry — g“ngpRgo = — e 20.Ryy—2r e ?PRyy = 0
—283 2
= —e€ a7‘11:302 + —Roz =0
r

=  —e 29, (r?Ryy) = 0

= Rog = f(u, 9)7“_2 .

So if f(u,d) = 0 at some r, then Ry, = 0 everywhere. Then

fora = 0: g0181R00 — g“pfnggo =0

= | Ry = g(u,0)r 2

Again, if g(u,0) = 0 at some r, then Ryy = 0 everywhere.

We call Ryg = 0 and Rpo = 0 the supplementary equations.

(3) This leaves us with the main equations...

23
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Ry = —2(0,7)* + ‘;lfw = ‘; [arﬁ - %r@wf] =0, 1)

22 Ry = 0, [T4€2(7—6)0TU] — o2 [@896 — 0,09y + 20,7 Ogy — 2 cot 0 0,y — Q%Tﬁ =0,
(E.2)

eQ(B_V)RQQ + 7’262[3R33
4
— 28,V — %62(’*’5)(&@2 +120,95U + 12 cot 0 0,U + 4r(3pU + cot § U)
+ 262(5_7) [1 + cot 0 (3(99")/ — 89ﬁ) + 837 — 8925 — ((%ﬁ)z — 2(89’}/)2 + 289ﬁ 69’}/]
=0, (E.3)
— 2P R3; = 2(6-7) [—1 — cot 0 (397y — 2098) — O3y + 207y (Opy — 89/6’)} + 270,
+ (1 = 78,7)8,V — (r&%y + 0,7)V — r(1 — 70,77)0pU — r*(cot 8 — 8yy)0,U

+ rU(2r0p0,y + 2097y + 1 cot 0 0,y — 3cot ) = 0. (E.4)

Note that there is only one time derivative in this mess!
(4) Ignoring constants of integration, we have the evolution scheme:

a) v is given on a hypersurface ¥,,.

b) then Eq. (E.1) determines  on ¥,

c) then Eq. (E.2) determines U on %,

d) then Eq. (E.3) determines V on 3,

e) from Eq. (E.4) we can compute 9,y on %,
f) with 0,y we can update v to X4 qu-

Characteristic evolutions, if they work, are nice!

(5) Constants of integration:

Eq. (E.1) needs one function of integration H(u, ) to determine .

Eq. (E.2) needs one for the integration of d,[r*e?=%9,U]; we call it —6N(u,6). We need a
second, L(u,#), for integrating U.

Eq. (E.3) needs one for integrating V'; we call it —2M (u, §).

Eq. (E.4) determines 0,7 except for a function of integration we call d,¢(u, 0).
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Interpretation

e Say, we know the system on a light cone u = uy.
e If the system does anything new, this must be encoded in the functions of integration!
e We'll soon see there’s only 1 independent function of integration: the Bondi news function c.

e Without axisymmetry, c is complex.

From now on assume:

1

(i) Asymptotic flatness = ~yocr 'asr — o

f(u,0)

r

(ii) No incoming radiation as r — o0 = = +O(r™%)  “Sommerfeld condition”

Plug in for v in Eq. (E.4):  0,(ry) = 0,f(u,0) + O(r—1)

This is the function of integration we called 0,c¢(u, 0), so | v =

Plug this into Eq. (E.1)

= 0.5 — %r(ﬁw)Q =0

2
= 061 [0 | ope)| = I o)
= = o) - L2 o)

Likewise, Eq. (E.3) and then (E.4) give U = L+ 2*9,Hr™' +O(r™?),
V =[Lcot+ dpLlr* + O(r) .

Proposition: The function of integration L vanishes, L(u,0) = 0.

Proof. By construction, 9, is a timelike vector. But

9(8,,0,) = goo = —Le* + U?r?e® = L + O(r') > 0 at large r unless L = 0. O

Proposition: We can choose the coordinates (u, r, 8, ¢) such that the form of the Bondi metric
is preserved and H(u,0) = 0.

Proof. Long script. O
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Note that we have used here the remaining freedom in choosing the vector £ at infinity.

With L = H = 0, we can do the series expansion to higher order.

One quickly finds that the O(r~2) term in 7 leads to Inr terms in U. We exclude that, so:

26

1
n8) = e+ ke 00,
Blu,r,0) = —1027“72 + 0—4 — §ce r~t 4+ O
) Y - 4 8 4 ;
L 4 8, , »
U(u,r,0) = [—0pc—2ccotf]r =+ 2N+§cagc+ 3¢ cot 0| r—> 4+ O
37 2 2 b} 2 02 11 9 1
V(u,r,0) = r—2M+ Ecﬁgccotﬂ — N cot § + 4¢® cot” 0 + 66396 — OgN — = + g(86,0) r
+0(r?).

Supplementary equations

Recall Ryy = Ry = 0. Their series expansion only had o r~2 terms!

They are very lengthy (Mathematica or Maple!l!). At order =2 they give:
1 o 3 2
O, M = —0,c+ éﬁgauc + 5 cot 00y0,c — (0yc)”,

1
38UN = —89M — 50898u0 + g@ﬁuc

= ¢ is the only independent function of integration!

Note: The 3rd derivative comes from comes from the 2nd derivative of U which already has a Jyc.

E.4 Interpretation of the functions of integration

Schwarzschild in outgoing Eddington Finkelstein coordinates:

2M,
ds? = — (1 — TS) du? — 2dudr + r*(d#?* + sin? fde?)

That’s Bondi with vy =3=U =0 and V =r — 2Ms.
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Def.: M is called the mass aspect and we define the Bondi mass as
1 s 2w ' 1 ™ .
m(u) = — M sinfdfdep == [ M(u,0) sinfdf.

Lemma: For axisymmetric spacetimes with no conical singularity, limc=Ilimc=20.
0—0 —T

Proof. Example sheets. O]

Proposition: The time evolution of the Bondi mass is given by

1" !
Oym = —5/ (0,c)*sinfdf < 0.
0

Proof. Example sheets. O]

Note: the Bondi mass remains constant or decreases; ¢# 0 — GW emission.
Interlude: 2D wave equation
ds? = g&de&mB = —d7T? +dR?

Clearly g<8T7 8T) = _]-7 g<8R7 8R) =1

characteristic coordinates: uw=71T — R T=u+r
=
r=R R=r
9, =0r Or =09,
= =
0, =0r+ 0Or Orp =0, —0,
T, u
8
O \ a0,
0,
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Bondi news ¢ and strain h,, hy

(1) Take r — oo, so the GW becomes planar.
(2) Coordinates (u,r,0,¢) < (T,z,y,z): z R

Rotate Cartesian axes such that z is radial, x ~ 6 and y ~ ¢

= ez:eR:_au+8r7

r /
1
ey:e¢:rsin06¢’ /

(3) Riemann tensor of the Bondi metric in Cartesian coordinates:
12 non-zero components: R,r,r = R(e,,er,e,,er) = T%Rgugu etc.
= Ryror = —Ryryr = —Rapzor = Ryzyr = Rpzpe = — Ry = —2er Tt +0(r?),
Roper = —Rures = —Rywyr = Rysy = — (0p0uc + 2ot 0 d,c) 1% + O(r~?)

R.0.0 = _R:cyzy = _(2M + QCauC)T_S + O(T_4) .

(4) Riemann tensor of the linearized formalism:  Rjoor = 205hy;  cf. Sec. B.3.
One also finds: Rj.or = —0,00hjk,  Rjzk = 02hyp.
For a planar wave in z dir.:  0,hap = —0ohas and Oy has = Oyhap = 0.
1
= RJZOIO = _RyOyO = _Rmsz = RyzyO = R:rz:vz = _Ryzyz = _§a§h+ )

RszO = _Rszz = _RyxyO = Ry:r:yz = 07

RzOzO - _Ra:yxy =0.

(5) They agree if hy ==

No hy in axial and reflection symmetry.
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E.5 The characteristic formalism for general spacetimes

Sachs 1962.

Line element

Ve
N T

ds?

du® — 2¢*’dudr + r’hyp (dotde” — da'UPdu — d2®Udu + UAUPdu?) |

eV + ¥

where A, B=2, 3 and hypdz?de? = 5

d6? + 2sin @ sinh(y — 6)dfde + sin? @
We recover Bondi’s axisymmetry for V=V, U’ =U, U® =0, v=6.

Null tetrad

k, £, mwith g(k,£) =1, g(m,m)=1; all other products vanish

= g=kXL+Lk+mMmIM+mMmOm

1 1
Atr—oor k¥~ [-1,10,0] = k:—8u+§8T:—§(eT—e3)
*~0, 1,0, 0] = L~0,=er+ep

Einstein equations

(i) 6 main equations
a) 4 hypersurface equations Ragl®l? = Ry3l*mP = Ryzm®m’ =
B B B
(b) 2 standard equations Ra,sm®m? =0
i) 1 trivial equation Razl®k® =0
B
(iii) 3 supplementary equations Ragk“mﬁ = Raﬁkakﬁ

If the main equations hold: e The trivial equation holds.

e The supplementary egs. hold if they hold at some r

The 2 standard eqs. contain time derivatives: 9,y and 9,6.

e 472

2

29

dg?.
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Evolution of the equations

(1) We have a complex Bondi news function c:

(2) Initial data at u = ug for ~, 0:

Initial data for Integration constants N (complex) and M:

Boundary data at r = ry for d,c:

LG+ i1 = e 4 06?)

2 functions of (7,0, @)
3 functions of (6, ¢)

2 functions of (u, 0, ¢)

(3) Integrate hypersurface equations along r to get 3, U4, V.

We need constants of integration N, M.

(4) Evolve v and ¢ in time with the standard equations.

We need 0,c¢ as functions of integration.

(5) Evolve N, M at rg in time using the supplementary equations.

The source is given by the news c.

Series expansions

i

Ul +iU? = — (8gc+2c0t90—

S1n
V=—r+2M+00".

GW strain

, 08¢C) r2+0(r ),

The leading-order (o< 7~!) components of the Riemann tensor are

Ry pok'm"kPm? = —1856 +0(r %)
r

Using ep = e, ey = e,, e4 = e, as before,

= lim R,,0k"m"k’m? = Ry,ry + 1

27
. RTxTa: - RTyTy 1 —lauc

T—00 2

In the linearized regime we have:

1 1 1 1
RTach - _5812“}%30 = _§a%h+7 RTacTy - _§a%hl‘y = _5812“h>< )

1
RTyTy = _§a%hyy =

1

30
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2 2
They agree if hy = —Re(c), hy = =Im(c).
r r

Bondi mass

™ 2w
m(u) = i/o /0 M (u,6,¢)sinfdedd

7,2

T 27 T 21
= Om = —i/ / |0yc|?sinfdepdd = — lim —/ / [(Orhy)? + (Ophy)?] sin @ dp df .
A Jo Jo o Jo

r—oo 1067

Say, a system evolves from one stationary state to another: Egw = M — Mpn

31
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F The ADM 3+1 formulation

F.1

Def.:

Def.:

Spacetime foliations, induced metric and extrinsic curvature

Let M be a manifold with metric g and X a hypersurface ¢(z®) = const.

1 \/ —||C|15||2_1 if dt is timelike

Lapse function: =

a = /F||dt]]? Mat? if dt is spacelike

unit normalon X: n = Fadt = In|| = F1
Projector: 1% = 0%g £ nng

Acceleration: ag = n*V  ng.

A vector X is tangent to ¥ & (dt, X) = (n, X) =0.

Projection of a tensor T: LT~ 5 = 1% 1P, . 1P 1% T,

Corollary: L. L*n* =n*E£n*(n,n*) =0

Def.:

2. n*a, = n"nfV,n, = inV,(n'n,) =0
3. LY Ltg = 1%, (0" £ nFng) = L%
4. For any vector V', LV is tangent to X: 1%, V¥#n, =0
If V' is already tangent to ¥, then L%, V# = (6%, £ n%n,)V* =V
5. For any vectors V, W tangent to &,  gogVeW? = 1 ,zVWPh.

induced metric on X Yop = Lag = Gap T Nanp

Let V', Y be vector fields everywhere tangent to 3.

Parallel transport n from P to () along V.
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normal direction at Q

In general, n will not remain normal to 3, since

VIV,(Y ) = YO VIV g +ng VAV, Y
=0

Def.: Let n be extended in a neghbourhood of X such that n,n* = F1. Let V., W be vector fields
Extrinsic curavture: K : (V, W) = n(V v (LW))
& K,VEWY i=n, LVEV , (LWY).

Proposition: Independent of the expansion,

Ka,@ = —J_“aLV5vuny = _J—Mavunﬂ = _vanﬁ + naap

Proof. K, ,V*W" =n,LVIV  (LW") = —-LVFIW"V n, = —L”aV“LVBWBVunV.
This holds for all V., W,so K. =—1#,1"sV n,

Also: 1"sV,n, =63V, n, £ngn"V,n,
=0

For the independence on the extension, see long script. O

Proposition: K,z is symmetric and tangent to X: K3 = Kgo, Kypn®=0= Kaﬁnﬂ.

Its trace is K == g" K, = 7" K.

Proof. V., = FV,(adt,) = FaV,V,t + (V,a)2

v
e}

= K.p=—1"1"3V,n, =+alt,1"sV, V,t+0,



F THE ADM 3+1 FORMULATION 34

V is torsion free, so V,V,t =V, V,t O

From now on: dt is timelike, so only upper sign!

F.2 Intrisic curavture

Intrisic curvature of 3 independent of embedding: E.g. geodesic deviation

— 3D Riemann tensor R“g.s

Def.: Let T 5 arank (%) tensor tangent to X in all components.
S

3D or spatial covariant derivative: D, 1% g = 17, 1% 175...V,T7

For a vector X tangent to ¥: 1X =X = DxT=1(VxT)

Proposition: The derivative D, is a covariant derivative for tensors tangent to ¥, it is torsion
free and D, v,5 = 0.

Proof. Sketched; cf. example sheets.

Let X, Y, V be vectors tangent to X and f, g scalar functions. One shows that
1) XtD,f = X"0,f,

2) Dix4gvV = fDxV + gDy V,

(1)
(2)
(3) Dx(V + W) = DxV + DxW
(4) Dx(fV) = fDxV +VDxf.

So D is a covariant derivative. Metric compatibility and torsion free nature are inherited from the 4D
covariant derivative V. O

Def.: For vectors X, Y, V tangent to X, the 3D Riemann tensor is defined by
R(X.,Y)V =DxDyV — DyDxV — Dixy|V
(R(X,Y)V)" =R,V XY,
Ricci tensor, scalar: Rag = RFaus, R =R

Proposition: Ricci identity for a vector tangent to X:  (D,Ds — DsD., )V =R sV
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F.3 The Gauss, Codazzi and Ricci equations

Goal: Projections of the Riemann tensor onto n, L.

Proposition: Gauss equation: LR35 = R%ys + K Ksp — K%K 3

Contracted Gauss: 1", 1"gR,,+1",1°sn"n" R pe = Rap+ K Kop—Kan K" 3
Scalar Gauss: R+ 2n'n"R,, = R + K% — K"K,

Proof. (Sketched)

Compute V,17, =n,V,n° +n’V,n,

For a vector field V' tangent to X, show

DoaDgV7Y = —Kop L0 VoV — KKV 4 1F, 17517,V V,V

Use the 3D Ricci identity D,DgV7 — DgD V7 = R j05V*

Use the 4D Ricci identity to replace V,VgV7 — VgV, V7 = R?,,5V?

This holds for all spatial V', so gives us LR%gs.

Contract over a, 7, then with %,

Proposition: Codazzi Eq.: 1P 17317 n" R, o = DgK," — Do K"

Contracted Codazzi: 1" n"R,, = DK — D, K"
Proof. (Sketched)
4D Ricci identity applied to n* : L(V,VB —V3V,)n? = LRY 40"
Recall K,g = —V,ng — nqyag to compute
1P 17317 .V, Von" = =Dy Kg" +a"Koup
Antisymmetrize on «, . Contract on 7, a.

For the final projection we need Lie derivatives along n:
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Lemma: £, 1% =n%"+nfa®+ 2K,
Lp1% =n"ag,
Lolos = —2Kas
For any spatial tensor T3 = LTh5:  LnTup = L(LnTup)
a, =D,lnao

Proof. Example sheets and:

ag = n'V,ng = —n'V,(aVet) = —an’V, Vst—n" (Vst) V,a
—— ~——
VgVt :_énﬁ
n, nkn Vga nfn
= an'Vg— —5VM04 = ntVgn, —ann, 62 +—Bvua
a
=0
1 V,«a Dsa
= —(8"sV,a+n'ngV,e) = Lr—te = 252 — Dyna.
o a o

1
Proposition: Ricci Fq.: LA L n Ryype = LnKay + aDaDva + K, K,”

Proof. (Sketched)

4D Ricci identity applied to n:  V,V,n* =V, V nt = R*, ,n"

Project to get: L,,n" 1P n°RY, v = —KooKy + Dyag + agay + L¥, 1P n°V,K,,
Show: L#,1"snV,K,, = L, Ko+ KK, + Ko, Kg’

Show Dga, + asas = 1Dy Dsa

1
Proposition: 1", 1"sR,, = =L, K. — —DoDga — 2K, K5+ Rop + KK,5,
a

2
R=—-2L,K — ZD'D,a + R+ K>+ K, K"
«

Proof. (Sketched)
Combine contracted Gauss and Ricci Eqgs. to get the first result.
Contract with 1L*?. Use the first Lemma to show: L*L, K5 = L, K — 2K, K.

Combine with the scalar Gauss Eq.

36
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F.4 The 341 version of the Einstein equations

37

1
Einstein Eqgs. : Rog — §Rga5 + Agap =81 Tos  (T) & R.p =87 (Tag —

%Tgaﬁ) +Agap (%)

Def.: energy density, momentum density and stress tensor:

pi=ntn"T

s Ja = —1*n"T),,, Sap =L ol T

= Tap = pnang + jons +najs+ Sap  and  T'=5—p

Proposition: The projections of the Einstein equations give:

H=R+K>—K,K" —2A—161p =0,
My = Do K — D, K" + 8mj, =0,

En’yag = —2Ka5 s

1

1
‘cnKa/B = —aDQDﬁ&—QKauKMg+Ra5+KKaﬁ—A")/ag—Sﬂ' Sag — 5’}/&5(5 - p) .

Proof. (Sketched)

(1) Project (f) onto n®n” and use scalar Gauss.

(2) Project (1) onto L%,n” and use Codazzi.

(3) The 3rd Eq. is our 3rd Lemma above.

(4) Project (%) onto L, 17, and use the last proposition of Sec. F.3.

F.5 Adapted coordinates

Def.: Let (M, g) be globally hyperbolic spacetime with foliation ¥; given by ¢ : M — R with

dt + 0.
Adapted coordinates: x* = (t, x%). 2 label points inside X;.
Coordinate basis: (8;, 9;) and (d¢, dz?).

Def.: Shift vector: B =0; —an

B is spatial:  (dt, 3) = (dt, 8;) — a(dt,n) =1+ (n,n) =0

3 measures deviations of 8, from the normal direction and fixes * on new slices
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Metric components

B0 = (dt,3) =0, 50 By = GumnS™ and:

go = 9(81,8;) = glan+B,an+B) = —a*+ ",

goi = 9(0:,0;) = glan +3,8;) = —(dt,8;) + (Bnda™,8;) = §;,

Gij = g(&waj) = 7<8i78j) = Yij >

_ —a2+ﬁmﬁmﬁj) aﬁ_(—or? a2’ )
90‘5‘( B | T P T« [ —a B

= ds? = (—a® + Bf)dt? + 28;dt da’ + ;;dat da? .
«_(1 P
Neg =(—a,0), n _<a’ o¢>'

Proposition: An observer moving with 4-velocity u® = n® from ¥; to ¥;.q; measures proper
time d7 = adt.

Proof. Tangent vector to the observer’s worldline parametrized with t:
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Codt Todt \a’ al’
= ma = (17 - ﬁz)

dar dav

dtdt

= dr=4/—gu dt = \/—goomomo — 2gom®m? — g;;m'mI dt = adt.

So « fixes the slicing. Lapse and shift are the gauge variables.

Changing to spatial indices

e For any spatial vector V: V9 = (dt, V') = 0.

Likewise for any spatial tensor 7% 5. =0.

Vo # 0 in general, but still only 3 independent components!

Contractions of spatial tensors T),,V# = T,,, V™.

= in adapted coordinates we can replace in spatial equations Greek with Latin indices!

) 1 .
3D Christoffel symbols: [, = =9 (9 %km + OhYmj — ImYyt)

3D Riemann tensor: R g = O %, — 0,15 +TL T T4 T7

1 1
Proposition: Inadapted coordinates: L7, = a@ﬁ,w — aﬁﬁwy,

1 1
Ean, - aath, - aﬁﬁKw,

Proof. (Sketched)
Show for a scalar f and spatial tensors: L, T3 = fLTop.
Use this for n = 2(8; — B), bearing in mind Ly, = 9;.

Using Lg7ij = 8™ 0mYij + 27m 058", we get York’s version of the ADM equations:

39

H=R+K?— K K™ —2A —161p =0

Feyay = B Oy -+ 20m 058" — 2000¢;

8tKZ~j = BmamKU+2Km(ﬁj)ﬁm—DlDJoz—|—a [R’LJ —+ KK,L] — 2Kimej]—OéA’}/ij—87TQ’ |:SZ] — ’Yij

S—p

2

|
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Note: 10 variables, 10 equations, 4 constraints, 4 gauge variables, 2 degrees of freedom

3+1 matter equations:
Owp = P O0Omp — 2J" Dy + a (pK + S™ Ky — D ™)
Oiji = B"Omji + jmOif™ — pDiov — S™; Dy + a (Ji K — Dy, S™5)

Note: No equation for 0;S;;; need EOS!

55
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G Well-posedness, strong hyperbolicity and BSSNOK

G.1 The concept of well-posedness

Def.: An initial value (aka Cauchy) problem is well-posed if a solution exists, is unique and
depends continuously on the initial data in the sense of a norm || f(,.)|| of a function
f(t,x"). Otherwise, it is ill-posed.

We take for || f(t,.)|| the Ly norm of f(t, ") at fixed time.
Example
2D Laplace equation: A¢(t, z) = 02¢ + 02¢ = 0
with  ¢(0,2) = f,(z) =0, 9,0(0, ) = gn(z) == e V" sin(nz)

6_\/5

Solution: ¢, (t,x) = sinh(nt) sin(nzx)
But: lim f,(z) = fo =0, lim g,(x) = goo =0,
n—o00 n—0oo

lim ¢, (t,x) = oo forany ¢ >0

n—oo

This problem does not arise for the wave equation —92¢ + 92¢ = 0.

G.2 Well-posedness of first-order systems
Consider PDEs  Adu +P'Ou+Cu=0 for u:QcCRH RV (1)

where A, P, C are real N x N matrices and A is invertible.

Constant coefficient systems: A, P’, C constant.

Def.: Fourier transformation: f(k:l) = Flfl(k) = \/21_7Td/f(37i)€ikmzmddx,
Flz) = FUAx) = \/;_Wd/f(ki)eikmxmddx

1
vV 27rd
Transformed PDE: A0,u + P™ik,,u + Cu =0

= Floif](k:) =

/ O, f e FmTmddy — ik, f(k;) .

= O+ A (iP"k, +C)a = 0t — iM(k,,)a  with M =A"Y(—P"k;, +iC)
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Solution: @(t, k;) = e™Ma(0,k;) = wu(t,z;) =

d/eth’&(O,ki)eikmxmddk

V2T

The integral converges for t = 0, but how about ¢t > 07

Proposition: If there exists a regular function f with HethH < f(t)

the integral in (%) converges and the PDE (%) is well-posed.
Proof. By Parseval’s theorem
[ull(®) = [lallt) = [[e™|]x[[all(0) < fOllall(0) = F#)lwll0)
Two solutions w;, us for initial data u,(0, z;) and us(0, z;) satisy
[lwr — wal[(2) < f()[|ur — u2l[(0)

— unique solutions and continuous dependence on initial data.

Def.: The PDE Ad,u + P';u + Cu = 0 is weakly hyperbolic

=V k' with || = 1, all Eigenvalues of Q(k;) = —A"'P™k,, are real.

Proposition: Weak hyperbolicity is necessary for ‘ ethH < f(t).
I - k;
Proof. With t:=|k|t, k;:= W, Eq. (1) becomes

i[AH (=P kn+iC/[k])]E

Take |k = 00 = ‘

M/ IK| H _ ‘

AT (=P ki +O)]E/ K H _ )

e

<1 (k)

HQRE < £(0)  with Q) = —A'P™ky,

Note: Short-wavelength modes need large £ and dominate this!
Let A = A\{ + i)y be an Eigenvalue of Q. We need Ay > 0.

But Q is real = A; — i)y is also an Eigenvalue. So we need Ay = 0.

The ADM equations are weakly hyperbolic. But that’s not sufficient.

Lemma: If J,= (?)\ /1\) . AeC, then o2t _ N ((1) 11t) ‘

Proof. Example sheets.

42
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We cannot bound Hexp [1Q(lz:z)f} H with such a Jordan block.
Larger Jordan blocks give similar #, p > 1 growth.

Def.: The PDE Ad,u + P™d,u + Cu = 0 is strongly hyperbolic if for all k; with |k| = 1,
Q= —-A"'P"k,, has only real Eigenvalues and is diagonalizable. If the symmetrizer S

in Q = SAS™! does not depend on k;, the PDE is symmetric hyperbolic.

Linear PDEs: Use the constant-coefficient criterion for all (¢, z;).

Non-linear PDEs: Linearize around all backgrounds. This is challenging!

Note: Stability tests often need empirical tests.

G.3 The BSSNOK formulation

Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima. There are other well-posed formulations.

9g 99
Proposition: =qgg*?, = —00a
Gap 8gaﬁ ?
in n dimension and for any signature.
= 8o¢g = gglwaag/u/ = —g gw/aaglw = 2grﬁa
Proof. Use the cofactor matrix and V,g,, = 0. [
Def.: BSSNOK variables: X =73, K ="Ky,
~ ~ii L
YVij = X7Vij < YT =0
X
- ) 1/~ 1.
Aij = x (Kij — 37, K) < K= X Aij + g%‘jK ;
f‘i — ~mn]7‘7znn ’

Extra constraints: 7 =1, 7™ Apn,=0, G = r—3m e, =0.

To translate the ADM equations into BSSNOK, we need some auxiliary relations.

. 1 , .
Lemma: T =Tj, - 2 (8'k0;x + 0" j0kX — TtV OmX)
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1
Proof. Product rule for v;; = —%;;, and 35™5,,,; = 6*,.
X

Lemma: For any metric: @'yjk = —'yjm'yk”@'ymn, 0iVik = —YimVknOY™"

= Y = ="V O -

For the conformal metric ¥ = 1 implies: M= ﬁmniil&n%l = — m’ymi,
rm 1 ~mn 9 x
rim = 5 iYmn = 0.
Proof. 0= 0;6", = 0;("™ Ymk) = V"0 Vmk + Ym0y’ ™ x ¥ or x Vit

= 0 = A" YMOye AN Ok = — kYO ™

With 7 = 1: 0y =YY" 0iYmn = =Y Ymn Oy =0

= ]N-\z _ mn ~il

’5/ Y (am'?nl + an’?lm - al’?’mn) - ,S/mn,?zlam,?nl

| —

~ 1. _ _ ~ 1. 5
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45

. P 2
Proposition: H = R—A™A,,+ §K2 —2A —167p =0,

2 2 35,0

M, = Z8,K —75™D,, Ay + AN L 87, =0,
3 2 X

Ox = P"O0mXx — gxﬁmﬂ + gozxK,

2 -
- _'%jamﬁm - 204Aij )

at’?ij = 6mam'?ij + 2’?771(28])57” 3

- ~ 5 2
X (O/R,ij — DiDjOé — 87TSZ'J')TF 5
3

OmX
X

- 4 - O o
—2A"0,, a0 — gafy’mﬁmK — 3aA"™—= — 161" j,, —

_— 1
hK = B"0,K —xy""DpDpa+a |A™ AL + - K2 — A+4n(S+p)| ,

. 1 L
O = BP0l = P00 + 2T OnB™ + 7O + 570" + 20T}, AT

oGg",

Comments
e “TF” means “tracefree part”.
e Constraints only used as diagnostic — free evolutions.
e o > 0 for damping G°.
Alternatively: Replace undifferentiated I in terms of Yij-

e One needs to enforce A™,, = 0, but not 7 = 1.

Proof. 9,K as an example. Use 37ij = —YimVinO7"™™", 077 = =" 0 ,

= O K = 8t<7inij) = ’YijatKij + Kz’jat’Yij = ’Yijath'j - Kij’Yim’anat’Ymn = ”YijatKij - Kijat%'j :

Use the ADM equations for 0yv;;, 0K,

= 0K =~70"0pnKij + 297 Kpi0p) ™ — 4" DiDjoc + a(R + K*—2K™" K,,y,)

—3a\ — 8« {S — g(S — p)] K {ﬁmﬁm%] + 2905 ™ QCYKZ'j

= ﬁmvijﬁmKij — MK (—%wjlﬁmvkl) +a(R + K?) — 3aA + 47a(S — 3p)
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— VI DiDjo + 47 K0y 8™ + 47 K0 ™ — K9435 8™ — K3 0,8™

= 7990, K + B Kigdn + a(R + K2) = 30 + 47a(S = 3p) =™ DpDya

= "0 K + a(R + K?) — 3aA + 47a(S — 3p) — x7™ D Dyox .
2 .
Finally subtract oH =a |R + §K2 — A" A, — 2N — 16mp

Note: we subtract zero, but change the principal part of the PDE! ]

We need the auxiliary expressions:

Proposition: Rij = Rij + Ri(] 7
B, 1 ~mn ~ ~ rm M ~mnprk T ~mnpk T
Rij = ) Oeoiig 3= Ty 2 U Mgy £ Fi’;nrkjn + 27 rj;(irj),m ,
X 1 N T ~ oamny T 1 ~  ~mn
Ry = o (DiDjX + YigY DmDnX> R (0ix05x + 377" OmXOnX) »
2x 4x
-~ 1 1.
X 2X
Proof. Long script. O]
Comments

e BSSNOK can be shown to be strongly hyperbolic for suitable gauge.
e There are other strongly hyperbolic formulations, e.g. CCZ4, GHG.

e We still need initial data and gauge conditions...



H GAUGE AND INITIAL DATA

H Gauge and initial data
H.1 Initial data
Two goals: 1) Solve constraints
2) Get physically realistic snapshot
Degrees of freedom: 6 v;;, 6 K;;. One constraint H for ;;, three M for K;;

4 coordinate choices, leaving 2 7;; and 2 Kj;.

H.1.1 Conformal transformations

Def.: Conformal transformation: 7 = €%, & Yij = e X%

Proposition: T, = T, — (6";0k + 0"4dj0 — 77™)

e Rijm = Riji + Yiu X0 — VX + Vi Xir — Ve X
: N . 7N 1 ~ (xmn
with Xy = Xy = DiDip + 959010 = 57(7"™" O Onp)
Rij = Rij+ (n—2)(DiDjo + 0:09;0) + 77" [DimDntp — (0 — 2)0mipnip] |
R = %% {7? + (n—1)53™ [2DmDn<p —(n— 2)8mg08ng0}}

Inversion: (i) ¢ — —¢ and (ii) swap bar and non-bar.

Proof. Long script.

H.1.2 The York-Lichnerowicz split

Goal: Rearrange degrees of freedom into specifiable and derived parts.
Def.: Conformal traceless split:
Vi = Vi = e 2 & A=y =Y
1
Kij = Ay + g%’ﬂﬂ
Ay =24, & AV =y 010

v

Note: 1 L e#/2 is free and det %, arbitrary!
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Lemma: T = T, + v (60K + 0"k — Ay " Omt))

Proof. Long script.

Proposition: The constraints are

_ o _ 9 -
H = 87" Dy D) = YR = S0P K )™ Ay A™ + 20°A + 16m4°p = 0,

. .2 ) )
M= DA™ = Sy, K — 8my'tjt = 0.
Proof. (Sketched)

2
Use the ADM constraints. Show K? — K,,, K™ = ng — A A

_ ) ) 2 . )
For M*, show D,,(y""K — K™) = gfy’mDmK — D, A™.
Use the Lemma for F;k to compute D,, A™ = )~10D, A™
Our choice A;; = w_zfiij leeds to nice cancelations here!

Proposition: Let AY be symmetric and traceless.

= 3 symmetric Q¥ with D,,Q™ =0, Q™,, = 0 and a vector field X"
. . . .. . . 2 . _
AY = QU + (]LX)U = Q” +D'X7 + DX — g’?”Dme .

Note: (LX),,”™ = 0 by construction. Q% is “transverse” and “traceless”

. _ . 1. _ . 2 . .
Proposition: Mz — DmDsz + gDszXm 4 Rszm . §¢67mzamK . 871"@010]'1 =0.

Proof. Example sheets.

Henceforth: vacuum, asymptotic flatness, i.e. A=p=j =0

Summary: e Specify: 5%, 1 K, 2 Qy

e Solve H for ¢ and M* for X*
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Examples
(1) For K = 0 the constraints decouple: Solve M® for X* and then H for 1.
(2) Time symmetry and conformal flatness, K;; = 0, 7;; = d;;
= %7-_[ = 00,000 = A =0 A M= 0 manifestly
A 3 :
= ¢=—+B on R’\{0}. r=0is called a puncture.
r
For A = % B = 1 this is isotropic Schwarzschild: ds 20 = M\* o (1 M 4(d 2 4
or A =%, B = is is isotropi warzschild: ds® = — — T
2’ P 2r+ M 2r

dy? + dz?)

H =0 is linear in v = We can superpose:
B : M _— ‘
=1+ Z —2| | Brill-Lindquist data for n BHs at rest
— r — 'I“(i)
=1

H.1.3 Bowen-York and puncture data
Goal: spinning and boosted BHs.

Impose 7;; = d;5, K =0, Q;; = 0, but allow for X’ # 0

= | M =079, X"+ %aiamxm =0

Linear in X* = We can superpose solutions!

.. . P o .. . ..
Proposition: | X' = e”k—;Jk . €9k = Levi-Civita tensor, J, = const (1)
T

solves M’ = 0 and endows the spacetime with angular momentum .Jj,.
Proof. (Sketched)
Using 9;r = x;/r, one shows 9,,X™ = 0 and §™9,, X" = 0.

The total angular momentum of an asymptotically flat spacetime is Eq. (8.83) in gr-qc/0703035

1 . , .
Joo=—lim ¢ (K;; — K%j)(qu)’w—r2 sin@dfd¢, where (@pm)" = €y,'2.
r

T r—oo S,

USil’lg eijkeim” = 6Jm5kn — 5jn§km’ and Aij = &XJ -+ ani, we find

Aiy(m)ind = > <Jm _ I J’“) .

r 72
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1 _ _
lim, e =1, so Kj; =A;+ g%‘jK = wizAij — Ajj
Rotate the coordinates such that J; = (0,0, J). Integrands ~ z ~ cosf lead to zero, so

= =, JX=J%=0 -

Proposition: | X' = 1 (7P” + I fk Pk) , P" = const (1)
r r

solves M? = 0 and endows the spacetime with linear momentum P*.
Proof. (Sketched)

With 0;r = x;/r, one computes

1/ gig Pk pi ‘ 3/ pi iy, Pm
0.0, X = (325 ) g oo, xm =2 (o —3TIml )
2 rd r3 2

The linear momentum is Eq. (8.78) in gr-qc/0703035
1 zk

PAPM — — lim ¢ (K, — Kvyg)—r*sin6df de

r

Tr—oo [o
_ - 3
As before, Ky — K, — Ay, and one finds: Az’ = FPk(Tz&k + x;1)
r
Rotate coordinates such that P* = (0,0, P).

= PPV =p, PpAiPM= pADM — O

Comments
e These are Bowen-York data.
e One similarly shows that (1) has PAPM = 0 and (}) has J°=0.
e We can superpose in two ways:
(i) joint X that carry linear and angular momentum.
(ii) Sources at multiple points, %, x4 etc.

Hamiltonian constraint

ToDo: H =890t + ¢ " Apn A™ =0
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Puncture data

— M'L
(1) Recall Brill-Lindquist data for A;; =0: ¢p, =1+ Z 2|”°——(7)“(z)|

i=1

(2) Ansatz: @ =g, +u on R\ {rgy}
= 8009, + (wBL + U)77Amnzzlmn =0

Needs numerical solving.

(3) Brandt & Briigmann (PRL 1996) have shown that 3 unique solutions u regular on all R3.
Y i ] . .
(4) Regularity implies that near 7(; the Brill-Lindquist ¥g;, dominates

= The solutions are still BHs, but with spin and velocity.

(5) Kerr has no conformally flat slice = junk radiation

H.2 Gauge conditions
Goa O (v, B%) freely specifiable. Four options:

1. «a, 3" = functions of (¢, z?%).
2. Functions of other variables, e.g. v or '

3. Elliptic PDEs. E.g. maximal slicing K =0
= ...=> Ao = ak,,, K™ in vacuun.

4. Hyperbolic or parabolic PDEs for «, /3°.

H.2.1 What can go wrong?
Kruskal-Szekeres BH

2M oM\
Schwarzschild: ds? = — (1 — —> de® + (1 — _) dr? + r2d0?

r r
Transform: ¢t =t¢+2MIn|r — 2M], t=t—2MIn|r—2M]|,
v=1t+r, u=t-—r,

0 = e 0= —e i

i= L1, F=1(6—a)
2
ds* = 16M2€’2TW(—dtN2+df2) + rdw?
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= tanh — for r < 2M |

t
= tanh — fi > 2M d
an or r an 0

Sl t = t:
ices cons i

5 3>

=] o+

Slices r = const: | 2 — 7% = —e2w (r — 2M) =: C(7)

Kruskal-Szekeres diagram with geodesic slices

Proposition: An evolution starting at ¢ = 0 with geodesic slicing, o = 1, 3* = 0 reaches r = 0,
after mM time units.

Proof. Recall dr = adt,y,. Now a =1

= coordinate time t,,, = 7 = proper time of observers moving with 4-velocity u* = n*.
a, =n’V,n, = D,a=0 = normal observers follow geodesics.

" =0 = Observers start with dr/dr = 0.

7>0 = r>2M,7 <0 by symmetry.

S0 tyum = 7 of freely infalling observers from r = rq > 2M.
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Timelike geodesics in Schwarzschild (e.g. Part II GR):

AW oM
(1) (1——>t:E, — B = 1
T

r
(2) Observers start with 7 at 7(0) = rq

2M
= E=4/1—-— € [0,1) for ry € [2M, 0)
To
dr 2M  2M dx 2M /1 . r
= — =/ — - — = rp— = —4/—14/——1 with z = —.
dr dr To T 7o
:> —_

T To
2M x .
”r_g/dT:/ de = ... = —\/2(1 — z) + arcsin /&

11—z
N N ro (T , T . rof T
T= 1o +roy/—— | = —arcsin, /— rog/ =4/l — —
- VoM \2 ro) 'V 2M ro
=0
(8) 7 =0 reached at 7 = gro ;_]?4'

Observers starting at » = 2M remain at # = 0 by symmetry.

For other observers, we invert 7(r) — r(7) and calculate v(7) numerically.

= #(7) and 7(7) trajectories for all observers.

Two problems: e The code crashes at the singularity before much physics is calculated.
e Observers diverge in © — slice stretching.

H.2.2 Singularity avoiding slicing

Goal: Reduce a near singularity.

Tool: Often the volume element /7y vanishes at physical or coordinate singularities!

Def.: Bona-Mass6 slicing: ((11—(; = (0; — Lg)a = (0 — B"Op)a = —a’f(a)K ,

where f(a) > 0 but otherwise free.

1
Proposition: Bona-Massé slicing implies {g’“’ - (1 — ?) n“n”} V,V,t=0 (%)

Proof. (Sketched)
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In adapted coordinates: V,V,t = 9,0,t — I, 0,t = 0,0°, —I",6° = =T,
Show that the spacetime Christoffel symbols in adapted coordinates are

82- «

1
0 _
m Fij - _aKij .

1 1
Fgo = 5(8004 + 6mama) - aﬁmBlel y ng -

Use 7% = g% + n°n® to compute

_ {gw N (1 _ %) nunv] V, Vol — _% (8 — F"m)a + o> K] = 0

Def.: Focussing singularity := a point where /7 vanishes at a bounded rate as a function of
proper time 7 of normal observers.

d

) == Lo'? = —ar'PK.

Proposition:

Proof. (Sketched)

2 2
BSSNOK equation:  (0; — ™0)x = —gxamﬂm + gaxK.

Use x = v~ /% and use the Lie derivative for /7Y which is a tensor density of weight w = 1.

Examples
d a d
1 -1 Ca=—atk=2%
(1) flo)=1 = o= o= L4
= ilnoz——ln = a=h(z")/y
dt at V7 - 7

In Eq. (x), f=1is: 0Ot=VH,V,t=0 harmonic slicing
Likewise for f(a) = N: « = h(z')/7".

N d
2 =— = —a=-aNK=—— = =h N1
(@) f=7 = fo=-oNK="-0Vi = a=h@)+ Nnyy
. d ..
For N =2, h(z") = 1: T —2aK = a=1+Invy “l4log” slicing
d d 1 d 1 d
(3) In general: —a = a_f_ = ——a«

AT AN afdt”  yydt

o4



H GAUGE AND INITIAL DATA

= 1nﬁ+ﬁ<xi)=/aif%adt: e ﬁ=h(x")exp{/i—?} (1)

Comment: o« finite = [ i—? finite. So if v — 0, the lapse must collapse, o — 0.

Assume now a focussing singularity is encountered at finite 7 = 7.

With d7 = adt this is coordinate time At = / & Three possibilities:
0 Q@

(1) /7 — 0 and « finite. Cannot happen for Bona-Massé slicing.

(2) v — 0, o — simultaneously. The singularity can then be reached at finite or infinite ¢.

If it happens as t — oo, we have Marginal singularity avoidance.

(3) a — 0 before /7 — 0. This is strong singularity avoidance.

Now let: /Yy~ (s —7)™, m>1 as~y—0,
fla) =Aa™, A>0asa—0.

Proposition: 1. For n < 0: strong singularity avoidance.

2. For n =0, mA > 1: marginal singularity avoidance.
3. Forn > 0or (n =0 and mA < 1): no singularity avoidance.

Proof. (Sketched)

/ do _1/ da ln(al/A) forn =20
af(a)  AJ artl —La™ forn #0

n

4 —1
Forn <0in (}): /7 =h(z")exp {—Aa_”}, so 7 is finite as a — 0
n

= strong singularity avoidance.

™ d Odr/d
For n > 0, we evaluate At = / & / 7/ ada
0 Q o a

0

(i) If d7/da vanishes faster than o® for some p > 0, the integral and At are finite.
— no singularity avoidance.
(ii) If d7/de is finite or larger, the integral and At diverge.

— marginal singularity avoidance.
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dl 1d
Differentiating () gives 3;/7 = a_fﬁ'
Insert f(a) to compute 7(«) and, thus, d7/da, which confirms the proposition. ]

H.2.3 Shift conditions

Goal: Ensure neighbouring observers see “similar” evolution of 7;;. Recall ¥ = 1!

1 1
Def.: Distortion tensor: X;; = 571/3&5%]‘ = ﬂat/?ij-

Minimizing the integral ¥,,,%™" over the hypersurface

— ellitic PDE for 3%, minimal distortion shift

Lemma: XY = g {—57”&7{?” + o8 + 71987 — §~”5m5m — 20414”} ;

and Y, 2" = 0.

Proof. Example sheets. O
. 2 . ~. . . . ~ .
Proposition: 29;(x'¥7) = = <Dj2” — %5 + gaJ—XZ”) = oJ".
X X
Proof. Example sheets. O

This motivates the Gamma freezing shift condition:  T% = 0.

Comments: e Minimal distortion and Gamma freezing only differ by terms o
1st metric derivatives X X,,,,.

e Setting 9,1 = 0 in the BSSNOK eq. for I gives an elliptic PDE for .
e However, we only need to solve it once! Just don’t evolve I
Better yet, Gamma driver shift: §,6' = FO,I"  or O} = Fo,I" — 1d,3°

where F' > 0 and 73 is added to avoid oscillations in °.

3 . _ ,
In practice: e 0,5 = ZB’, OB* = o, —nB" with M7 = O(1) work well.

e It also works well to add advection derivatives: 0; — 0y — 5™0,,.
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Together with 1+4log slicing this is called moving puncture gauge (k =1 or 0):

o7

O = KB"Ona — 2aK

. -
Bt = /@ﬁmﬁmﬁ’+ZBl

OB' = KB™0,B' + (0 — kBT — B .
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I Gravitational-wave diagnostics

I.1 GW strain and the Newman-Penrose scalar
i 1

Recall from Bondi-Sachs: R, k"m’k’m? = 9% = —é(iagm + 02hy), (1)
T

€y + €y ieg—e¢
2 2

1
where kz—ﬁ(eT—eR), L~er+epr, m ~

~ er—e ~ e e ~ 141 e +ie
Rescale: k= —v/2k ~ —~ R, 0=\t~ Tt R, m = _Hm:m

V2 V2

1 = 2P
= R,prcrk'umykpmg = QRHVPUk# my k? mU

~,= Vs =0
Def.: Newman Penrose scalar V4 = Cpppok m kPm |

where Cp45 is the Weyl tensor. In vacuum Cpp5 = Ragys.

Proposition: Invacuum V¥, = —ﬁ+ + iﬁx = 8%H with H:=—h, +ihy

2

Proof.  ZRupokm’k’m’ ¥ —02h, +i0%hy  and O = 0. O
i

1.2 GW energy and momentum

In 2nd-order perturbation theory, quadratic 1st-order perturbations source the 2nd-order perturbations.

1

— Isaacson stress-energy tensor: t,, = 30,

<a,thp(,a heo — -a hdyh — 20,h"° a(uﬁy)p> ,

where ( . ) averages over large volumes.

One can show: t,, is gauge invariant, so use TT gauge

1 TT 4 5 TT o

= tw = E@uhi]— Ohi;) (sum over i, j)
1
Energy flux across surface 2% = const:  t% = (8Ohu Gkhw> ——(—00hij Ohij) -
327 321
. k dE ok
= flux across surface element dA with normal n*: —— =1
dtdA
ok P
On sphere R = const: n" = Oy =0
n sphere comst: 7' =, —0 =0r

dE 1

T 1
dt dA 327‘( < aoh” O > 3 < aTh’Lj aRh@]> ,

YR o
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Outgoing radiation: h;; = h;j(T' — R) = 0Orh;j = —0rh;; = —0oh,;

daE 1
dtdA 327

At each point on the sphere, rotate coordinates such that z becomes the radial direction

(Qohij Dohij)

hy hy O
hij = hx —h,+ 0 = 80hz~j 60h,~j = 2(8@h+)2 + 2(aoh><)2
0 0 0
& 1 ((Bohy)* + (Oohx)?). Same as in Bondi-Sachs!
dtdA ~ 1670 0fix )7/ Dallic a5 i BORd '
T 2
! ~
With Uy = 02H, H= —h, +ihy, = |0rH|* = (Orhy)? + (Orhy)? = ‘/ U,dt|
dE , 9
= = lim - 7{|8TH| a0 — ngrolo—j{ ‘/ ¥.df| a0,
Radiated linear momentum:
0 OR
As R — oo: %hm — %a}ghzj

dP! Ik P 1 1
m =1 ne = 32 <8lhw (9k ij , > 327T < 8Rhlj 8Rh”> = %nl((%hij 8Thij>

with n; = % = (sinf cos ¢, sinfsin¢, cosf)

P, . R? R2 2
=@ T A gy IR = i e o @

T ~
| wa

Without proof, the angular momentum in GWs is

' 2 . B 2 R T ot o T
dt R—oo 16T R—oo 167 oo J oo o

. 2i
with J, = —sin ¢dy — cos ¢ (cot 004 — — ' ) ,

sin 0

A 21 A
Jy = cos 0y — sin ¢ (cot 00, — 3 10> and J, =0;.
in
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1.3 The mutipolar decomposition

Project W, (or H) onto spherical harmonics of spin weight s = —2:

Ui = (Y0, Uy) - //\1145/ sinfdf de .

= Uy(t,0,0) = ZZ% 0, 9)

=2 m=—1

Yl;f form a complete orthonormal basis, so (Y Y ) = 011 Oy

Ilm >
Eg Ypl0.0) =1/ —— (1 0)%e*?
g Y7 (0,0) 647‘('( + cosf)%e?? ...

dE .
E in individual multipoles: — = Ein, ith  Ej, = lim —
nergy in individual multipoles = %; ] wi ] Aim

Angular and linear momentum arise from overlap of different multipoles.

/ @Z)lmdt

I.4 An example of a GW signal

11 orbit inspiral of a non-spinning 1 : 4 mass-ratio BH binary.

— 71 T 1 1 I 1T " 1T " 17

o e n A AR
0 BRANLNAN AN A XA WAWATATAN 7393 3 3 1l
0.1 , - MAART] &
02 — H —— 40 h32 . ... 400 H42 —
i | ! | ! | ! | ! | ! | ! | ! | ! f
02 R, =96M kT
01 h- . , " A I A T A 5 - i —
0.1 ‘ : !
02 O

0.2 xpol1 -
0.1 A " A | |

oH |
-0.1} V.V ¥\ -
-0.2 =
1| 1

0 200 400 600 800 1000 1200 1400 1600 1860
(t-R.)/M




	Introduction and conventions
	Introduction and Motivation
	Definitions and conventions

	Linearized theory and GWs
	The linearized Einstein equations
	Gravitational waves in the linear approximation
	Geodesic deviation

	Classification of Partial Differential Equations
	Second-order PDEs of a single function
	Classification of second-order PDES
	Principal axes
	Second-order PDEs in 2 dimensions

	Systems of PDEs

	The structure of the Einstein equations
	The Einstein equations in vacuum
	The Cauchy problem

	The Bondi-Sachs formalism
	Characteristic coordinates
	The Bondi metric
	The characteristic field equations
	Interpretation of the functions of integration
	The characteristic formalism for general spacetimes

	The ADM 3+1 formulation
	Spacetime foliations, induced metric and extrinsic curvature
	Intrisic curavture
	The Gauss, Codazzi and Ricci equations
	The 3+1 version of the Einstein equations
	Adapted coordinates

	Well-posedness, strong hyperbolicity and BSSNOK
	The concept of well-posedness
	Well-posedness of first-order systems
	The BSSNOK formulation

	Gauge and initial data
	Initial data
	Conformal transformations
	The York-Lichnerowicz split
	Bowen-York and puncture data

	Gauge conditions
	What can go wrong?
	Singularity avoiding slicing
	Shift conditions


	Gravitational-wave diagnostics
	GW strain and the Newman-Penrose scalar
	GW energy and momentum
	The mutipolar decomposition
	An example of a GW signal


