Statistical Physics

Lecture Notes

Abstract

These notes represent the material covered in the Part II lecture Statistical Physics.
They are largely based on the more extended lecture notes by David Tong [2]. The main
purpose of these notes to provide as close as possible a one-to-one representation of the
course as it appears on the black board in the lecture room. This comes, at times, at the
expanse of uniformly using complete sentences and instead using short phrases and the
like.

Readers interested in more details as well as a wider range of subjects, will find David
Tong’s lecture notes an excellent source and may also find the following books of interest.

e F. Mandl, “Statistical Physics” .
e L. D. Landau & E. M. Lifshitz, “Statistical Physics” .
e F. Reif, “Fundamentals of Statistical and Thermal Physics” .

e M. Kardar, “Statistical Physics of Particles”, “Statistical Physics of Fields”; see also
Kardar’s webpage [3].

e A. B. Pippard, “The Elements of Classical Thermodynamics” .

Example sheets for this course will be available on the web page

http://www.damtp.cam.ac.uk/user/examples

Cambridge, January 2014

Ulrich Sperhake
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A The fundamentals of statistical physics

A.1 Introduction

Science works in layers, e.g.:

History
Economy
Psychology
Biology
Chemistry
Atomic Physics
Nuclear Physics
Particle Physics

Choose one area, consider the neighbours, ignore the rest.

Fundamental laws, large numbers
— emergent phenomena, e.g. traffic jams, temperature

Statistical Physics:  translate microphyics  (fundamental laws)
— macrophysics (temperature, color, ...)

We will see that this can be done quite rigorously for many laws: ideal gas law, Wien’s dis-
placement, . ..

Not all macrosystems are understood at micro level: black holes, high T super conductors

Note: We have large numbers | N ~ 10?3 # 1

A.2 The microcanonical ensemble

Isolated system: no exchange of energy, particles with outside
world

We do this QM, but applies to classical systems as well (3. — [)

time independent Schrodinger eq.:  H |y = E|y)
1 Eigenstate
E  Eigenvalue
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For N ~ 10% degrees of freedom: — impossible to solve

— unnecessary to solve: system jumps from state to state ...

our view: mixed state with probability p(n) for state |n)

expectation value (O) = Zp(n) (n|O|n)

equilibrium: probability distribution is time independent!

e.g. leave system for a while

Fundamental assumption: For an isolated system in equilibrium, all accessible mi-
crostates are equally likely

“accessible” = same energy E (for now)

Q(FE) = # of states with energy FE

E)

ot= if [n) has energy E
= p(n) =

0 otherwise

Comments: e Q(E) is absurdly large! E.g. 102 2-state particles = Q(E) = 200%)

e In QM, energy levels are discrete. For N ~ 10% they are finely spaced
— almost like continuum.

We implicitly define 2(F) as the # of states with energy € [E, E + AE);
AFE < measurement accuracy, >> level spacing

A.2.1 Entropy and the 2" law of thermodynamics

Def.: Entropy of system |S(E) = kglnQ(FE)

kg =1.381-10"23 % “Boltzmann’s constant”

Recall: N 2-state particles = Q = 2V
= S~N
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additive: consider 2 separate systems E, E,
= Q(Ey, Ey) = Q1(E7) Qa(E»)
= S(E1, E3) = S1(Ey) + Sa(E»)
The second law
bring the two systems together
E, E,

They exchange energy: E; — By, Ey — Ey

Etot:E1+E2:E1+E2

= Q(Et0t> - Z Q QQ Etot E )
{E:}

ZeXp Sy (E%) . So(Eyey — EY)

B kB

{E:}
discreteness of QM energy levels: see comment above!

when the systems were separate, we had Q(F4, E) states.

each such state is also one of the Q(Ey,) states when the system is combined!

= Q(Etot) > Q(Ela EZ)
= S(Eior) > S(E1, Ey) = S1(Ey) + Sa(E2)

- [3520

For large N: recall that S ~ N

Z ex p Sl El SQ(EtOt - Ei)

= the above sum Q(E) =
kg kp

{E}}
is a sum of exponentials of N ~ 10%3.
Such sums are dominated by their maximum value!

S
ks

Say, for some energy E{ = F,, the exponent is twice as large as
for any other E.

Then this term is ~ e times larger than all other terms.
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= All terms but the one with E{ = FE, are negligible
Setting F), = E!, Ey = Fiy — E!, the exponent is

i 51(E1) + 52(E2)} )

kg
and it is maximal for E{ =F, if
o T ~ ~ 851 852
oE: L () Sl 2)] 0E, OFs
95| 05, B
il i P v

Then the total entropy is
S(EBior) = S1(Ey) + S2(Eior — Ei) > S1(E1) + S2(E»)

= Subsystems 1 and 2 have nearly determined energies F,, Ei. — F,

after contact.

Note: If FE; # F,, subsystem 1 will hardly ever return from energy FE, to Ej
“contact vastly enhances the number of accessible states”

Second Law: energy is rearranged such that Sy(FE;) + S3(FEs) is maximal

A.2.2 Temperature

Note: We are slightly departing here from the microcanonic assumption £ = const.
This is to be viewed as an ensemble of systems with different F.

1 oS
Def.: T ture T | = = ——=
e emperature T~ 9F

Why is this a good definition?

Does it describe coffee?
1) Units ok thanks to Boltzmann’s constant
2) Consider Eq. (%): Energy rearranged such that S)(E;) + Sy(FE,) max.

Now assume FE; = El, FEy = Eg, i.e. no energy transfer at all
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051 05,
— - = =0= T1=T
OF |, OF |, b
= No energy transfer corresponds to equal T} = T3 (before contact) as expected.
3) Let us assume small energy transfer: JF; = —JFj
05, 095, 051 095, 1 1
= S~ —| Ei+—| by =| —| —— by == ——=|0F
9B |, * 7 aE |, 0 <8EE1 0B |, ) T\ )

0S >0 because S maximized
ifT1>T2 = (5E1<O
= energy goes from hot to cold

Summary: 7T looks a good definition
equal T = equilibrium

we will evaluate T for ideal gas later; our def. is correct

Heat capacity

oF
Def.: C=—
Comments: e we should call this “energy capacity”
e (' is nice: can be measured!
e consider E a function of T
oS 9SOE C
or 0EJT T
0S
= C=T—
oT
: : 0Q . :
we will see this as C' = ST thermodynamics
where we also specify what’s kept constant: Cy,, Cp, ...
= o(r
we can measure entropy differences: AS = %dT
T

... beats counting ~ exp(10%) states
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Def.: specific heat capacity ¢ = %
Notes 05 _1 L ®S_o1_oTo1 1
" OF T OE?  OET OEOTT  T2C
)
Almost all substances have ¢ >0 = — <0

OE?

= The extremum in Eq. () is really a max.
= “thermodynamically stable systems”

Exception: black holes; Hawking radiation

A.2.3 The Two-State system

Stirling’s formula

We often have In N!

Stirling: InN!'=NInN — N + % In(27N) + O (%) (Examples)
N Inp
For now: InN! = Zlnp
p=1
N N [
%/ lnpdp:/ 1 Inpdp
1 1 1 2 3

_ N NP_
-JMMh—/—@_NmN—W—D
1 P

= [ImN!'~NInN—N| (lower limit!)
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Two-spin-state system

N particles: non-interacting, 2 states: T, |

Let £, =0, £y =¢

Ny particles with spin up = Ny =N — N;
= E = Nje

what is Q(F)?

pick N; particles from N

NI
QE)= (M= — —
= UB) = () = mrv =y
N | | |

~kg[NInN — N — NyIn Ny + Ny — (N — Ny)In(N — Ny) + N — Nj]

= ]{IB [(N—NT)lnN—FNTth—NTlHNT— (N—NT)hl(N—NT)]

N - N; %]

Ny 1
+ TIlN

E E E E

special cases: S(0) =0

= —kp [(N — N)In

N
S <7€> =kpNIn2 maximum

S(Ne)=0

E
Ny==
T €

10
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1 0S k N
Temperature: T:a—E:...:?Bln <f€_1>
Ny E 1
‘N~ Ne e/ksT) 41
Ny 1
For T D= ==
or T'— o0 N =3

N
What happens for E > 76?

T <0 = asweincrease E, Q(F) decreases

1
view as T going through 0 to negative values

oF 0
Heat capacity: C' = — <

Ne Ne? ¢/ (ksT) c
or — oT )

e /aT) 11 )~ kpT? (ol knT) 4 1)

€
e (' maxnear 1T ~ —

B

o T -0 = (O~e ksl 0

11

“gap to first excited state”

= heating “a bit” does nothing

1
o' w00 = (C~ T2 — 0 “half the states are
already 1”

Schottky anomaly

for normal substances: C' dominated by phonons or free electrons; spin negligible
= (' increases with T.

for special cases at low T": e.g. paramagnetic salts

spin contribution significant = C' like Fig.
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A.2.4 Pressure, Volume, 1% law of thermodynamics

Consider volume V' of system

= S(E,V)=ksnQE,V)

1 oS
[ _ . ((k t t??
T <0E)V ; eep V constan
Recall: we defined L_o5 and concluded that
D W — =
T~ 0E B
2 systems keep their energies FE,, E, if they have same T

Def: “Pressure”: |p=T <§—§)E

Repeat the argument for T equilibrium

= 2 systems keep their volume if they have the same p

First Law: {rom our definitions: dS = (g—;) § dE + (g—‘i) ; dV = %dE + %dV

= [dE =TdS — pdV |

Note: pdV =pAdx = Fdx

~dx-
= work done by system - . . .
p . . |
* . o A
sign: dV <0 . C e
= we work on the system * . ’ L.
= dE >0 -
energy conservation: TdS = heat 0() added to the system; cf. Sec. D

pdV = work done by the system
= The system’s change in energy is equal to the heat added

plus the work done on the system
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oF oS
heat capacity: we now write Cy = <—) =T (—)
a1 ), o1 ).,

Strictly @ but it’s the same since dV =0
oT )+,
s OF
. _ ; !
analagously: C, =T <8T)p (don’t use 5T herel!)

Ludwig Boltzmann: did a lot of this in the absence of proof for atoms!
S = kgIn) on his tomb stone
his work received a lot of criticism;

truely appreciated after his suicide in Trieste in 1906

A.3 The canonical ensemble

Closed system: can exchange energy, but no matter, with outside world

e closed system S

e at equilibrium temperature 7' s

e coupled to large reservoir R T R

L changes in T of reservoir negligible

What is the number of states of the total system &+ R?

UBiot) = > O (Eiow — En) = Y exp [SR(EtZ; —~ En)]

where n = state of system S with energy E,
Qr = # of states of reservoir; S = kpInQx
Note: We sum over all states n, not over the energies FE, of &!

Otherwise: degeneracy factor ¢(F,)
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R large = F, < Fiy

= Q(Bi) = > _exp {

= Q(Etot) ~ esR(Etot)/kB Z e—En/(kBT)

n

- En)} ~ Y exp |:SR(Et0t)

14

0Sg E,

ks

=  # of states where S sits in state |n): eS®/kB o=En/(k5T)

Each of the Q(FEy,) states equally likely

= probability that S is in state |n):

“Boltzmann distribution”,

Comments:

® pr~e

—E/(kgT)

“canonical ensemble”

e Reservoir only plays a role through T

= high-energy states unlikely

aEitot kB
——

1
T

o F of system large = fewer states of reservoir to distribute its energy

e T'— (0 forces system into ground state (lowest FE)

A.3.1 The partition function

1
Def.: = —
b \P =T
Def.: “partition function”

= sum of probabilities of |n) up to normalization

= Boltzmann distribution:

7 = Z e PEn

p(n)

Z

Z is the most important quantity in statistical physics!
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Z is multiplicative: Consider two systems 1, 2

(1) (2) (1) (2)
= Z — Z e_B[Em +En ] — Z [e_BEm e_BEn i|
n,m

n,m

S ] Y] = 20

n

In QM we have 2 probabilities: - QM

- our ignorance of the system
e—BH
= density matrix: p = —

= p(¢) = (¢|p|¢) = probability of state |¢)

We won’t use that

Derivations from 7

Ene_BEn
average energy: (FE) = Z(ann) = Z —

n n

= <E>:—%an

energy fluctuations: AE®? = ((E — (E))*) = (E*) — (E)?

= ... = AEzza—zan:—g<E>
0p? ap

NE)| _0BOE) _ 1,0
or |, 0T 9B  kpT?

heat capacity: Cy =

= AE2 = k‘BT2 C\/

Comments: 1) large fluctuations ~ large heat capacity:
manifestation of “fluctuation-dissipation theorem”
AFE 1
2) Recall: Cy ~N,E~N = — ~—
"N

= for large N: E peaked near (F), essentially constant

in thermodynamic limit: microcanonic ~ canonic; E = (E)

15
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The two-spin-state system revisited

single particle: Zy = Z e PEn — 1 4 ¢7P¢ = 2¢77¢/2 cosh %

N
= /= HZk = 2N e=NBe/2 coghY %
k=1

0 ~ Ne Be m

op 2 2 ) T 14 ebe coshz e +e®

= (E)=——InZ=... —(1—tanh_) Ne ‘Smhx T — e~
Cy=...

Note: the partition function automatically handles the combinatorics

A.3.2 Entropy
MiCE: S = kg InQ(FE) = kg In of # states

Now: probability distribution over states with different FE
S, S, Sw-1 Sw

Trick: take W identical systems, all coupled to R

For each system: states |n),sayn=1...N

= # of systems in state |n): p(n) W, if W large

Consider reservoir + all systems as microcanical (Ey, fixed)
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= Ot = OQr Qs
what is Qg7
1) List all states n=1...N pPW  p2)W p(N) v
slots dots slots
2) create p(n) W slots for state n ’—U SR S \—‘ ‘ ’—U \—‘
3) > ofallslots = W
RN RN
4) W! = # of permutations of W systems
= # of ways to put them into slots
5) [p(n) W]l = # of permutations of p(n) W systems
= # of ways to reshuffle systems in state n
without changing the physical setup
wi
= Qs =———— =+ of different ways to get p(1) W systems in state |1),
[Tpe)w!
n p(2) W systems into state |2), etc.
= St = kp(InQr +1n Q) ‘ we ignore Sy
= Ss=kplnQg = Stirling) — —kBWZp )Inp(n) = entropy of W systems
= one system: = —kp Zp )Inp(n due to Gibbs
Comments: e S = function of probability distribution
e MiCE: prob. distr. = f(Energy) = S = S(F)
e CE: prob. distr. = f(T)
1
e BEn kg e BEbn kgps
_ __FB ~BEy _ |~ —BEn
e pln)=—— = S=-— ] e in— 7 ;Ene +kplnZz
= | S=k 0 (T'InZ)
Yar
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MiCE vs. CE

S=kpmQE) vs. S=-kg» p(n)np(n)

different probability distributions!
But for N — oo physical observables agree in both ensembles. How?

Consider Z = Z e PEn — Z Q(E;) e PEi

n {E:}
N =00 = Q(E;)e PP is strongly peaked at E; = E,  “e™ effect”

= sum in Z dominated by FE, term with max. condition

{a% [Q<E>e—BE]} 0

E.

= Z~QE,)e b

: _ ~9S . 9lnQ ~ 9lnQ
We'll need: T_a—E_kB 3E = f[= 5B
B,
G,
_%[IHQ_BE*]
OE, 01InQ OFE,
~a5 om. B3
=L, ()
Lo, 0 _ .0 _ 9 _ 20
entropy: S = kg 8T(T InZ) = kg o7 [T(InQ — BE,)] o7 = kBB’ 3
= kplnQ — kpBE, — kT kpp? % (InQ — BE,)
N ::’E* S
:]{IBth(E*)

= CE like MiCE at energy F, !

18
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Maximizing entropy

both MiCE and CE can be obtained from a variational principle

MiCE: Consider Gibbs entropy S = —kp Zp(n) In p(n)

with p(n) # 0 for states |n) with energy £

constraint: Zp(n) =1

n

vary S+ akpg [Z p(n) —1

; a = Lagrange multiplier

0
= opm) | ;p(n) Inp(n) + a;p(n) - oz] =0
= —Inp(m) — p(m)]ﬁ +a=0
= ll'lp( ) =a—1
= p(m) =e*"" = const MiCE!

CE: keep (F) fixed (example sheet)

A.3.3 Free energy

Def.: Free energy ‘F =FE-TS ‘ “available energy”

Mathematically: Legendre trafo

= dF =dE —-d(TS)=TdS —pdV —TdS — SdT' = —SdT — pdV

o 0P| oF

~Toar), T Tav,

0 0 J , 0
Recall E = %an, S—kBaT(Tan), 95 kT 5T

0 0
= F=FE-TS§S= k:BTza—Tan—k:BTan—k:BTQa—Tan

= |[F=—kgThhZ]

19
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A.4 The grand canonical ensemble

A.4.1 The chemical potential

Consider additional quantities of the system: particle number N, electric charge ¢
= S=S(E,V,N)=kglnQ(E,V,N)

1 oS oS
Il: —=— =T —
reca N , P v

Def.: chemical potential |y = —-T —

repeat argument for T-equilibrium

= systems do not (net-)exchange particles if p; = o “chemical equilibrium”

1
1 law: dS = —dE + %dv . %dN —~ [dE =TdS — pdV + udN

= = “energy cost to add one particle”

For electric charge we would get the electrostatic potential

83
C t op=-T —
ommen 1% 8]\7

E
, but from first law: p© = 8_

Why?
V.E ON

S,V

in general: let x,y,z be variables with one constraint

ox| 0Oy 0z
= | = - Z] = =1
dy|, 0z|, Oz|,
-1
forus: x=F, y=N, 2=, constraint: V = const; use @ = %
0z|, oy |,

If we work at constant temperature rather than energy:

I
we use dF = —5SdT — pdV + udN = pu= S—N
TV
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A.4.2 The grand canonical ensemble

GrCE: We now let the system also exchange particles with its environment

= fixed T and p

Def.:

Let a state |n) correspond to energy FE, and particle number

Ny,

Grand canonical partition function

Z(Tv K, V) - Z €_B(ER_MN7L)

e_B(En_MNn)

= (Sec. 3) —
Z

p(n) =

Entropy: S = —kp Zp(n) Inp(n) =...=

S:kBa—T

(T'In2)

one also gets: | (F) — u(N) = 9 InZ
op
10
N)y=—-—n2Z
N =33,
,_ 10 _ 1o)
R i

A.4.3 The grand canonical potential

Def.:

Grand canonical potential ‘ & =F—uN

d® = —SdT — pdV — Ndpu
View & = O(T,V, u)

with F=E-TS, ®=FE—TS— uN,

0 0
== =55 Z = Thy o (T 2)

= |0 =—kpTh Z|

i = —kpT?—

0

or
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Def.: “extensive” quantities scale as system size: E, N, V., S

“Intensive” quantities size independent — = &l = S = S
ntensi tit : - _— =T T
S qua. S S 8 T 9’ p T L N

F is extensive: F(T,A\V,AN) =XF(T,V,N)
® is extensive: P(T, AV, u) = AXO(T,V, p):
only one extensive independent variable!

= & must be ~V |

0P
We know — =—p = |o=—p(T,n)V
oV T

A lot of this developed by Josiah Willard Gibbs (1839-1903)
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B Classical Gases

gas = particles flying around in a box
classical, but QM is often “there” in the background
we’ll typically use the CE

_Q

one particle: H = 2’; + U(q) = Exin + Epot
m

state = point in phase space {(¢;, p;)}
1 _
Y>> — [ = partition function for one particle Z; = 73 /e_ﬁH(”’q)d?’p d3q

h=6.6-10"%*Js

why h in a classical formula?

B.1 From QM to classical

132

One particle in 1 dim. in QM: Hamilton operator: H = 5 +U(g)
Hn) = E, |n)
T N

Figenstate energy

Recall identity operator: 1 = /dq lg){q|, 1= /dp Ip) (p|

=271 = Y e PP =3 (n|e |n)

n

= >t [ dalaale™™ [ dg'1d) ')
— /dqdq’ {(qle‘ﬁﬁlﬁZ[<Q’|n><nlq>]}

n

=7 = /dq<Q|e‘5HIQ> “=Tre 77

23
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Recall from QM: eAe

B _ €A+B+%[A,B}+...

—pH _ 6{27,L+U(q)}

Classical limit: A — 0!

) N
= 7, = /dq<q|6_B§7n€_BU(q|q> ‘ lq) eigenstates to ¢ = U(

=7 = /dqe‘BU()

= [adpar {010

D{qle

54w )

1
Note: {glp) = (plg)" = ——==e""",  {plp) = d(p = ¥)
1 .
In 3 dims.: |Z; = @l /d?’qd?’pe—ﬁH(pm

B.2 Ideal gas

Def.: gas =
“ideal”
“monatomic”

= Zi(V.T) = !

We'll often use

N particles trapped in box of volume V

= particles do not interact, i.e. U(q) =

-2
= e_ﬁg_m . 6_6

U@ 1+ O(h)

/]\

Qla) =

operator

U(q)lq)

number

= particles have no structure (i.e. no vibration, rotation)

33— 3. _
(Qﬂi)g/dqdpe ‘/dq V

/.

orh)?

2
/dpr dpy dp: e 52’" e 62’” e P

24
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. 2mh?
Def.: thermal de Broglie wavelength |\ =
mkgT

“average de Broglie wavelength at T

v
= Zl = F

ZN VN
N indistinguishable particles: |Z(N,V,T) = ﬁ = VN

exchange two particles — no new state! Hence N!

Recall: F=—kgTInZ =—kgT [NInV —3NInX —In N!]

F NkgT
p= —g—v . =+ l‘c/B = ideal gas law: |pV = NkgT
Comments: e all i have disappeared!

e equations linking p, T, V' are called “equations of state” (EOS)

e T as defined above (g—g) is really a “good” temperature!

Compression Factor - various gases at 273 K

e in the lab: deviations at higher densities ”

35

expected: U # 0

3

25

=
@
£ 2

>
=
15 T

1

0s

]

o 200 400 600
Pressure | Bar

B.2.1 Equipartition of energy

0 0 0 |1 3
. F=——InZ=—-——[-3N1 =3N— |=1 = —NkgT
energy a5n 0ﬁ[ 3BNIn A =3 95 [2 nﬁ} 5 kg
Assume the gas existed in D spatial dimensions
VN D
NkgT
= D degrees of freedom; each contributes B to B
NkgT

equipartition of energy: each degree of freedom contributes to K

breaks down for QM systems at small T’
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2
For one particle: (F) = 2p— = p~VmE ~\/mkpT
m
. h
de Broglie wavelength Agg = — ~ A up to factors of 2 or 7
p

oF 3
heat capacity: Cy = —| = =Nkp
ori, 2

Comment on kg: Why is it so small?
energy of gas E ~ NkgT

E, T have units where numbers are O(1) = Nkp = O(1)

1
# stars in universe ~ 102 < N () = kg~ — ~ 1072
N

Chemist Notation

Def.: Avogadro’s number N, = # atoms in 12 g of Carbon!?
1 mol = N4 atoms

ideal gas law: pV = NkgT = nRT

N
with: n=—, R =Nykp=38 J “Universal gas constant”
Ny K mol
B.2.2 Entropy
Recall entropy for CE: S = kBa%(T In 7)
0 0 2mh? 0 1
—In A= —1 — — InT V2= __—
or " T or "\ mkgr — 0T " o
0
= S =kpln Z+kBT8—T [NInV —3N In A — In N
B VN | 3N o |
= kg ln)\g—N—lnN. —|—l{:BTﬁ Stirling: InN!'~ NInN - N
N 3

26
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1% 5
= |S = Nkgp (ln BN + ) “Sackur-Tetrode equation”

Comments: e S has h; classically we only measure AS = h drops out
e S measures the factor N! in Z
Gibbs noticed this before QM:

Mix “red” and “blue” gas = entropy increases

Mix “red” and “red” gas = entropy does not increase — N!

B.2.3 The ideal gas in the GrCE

view as subvolume inside larger gas SR ST S

Zideat (1, V,T) = Z (eBN”” e_BE”) - Z [eﬁNu Z e—ﬁEm]

n N
Nstates for fixed N

()

:i[ﬁﬂ ZldealNVT i[

N=0 N=0
ePry
—exp< - )
NS N
T T Bop TN

= average volume per particle

~ average de Broglie wavelength of particle
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v
A\~ N = QM effects important
. . sV
classical limit = A\ < N = <0
oF . .
Comments: o /1= N = energy cost of adding particle at constant S, V' !
A%

extra particle =- more ways of distributing energy

= S would increase unless E decreases

= FE decreases = <0

e 11> 0 possible for some special cases

1 2
Fluctuations: AN? = Eaa—lﬂ InZ=N
AN 1

= —— — 0 in thermodynamic limit

N UN

Recall: pV = —® = kT In Z = kBT€B:3V — kgTN  ideal gas law !
B.3 Maxwell distribution
Goal: velocity distribution
1 particle, ideal gas: Z; = ﬁ /e_%d?’q dp U= %
~ G |
= 4(7;7:;)? /Uze_ﬁmf dv

mv2
= probability that atom speed in [v,v + dv]: p(v) = Nv2e 25T

o\ 32
—4
N = dm (27rkBT)

“Maxwell
distribution”
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p(v)
o0 3kgT

2 — 2d = ... = B e
= (v%) /0 p(v) vidv m *

equipartition of energy /(

//»“\\He
0 = 1&00 2;0}‘0;)\»7

Maxwell’s argument: prob. distribution in z dir.: ¢(v,)

rotational symmetry = same in y, 2z dir.

+ distribution cannot depend on direction

= p(v) =p (\/W) =p(v)

= p(v) dv, dv, dv, = ¢(vy) d(vy) ¢(v,) dv, dv, do,

It can be shown that the only solution is ¢(v,) = Ae~Bv
= p(v) dv, dvy dv, = 470? p(v)dv = 4r A%0? e B du

m
2kgT

equipartition of energy = B =

History of kinetic theory

kinetic theory

understanding gas properties through atoms

1783 Bernoulli: pressure = bombardment of atoms v
X
Ap, = 2mu, >
2L
next “hit” after At = — y %
Uy
- L
Ap,  mu? X
F p— pu— x
- N
Nm(v?)  Nm(v?)
11 N F = z —
all atoms 7 Y
F  Nm(v*) Nm{@? | NkgT
= — = p— p— 1
= pressure p T VE % % (gas law)
3
= §m<v2> = 5]€BT

29
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1843: Waterson: rejected paper “Thoughts on Mental Functions”

1857: Clausius: rotating, vibrating modes

1859: Maxwell: distribution, gas viscosity independent of density
— experiment, Cavensdish Lab

Boltzmann Eq.: dynamics in phase space — non-equilibrium

B.4 Diatomic gas

Molecules with 2 atoms ~ 2 masses attached to spring
= 1) Rotation about 2 axes (ignore symmetry axis)
ii) vibration

= Zl = Ztrans Zrot Zvib

i) Rotation

1 /. .
Lagrangian: L., = 5[ (92 +sin? 6 ¢2>

. 8Lrot 2 aLrot 2 7
= conjugate momenta: = — =10, = — = [ sin“ 6
jug Pe=—z P = 5 ¢
= Hamiltonian: H,o = ppl + pp® — Lyot = ﬁ + 5T sin? 0
o D= / Bt dpy dpg df g / R
ol T 2 21
=— in 6 do dp = ——
S ], 00 [ 0= 5
0 0 1
Eow=———Zy=——[-Inf+..]===FkgT
= t 85 n t 85 [ nﬁ ] ﬁ B

30
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= gas with rotation: 7y = Zians Zrot ~ (k:BT)5/2

zN 5
zZ="r = E:§NkBT

- NI

Cy = gNk:B : 34 2 deg. of freedom

ii) vibration

harmonic oscillator with frequency w ¢
2
p
= H,, = ﬁ + Qmuﬂ 2
1 BHvib
= ZVlb % e de dC
]_ Pg mw2C2 1 kBT
= Bam P4y dl = — = 222
omn ) ¢ T C PedC = 350 T e

= FE,p = kT : 2 degrees of freedom! potential + motion

1’4
7
diatomic gas: Cy = iNkB w2l
5/2|
Note: e /. w dropped out
e at lower 7T dof’s frozen out, e.g. Hy : e
TG0 oo
QM effect; visible in hot gas! T/K
B.5 Interacting gas
Consider monatomic gas
: N
ideal gas good for small 7
Virial i PN e emY
irial expansion: ——— = — — —+ ...
P A e TR A T
N /!

virial coefficients

31
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goal: get B;(T) from first principals, i.e. potential U(r) between atoms

1
2 features of U(r): e attractive —: dipols pi, pp = pot. energy w
T
instantaneous dipol p; = electr. field E ~ p_;
-
p1
= induced dipol py ~ E ~ —
,

“van der Waals interaction”

e strong repulsion from Pauli exclusion

12 6
Lennard-Jones potential: U(r) ~ (T—(]) — (T—O) ; 12=106-2 chosen for convenience
T r
U
o0 r<To

hard-core potential: U(r) =

oY

hard-core easier! Take that...

—

B.5.1 Mayer f function and B,

Notation: 7 = particle position (instead of q)

H= sz ‘I‘ZUTU TUE|FZ_F]|

count pairs once!

1 3 3
= Z(N.V.T) = 2WhM/]"[alpzaln

1 1 B 2/(2m B, U(r;
= N1 @rhyN [/ [[dpieEarie )] | [/ [] rie?Sies vt

1
- d3r,€—52j<k U(Tjk)
)\3NN!/H '

-

hard!
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S — . T 52
I try: Taylor: e ?Sia V00 — 1= 33" Uy + o) > Ulrn)Ulrim) £ ..

j<k j<k,l<m, >]

problem: for r;; — 0: U(r;;) = oo  not good expansion parameter

27d try:  Mayer f function: flr) = e BUM) _ 1

r—oo = f(r)—=0, r—0 = f(r)—-1

Def.: fi; = f(ri;) = e P2Vl = H(l + fir)

i<k
1

= Z(N,V.T) :W/Hdsﬁ (1+ijk+ > fjkflm‘l‘...)
’ i >k >k, I>m, I>]

1 term: 1 — VY, ideal gas

21d torm:  sum of terms like
I, = /Hdsﬁ fi2 = VN_z/dsrl d’r f(ri2) = v /d37’ f(r)

— —

where F:Tl— 2, §:§(F1+F2)
we were a bit sloppy with limits of integration
but this only matters near the boundary of the system

because f(r) has contributions only for 7 & atomic distances

1 N?
We have §N(N —1) = 5 terms of type Iio

VN N? 3 N
:>Z(N,V,T):W 1+W d’r f(r)+... (1+¢€)" ~ 1+ Ne

N
N Zideal [1 + % /d37’ f(’f’):|

2V

—>J§zr (T)

N
= F = _kBT InZ = Edeal - —]\'/ka,—rh’l |i1 + —/d37’f(7’):|

J

33
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What do we mean with low density?
For Lennard-Jones or hard-core potential one can show: / fr)d*r ~ 7

where 1o ~ location of min. of potential

~ atom size

The expansion is valid if higher-order terms are small

o N <1l = N < !
o 22
Vo Voo
N 1
For liquids: atoms packed = — ~ —
Vo r

= expansion good for gases at densities much below liquid state

B.5.2 Van der Waals equation of state

With In(1+z) =z in F ﬁp——g—‘ﬁ;:... NkBT( /f )dPr + .. )
v _ BU() _
> =ty [T =0 -

Cases:
1) repulsion: U(r) >0 V, and U(r - o00)=0 = f(r)<0 = p> pideal

2) attraction: U(r) <0 = ...= p < Dideal

T0o )
3) hard-core: /f(r)d% :/ 1d3r +/ Br |:€+BU0(7*0/7*)6 B 1}
0

T0

6
high T limit: AU, <1 = P00/ ~1 4 60, (TTO)

ro 47U,
3, 2 0 0
:>/f(7’)d7’~—47r/0 rodr + T /O T4d7’

B 47rrg Uy 9
3 \ kT
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1% N2 N\' N2 1%
== kBT_N<p+Wa> <1+Vb> ~<p+ﬁa> <N_b)

“van der Waals EOS”: valid at low g, high T

N NkgT N?
— — Q—
P=yv N Y2
Comments: e a depends on U, = attractive large r effects — smaller p

e b only function of ry — hard-core repulsion — reduces V

4
e one atom blocks volume gwrg’

2
but b= gm’g’ Why?

1% atom has space V/,

27 atom has space V —Q, Q=2b

etc. R

! NZQ
whole configuration space: H (V—mQ) ~ V¥ (1 ———+.. ) Q<V
ot 2V
o\ N
~ (V - N§> = (V. — Nb)V

e Our method can only handle potentials

1
U(r) ~ — with n > 3. Otherwise divergent integral of f(r)
7177/

e 27 virial term of van der Waals EOS:  By(T) = — (kLT - b)
B

e Higher-order virial coefficients: e.g. cluster expansion,
cf. Sec. 2.5.3 in David Tong’s notes [2]

e More on van der Waals in Sec. E (Phase transitions)
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C Quantum Gases

gases where QM effects are important; includes light, phonons,. ..

C.1 Density of states

often convenient to Z — / ...dFE ; requires density of states

ideal QM gas: no interaction

model particles as plane waves ¢ = ——¢

impose periodic boundary conditions

(the physics can be shown not to depend on the BCs)

:>ki:27;ni, n; €7 -
AN E;= 7»—;2:12 - ;L:Z’Lz (2 +n+nd), k=Ik, p= _mai
one particle: Z; = Z e PEw
recall A = 2mh” = exponent Li _ 5712]52 N 2772
mhkpT kgT 2m L2

for macroscopic box: A < L = many n with Ez < kgT

B 47TV / 20

2mE m
;»Z 5 / : [ g(E)dE
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Comments: e g(E)dE = # of states in energy interval [E, F + dFE)

e looks classical, but useful for many QM systems!

C.1.1 Relativistic systems

27.2
all that changes is E = Vh2k?c? + m2c¢*  instead of
m
h2kc?
= dFE = dk
E

. dek_EdE E? —m?2ct

h2c? he
VE
== |9(B) = gpm g VE? —mt
V E?
for massless particles: g(F) = Im2h3c3

C.2 Photons: Blackbody Radiation
light = gas of photons
color of light at T"= color of any object at T (equilibrium!)
if we ignore the atomic makeup (absorption lines, emission lines),

— “blackbody radiation” because at T'= 0 such a body is black

2
Photons: wavelength X\, frequency w = T e

A
energy E=hw; m=0

2 polarization states (transverse) = g¢(F) picks up extra factor of 2

VE® Vi?
= 9(B)dE = —osdB = — 5 du
=)

g(w) = # states for a single photon with frequency € [w, w + dw)

37
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Note: photons are not conserved! Unlike atoms
— one could work in GrCE with g = 0. In this case ® = F
and our above relations of E, F, ® to Z or Z become the same.

We'll stick with CE notation.

partition function for photons in fixed state n with w,:

Z, = 14 e Phon g o=2hen 1 — “summing over all N”

B 1
1 — e Bhen

take all frequencies = the Z multiply = the InZ add up

[e.e]

= InZ= / g(w) In Z,dw = ——— w? In (1 — e ) dw
0

C.2.1 Planck distribution

0 Vh [* W *°
energy: E = —% InZ = %A de = A E(w)dw

Vh w3
= F(w)= 3 e ] photon energy density in frequency space

10 Fultraviolet | visible | infrared

Comments: e as T decreases:

Wmax decreases, Apay increases

_ kT
.wmax_c n

Intensity / (arb. units)

where 3—( =3¢ = (~2822

“Wien’s displacement law”

Wavelength A {(um) -

— color of object at T
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1% knT 4 00 3
total energy: FE = (ksT) / * dx r = [fhw
w2c3 R o €*

E: kY
V. 15h3¢3

2]{74
"5 _567%x10°%

—oT*: =
e m2sK

energy flux from object = luminosity: |L =

“Stefan-Boltzmann law”  (cf. Reif [1] for details)
Comments: e factor ¢ because it is flux

1
e 2 factors of 5" a) flux goes only away from object, not into it

b) angular factor in integral p

VkgT

w23

Vh o0 3 ,—Bhw
_ / w-e do
0

pressure: = —kgT InZ = / w? In (1 — e‘ﬁﬁ’“’) dw int. by parts
0

- 3m2c3 1 — e B

Vh 1 R V2
S = ————(kpT)*
3m2c3 647714/0 er — 1 45h3c3( sT)

_oF
oV

- 1E 4o,
b= . 3V 3¢

1 . .
Note: photon pressure = 3 photon energy; important in cosmology!

aF
We al t: = ——
e also ge S

1
_ 6VO'T3 | Cv

v 3¢

_QE| 16Ve

T3
or'|,, c
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C.2.2 Cosmic Microwave Background (CMB)

CMB — afterglow aftel" blg bang Cosmic Microwave Background Spectrum from COBE

400 T T T T T T

T T T
COBE Data +—+—
Black Body Spectrum

measured by COBE, WMAP, PLANCK 0

300
250

CMB =~ 2.725 K blackbody radiation (within 107°)

200

Intensity [MJy/sr]

photons have travelled for ~ 13.7 billion years

150

the disagreement — exciting physics 100

50

2 4 6 8 10 12 14 16 18 20 22

Frequency [1/cm]

C.2.3 The birth of QM

Consider the classical limit of Planck’s formula:
Vh w? - Vh w*  Vw?kpT
m2c3 ePlw — 1 7w2¢3 Bhw m2c3
= Frjy(w)
“Rayleigh-Jeans”

E(w) = r<Ll=e"~1+2

Problem: / Erj(w)dw diverges: “ultraviolet catastrophe”
0

QM: for hw > kgT, the temperature cannot excite even one photon.
states “frozen out”

Planck used E = hw and Boltzmann statistics = first hint of QM

40



C QUANTUM GASES

C.3 Phonons

vibrations of crystal = sound waves

QM: electromagnetic waves +> photons

QM: sound waves > phonons

phonon energy: F = hw = hkc, (speed of sound)

differences from photons: e ¢, instead of ¢
e 3 polarization states; also longitudinal

e upper frequency limit:

2me,

A:

< L = no shaking possible
w

= w <wp “Debye frequency”

N\ /3
We expect wp ~ (V) ¢s , but what is the prop. constant?

Debye: total number of atoms: N ; each atom has 3 directions of movement

= 3N ways of moving

set 3N = / w)dw which is the number of states available for one phonon
“r 3 Vw Vws 6m2N\ /?
= 3N = D = = :
/ 2 7r2c3 27?205’ “p ( V ) ¢
hw D . .
Def.: Debye temperature Tp = T temperature at which highest-frequency
B

states become excited

Tp ~ 100 K for lead, 2000 K for diamond, = 200...400 K for many materials

41



C QUANTUM GASES 42

phonons are not conserved — same game as for photons:

1 wD
Zw = T 5 InZ onon — g 1 Zw d,
1 — B H4pn /0 g(w) InZ, dw

Y g(w) _ 3VR [P WP B
3V (kgT)* /TD/T x
=F=—" d
212(hes)? J, er 1"
no analytic solution
e’} 3 4
Limits: 1) T < Tp = upper int. limit ~ oco: / S
g €er—1 15
OE 212V ki 1274 (T \°
=Cyp=—1| = BT = Nkp—— | —
Vo), 5(hey)? P75 (TD>

2) T >Tp = Taylor expand integrand

TD/T x3 TD/T 1 TD 3
= dr ~ 24 Vde== (=
/0 er—lm /0 (x°+...)dx 3<T) +

VELTS,
2m2h3¢3

= FE~T A CV:

=3Nkp (with N above)

Comments: e The high 7" behaviour known since early 1800s:
Pb

“Dulong-Petit law” 21 Al

C /R

e Debye’s wp reproduces the “3N” 11

e Debye’s new contribution was limit 1)

0 50 100 150 200 250 3500

Temperature/
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C.4 The diatomic gas revisited

Recall Figure for Cy: rotation, vibration frozen out at low 7' & ' '

1) Rotation

_n N v ‘ ‘
21 2I sin* 0 T/K
h2
QM = E levels: Ezﬁj(j—l—l); j=0,1,2,...
degeneracy 2j + 1 (L, quantum numbers)

[e.e]

= iy = Y _(2) + 1) MIGTV/RD
j=0
h? [h?
T = — <1
DT> 50 ST
I /oo(% +1)ePRatatn/@D gy — 20 Zo
ro 0 5712 classic
2
b) T = Za~1
) < 21kp '

T insufficient to excite even the 1% state above ground level.

Also explains why monatomic gas has no rot. degree of freedom:

2

STh = “frozen out for almost all 7"

I tiny T <<

2) Vibration

1
harmonic oscillator: E,, = hw (n + 5)

Bhw(n+1) Bhiws/2 Bh e s 1
) . — = o — —phnw __ J—
= Zmb—Ze ) =e¢ Ze _1—6_5ﬁ“_251nh%

n n
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hw 1
a) T > — = Zvib N o chass

kg Bhw
b) T« T =  Zgp~ e @2 = contribution from zero-point energy
B
0 hw o
= energy offset FE.;, = —% InZy, = o5 but no contribution to CYy,
C.5 Bosons

QM: 2 types of particles: 1) bosons: integer spin: (7, ) = (i, )

2) fermions: %—integer spin: (7, Ts) = —(7, T1)
p, n, e fermions = odd # of p,n — fermions, e.g. He?

even # of p,n — bosons, e.g. He?

2mh?
kaT

thermal de Broglie A =

v /3
T small = X large; eventually ~ particle separation (N)

= QM important

Here: only monatomic gases, non-interacting

C.5.1 Bose-Einstein (BE) distribution

Notation: state: |r), # of particles in state |r): n,

particles indistinguishable

= system described by n; = # of particles in state |1), ng, ns, ...

CE: Z= Z e A2 Br - sum over all states {n,} with an = N ; Tricky!
{nr} r
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GrCE: chem. potential u, N can fluctuate

any state can be occupied by any # of particles

1
_ _Bnr'(Er'_M) _
=2, =) e T 1 BE-w

“Z # particles in state” = * Z states of particles”

states particles

converges only if E, —pu>0. Wefix EFy=0 = BE gasneeds pu < 0.

1
= |2=]] 1_ o8&

10 1 !
= N=gau 2= gamoy = 2 | = ey

T

BE distribution
TD limit = n, =~ (n,)

cf. photons, phonons which are bosons!
Def.: “fugacity” ( = e

BEgas: pu<0 = 0<(<1

Ideal BE gas

h2k?
1 particle: E = 5

m

Vo /2m\ 32
Recall: # of states in [E, E 4 de) for one particle: ¢(E)dE = = <h—?) VEdE

—~ N= an _/ ) (n,) dE = /ch N(u,T)

Comment: in practice N often fixed, e.g. # of He? ; GrCE chosen for convenience!

= we often need to invert N = N(u,T) to pu=pu(T,N);
cf. ideal gas in GrCE

Energy Etot / CTdE

45
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i)
ressure. = ——

p P=-v

pV =<

1 1 _8E,
3 InZ = ~3 zr:ln [1—(’6 BE’}

=

-] (E)ln[1—ge PPl dE
A SN —

int. by parts, g(E)~ E'/?

2
= pV = / C_ eﬁE dE = gEtOt

E
Problem: we still need integrals / %dﬂ / - eﬁE

C.5.2 QM gas at high T

Let us first consider the limit ¢ = e’* <« 1

N _l/ 9(E) o i E'?
V V) (lefE—1 47‘(‘2 ¢ (—1efE _ 1

1 /92 3/2 BE
. <_7’§) < e \/’E . Y on
47 0 1—Ce P
1 [2m\*? o0
) <—T§> ﬁg/g re " (14¢e ™ +...)da ‘ solve integral with = = u?
N _ ¢ ¢
o> === (14 —=+...
Ty TN ( W ) (%)

What does ¢ < 1 mean?

AN
Evidently 7 <1 = A< particle distance = high 7T expansion

Note: appears surprising: 7'— 00 = [ —0, so (= e’ should go to 1?

N
No! Change T at constant N = p changes: v = const %%

= (~T3? p— -0
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High T EOS of BE gas

E3/2
() [ [ o o

1 T 3/2 — -
=13 (h2) e i xe (I—I—Ce —l—...)dw

e (e ) (%)

Eliminate ¢ in () and (*x%) for ( < 1:

(%) :>§%)\3—N<1—L)\3—N+...)

:>E—§ﬂ<1_i)\3_]v+ )<1+L)\3_N_|_ )
Vo 28V 202 V.o 42 Vo

= 27 virial term; not from interactions but QM statitstics

BE statistics reduce pressure in the high 7' limit

C.5.3 Bose Einstein condensation

Def.: Gamma function: I'(n) = / u"tedu; T (g) = g
0
Def.: polylogarithms: gn(2) = — / o
polyloga st gn(2) = T )y e =1 x
1 za" e 1 -
" — dr = n—1_-—x me—mz | 4
= gn(2) F(n)/l—zew x F(n)z/[x e mZ:Oz e ] x
- i zm/x"_le_mxdx _ i - /u"‘le_“du U = mx
I'(n) =~ [(n) &= m"
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= gn(2 W monotonically increasing with z

. =1
Def.: Zeta function ((s) = -

ns
n=1
2 ~ (3
= 1) =Cn) ;g =C (5) ~ 2,612
N 1

Recall: V = m (hzﬁ) C lem — :1; — ﬁg3/2(<') (

N . . .
For fixed 7 decrease T = X increases = g3/o(¢) must increase = ( increases

Def.: T. = temperature where (%) gives ¢ = I:

o (2 LNVE e mY e
“\kem ) \gso V) N kpom ~ |PPUN

Note: We shall see that (%) is not correct, so we do not have (=1 at T =T, !

Problem: (¢ must be < 1. What happens at T <T.?
According to (*): A increases = N decreases,
but particles don’t disappear through cooling!

What’s wrong?

V. [(2m 3/2
Answer: we used g zﬁ<—) /\/ dFE
T
k

The ground state E =0 doesn’t contribute to [ but should be in )

= The “missing” particles are in the ground state:

B 1 B 1 S
<n0>_eB(Eo—u)—1 C(¢l—1 1-¢

1

For most ¢ € (0,1), (ng) is small, but for ( ~1— N (ng) =~ N

v
= we must correct (*): N = ﬁgg/Q(C) + %

48
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T<T, = (¢ closetol

Vv
= N~ ﬁgza/z(l) + (o)

noi Vv . )\c 37 T 3/2

= at T < T, a macroscopic number of particles is in the ground state

“BE condensation”

First experimental BE cond. in 1995: ‘ .

Rb, Na, Li, N ~10*...107 atoms, 7.~ 107" K
— 2001 Nobel Prize

Peak: Ground state in momentum space

 kgTV
EOS: RmdlpV—-<&m t/C eﬁa_l = 5 95/2(0)

Comment: The ground-state contribution can be shown to be negligible
kgT
T<T, = (=1 = p:%gg)/g(l)

: . .. N
Note: p~T°? and p independent of particle density v

C.5.4 Heat capacity: A first look at phase transitions
Let us consider Cy near T,

Etot 3 3 kBT

Recall: v 5P =57\ ——052(Q) ~T

CV 1 5?Etot 15 kB 3 k}BT dg5/2 dC

Vv ar ~ an®rOTs ac ar
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Case 1: T'< T,

d 15 VEk
(~1 = d—;z() and C'V%Z)\—?,Bgsﬂ(l)

Case 2: T 2 T.

- d dgn _ 1

d95/2
dg

d95/2
dg

=(lg32(C) s as T — T — g32(1)

d(
till —
We still need YA
NN
For T >T., () is still valid: Vv = g3/2(¢)

(sayc:1—10—6 o o100 = (A1 A %z())

d93/2 /2

1
i ¢ <F1/2/ ler — 1

1 —1/2
= - d finit
‘T 1/2 / < 1+a: T —+ finite

dr  diverges for ( — 1

ef~1+x

172
<1/2>/0 iogealet

2 Lo
_,/—1_gr(1/2)/0 2™t

= Series expansion:  gz/2(¢) = g3/2(1) + AV/1—(C+...
N3

= v = g3/2(¢) = g3/2(1) + Ay/1 =
1 N2
= Czl_ﬁ {93/2(1)—7}

orh2[ 1 N1*3 TNY? NN 1
Recall: T, = —— — = —c 20
kpm {93/2(1) V} <T) Vo ogsp(l

~—

50
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[g3/2(1)]?

= (~1-— yE

2
T-T.\"
zl—B( 7 ) ‘T:Tc(l—l—e)

15 kgV ~d( =
So for T 2 T.: CV:ZTg5/2(C)+bﬁ ;b finite >0
15 kgV T —T. .
Comments: e The first term smoothly goes over to the result of Case 1) for T < T,

e The second term goes to zero as T" — T, but with finite slope

= (v has discontinuous deriv.

T\ 32
e Recall: <n0>:ﬁ, for T <1T, : %:1_<i)
= (= 1+1 o 1+1 ! _lf T <T,
“UTw) U ND-@mAS ‘
a1
D= for T<T,
ar "N st c

dg
whereas 9T =0(1) for T >T.

= true discontinuity and phase transition

High T limit

N\
only in TD limit

o1
-

Superfluid Helium-4

24
22
He*: bosons -
8’::: Scale X1,000,000
superfluid transition at t =2.17 K £l
;é:z_ Scale x1000
“\ transition” §a—
. . . . . 4
superfluidity results from interaction of particles et
)

161 -5 0 51015 4 2 0D 2 4 8 20 10 @ 10 20 30
T-T, dagress T-T, T-T, mi

not the same, but related to non-interacting BE cond.
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C.6 Fermions

non-interacting fermions: e~, in metals, He®, white dwarfs, neutron stars, ...

fermions: (integer—l—%) spin, (7, 7Ty) = —(7, 7)) = Pauli exclusion

GrCE: Z, = Z e~ PEr=1) — 1 4 o= AE—1) . gtate occupied or not
n=0,1

Z:HZT

10 1
= N:<N>:B@1n222765(&_“)+1 => (n)

T

1

= <n7’> = eﬁ(ET_ﬂ) _'_1

“Fermi-dirac” (FD) disttibution

it can be positive or negative; unlike BE!

C.6.1 Ideal Fermi gas
h2k?

E = ,
2m

one particle

degeneracy for spin s: g, =2s+1; eg. e : g;=2

Vo om\ 2
= g(B) =2 (m) E'V?

T4 \ R

B 9(E) _ Eg(E)

N—/de, Etot —/C__leBE_'_ldE,
1 1 . 2 ,

pV =—-& = B InZ = 3 g(E) In (1 + Ce ) dE = gEtot int by parts
high T = See.52 = NEkpT (1+ NN, )

1 ec. 2 v = —_—+...

g p B 29,V

———
=By(T)

virial coeff. By(T') > 0 : QM statistics — increase p
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C.6.2 Degenerate Fermi gas and the Fermi surface

1 1  for E<
_){ or v < i

T —0 = FD distr. simple: ————+——
P efE—1) + 1 0 for B> p

= FEach Fermion falls to the lowest available state

Def.: Fermi energy Er = pu(T =0) at fixed N

= energy limit of occupied states at T'=0

E
Def.: Fermi temperature Tr = k:_F
B

~10* K for e~ inmetal; ~ 107 K in white dwarfs

Momentum space: hkp = \/2mFEr kz
All states with |k| < kp filled Ky
Fermis “sea” or “sphere* with “surface” |k| = kp [ - K
] X

What is Ep(N)?

oo /2
Q(E) /EF gsV [ 2m ’ 3/2
T -0 = N-= —2 - dF = EYdE = — E
! /0 Cler 1= ), S =Ga (G )

B2 [6x2 N\*/*
= Fp=— —
" 2m(gs V)

EF 3
= E=(E) :/ Eg(E)dE = -NEr
0

2
= pV = gN Er  “degeneracy pressure” # (0 even at T =0

important for compact stars
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C.6.3 Fermi gas at low T
9(E)

. 2/3
' B gV [(2m 1/2
Recall: N —/0 m E, FEiw= / - eﬁE—O—l dE, g(F) = A2 (ﬁ) EY

Rigorous treatment for small 7" tricky because n(E) discontinuous at 7' =0

Non-rigorous discussion: 1) At small T : n(E)

the FD distr. only changes near Ep

=0
T=0

dp
2) Wi —
) We assume o

) dN e dp B
Claim: d—T—O at T'=0 1fd—T—O at 1T'=0.

N d [ g(E) I AN !

dT
® 9 1
~ g(EF)/O oT (eﬁ(E‘“) + 1) dE

1) £(FD) ~ 0 2) no inner deriv. of y ;

except F ~ Ef w=FEp

dE ~ 0 O

N T (E-Er 1
= NQ(EF)/O < kpT? )J 4 cosh? [6(E - Er)/2]

vV Vv
odd in E—FEp even in F—FEp

oE
o' |y v

Heat capacity: Cy =

°<> 9 1
:/0 Eg(E) o {765@_#)“} dE

3
Taylor: Eg(E)~ E*? = Eg(FE)~ Epg(Ep)+

9(Er) (E — EF)

DO |

= Cy= /OOO {EF 9(Er) + gg(EF) (E - Er) } 8% [m}

even

odd odd in (E — Ep)
cf. above
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[e’] 1’2

= ... = vagg(EF)T/ ——dx

=/3(E—-F
oo 4 cosh? % =B )

Here we extended the integral from / ...dzx to / ...dx because

BER 00

contributions far from F = Ep are negligible!

= Cy ~T g(Ep)

Interpretation: at low T only particles within AFE ~ kgT of Ep take part in the physics
Each of these picks up an energy ~ kgT
There are ~ g(Er)kgT such particles = E = const + g(Er) (kgT)?
= Cv ~ g(Er)T
Recall: N ~ E¥? ~ Epg(Ep) ~ Ty g(Er)

T
= (Cy ~ Nkgp—
1% BTF

Comment: More rigorous treatment: Sommerfeld expansion; cf. Sec. 3.6.4 in D. Tong [2]

2
. . T
Lengthier calculation = Cy = Nkg— —
2 Tp
Heat capacity of metals
Recall:  phonon contribution at low T : Cy ~ T3 up - Tffgﬂu 1070
TP = 0167 miCmol’ &
now: FD gas = e~ contribution: Cy ~ T Pl e R
B
= Cy = yT+aT? %
o 4}
' ‘ 2 Tg 0 20 40 T2 (K:S)O 80 100
One can show that the 2 contributions are =~ equal for 7% ~ 0T
F

3

T
Typically: Tp ~10°K, Tpr~10"'K = D_—0(1)K
50 Tr

Note: Surprising that e~ are well described by ideal FD gas.

Coulomb interaction? Explained by Landau’s Fermi-liquid theory ...
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C.6.4 White Dwarfs and the Chandrasekhar limit

When stars exhaust their fuel (H, He, ...): T — 0, degeneracy pressure; “White Dwarfs”

: o 3 GM? )
constant density approximation = Fgp.y = 5 TR ;G = Newton’s constant
minimize Fgay + Bin = ... = R~ M™% (example sheet)

Note: WDs shrink when mass is added!

n (62 N\*
= FEr= o ( 0 V) increases

= gas becomes relativistic

ultrarelativistic regime with ¢, = 2:

1% m2ct
E)=——(E*— E
9(E) 7r2h3c3< 2 i ) ' >m

Er V 1 2.4
= Ekinz/ Eg(E)dE:—<—E4—EE%+...)
0

w233 \4° " 4
Er V 1 m2c4
N = EYdE=——— -E3-—F
/0 9(E) m2h3e3 (3 E 2 i )

4
White Dwarf mass, volume: M = Nm,, V = §7TR3’ m, = proton mass,

eliminate Er in FEy,, N to leading order

3he (9 MNP 3
= ... = Egrav+Ekin— [T(Zlmg) —SGM

1
= +O(R)

1
Case 1: leading = term > (

dEtot
dR

= star settles into new equilibrium

1
= 0 has a solution: = term balances R term

1
Case 2: leading In term r < 0 = no equilibrium = neutron star or black hole

he\Y? 1
This happens if M > M, ~ (—) — ~ 1.5 Mg
G m2
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C.6.5 Pauli paramagnetism (not lectured)
Consider e~ gas in magnetic field B
= 2 effects: 1) Coupling of spin to B

2) Lorentz force @ x B

Here 1)
e~ has “spin up”, s = 41, or “spin down”, s = —1
|€‘h « 7
= Egpin = —ppsB; pup=_-—— “Bohr magneton
mc
!
Def.: f,(¢) = / T 1 1 = —go(—C¢)  cf. Sec. C.5.3

The two spin states now have different energies

Ny L (2m)\*? Elil/n2 1 +BupB
= 7 - H <ﬁ) /0 eB(Exin—npB—p) +1 dExin = ng’/?(ce )
N L (2m\** e By 1 ~BupB
7 - R <F) /0 eB(BxintuaB—p) 4 1 dEyin = Ffi)’/?(ce )
or
Def.: Magnetization M = B
onee” : FEgiw=suphB
MBV

= M=pup(Ny—N) = [fay2 (C™PE) — foyo (Ce™?27)]

High 7' limit: One shows (as for bosons in Sec. C.5.2): ( — 0

C /oo 1 B
= FlO= / ¢~ 16””—1—1 F(n) o € dw=¢
—_—
—(n)
2ugV ¢ .
M=~ M%C sinh (SupB)

2V
likewise: N = Ny + N, =~ )\—3( cosh (BugpB)

= M = pugN tanh (BupB) = classical result!

o7



C QUANTUM GASES 58

0
Def.: magnetic susceptibility x = ﬂ
OB
For small B: tanh(SugB)~ BupB
N 2
= x(B=0)= k—'u; “Curie’s law”
B
1 n
Low T limit: One can show for Su > 1:  f,.(() = %
vV /2m\*?
= M=pup(Ny — Ny) = /Jéi_g (ﬁ) [(Ep + pp B)*? = (Ep — up B)*?|

2 3/2
pupV [ 2m 1/2

gV [ 2m 3/2
density of states: g(E) = 45 5 (ﬁ) VE; g,=2
T

oM
= X = a—B = ,UQBQ(EF) ~ const

Interpretation: The e~ deep below the Fermi surface cannot flip their spin because those
states are already occupied. Only e~ at the Fermi surface can flip the state.
These e~ have density of states ¢g(Fp).

4

Note: x > 0. Such materials are “paramagnetic”

2 !

Effect 2) [Lorentz force] = ... = M = —M?BQ(EF)B <0; “diamagnetism”; cf. [2].
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D Classical Thermodynamics

Macroscopic description of systems without regard to microscopic constituents

widely applicable: Black Holes, biological systems, engineering,. . .

D.1 Temperature and the 0™ law

Def.: “insulated system”: no influence from outside, enclosed in adiabatic walls
“diathermal system”: enclosed in non-moving walls, heat flow possible
“equilibrium”: no change in time

defining quantities: for now: pressure p, volume V'

(sometimes more, e.g. magnetic field, magnetization, ... )

0" law: If two systems A, B are in equilibrium with a third system C
= A, B are in equilibrium with each other. “transitivity”
Suppose A is in state (p1,V;) and C'in (ps, V3)
A, C in equilibrium = given py, Vi, p3 fixes V3 = fac(p1, V1 ;p3)
B, C in equilibrium = V3 = fgc(ps, Va; p3)
= fac(p1,Viips) = fec(p2, Vaips)
Fix p3 at some value and define O 4(p1, Vi) = fac(p1, Vi;ps)
Op(p1, V1) = fec(p2; Va2 ps)

0 law: A, B are in equilibrium < ©4(p1, V1) = Op(p2, Va)

Def.: Temperature T'=0(p,V) “Equation of State”
We could choose temperature = /O(p, V') or so, but 3 canonical choice:

Carnot cycle; cf. below

pV
Nkg

Reference choice for now: ideal gas T =
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D.2 The 1% law

15" law: The amount of work required to change an otherwise isolated system
from state 1 to state 2 is independent of how the work is done.

= There exists a function E(p,V) , energy, and AE =W

Heat: If the system is not otherwise isolated, AF # W
A change resulting exclusively from 7' differences is called heat @

= AE=Q+W

Note: We cannot write E = Q + W ; neither @), W are functions of state.

dE = aa—idp + g—gdv is a total derivative.

not possible for @, W
we write dF =dQ +dW
E.g. specific way to do work: “squeeze” = dW = —pdV

meaning of d: There exists no function W(p,V) such that “dW = —pdV”

Def.: Quasistatic process: a process of E transfer where the system is always

effectively in equilibrium; view as “slow” change

vary system quasistatically from A to B p
= /dE:E(p%‘/Q)_E(pla‘/l) )

but W = — [pdV depends on path
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D.3 The 2™ law

Reversible processes

Def.: Reversible process = quasi-static process that can be run backwards: “no friction”

For a roundtrip: % dE =0 p
But in general: fpdv #0

1% law = %d‘@z%pdv R+

It would be great to run this circle such that heat is transformed into work...

2" law: Kelvin: No process is possible whose sole effect is to extract heat from
a hot reservoir and convert it entirely into work.
Clausius: No process is possible whose sole effect is the transfer of heat
from a colder to a hotter body.

Keywords: “sole effect”! E.g. fridge uses work to cool a colder system.

Comment: Kelvin < Clausius !

hot

Imagine a machine in violation of Kelvin’s form.

Q Qn

W
not Kelvin—=—fridge]
Q

Use that to drive a fridge.

The compound machine violates Clausius form.

One similarly finds “Kelvin” = “Clausius”
cold
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D.3.1 The Carnot cycle

Recall:  for a reversible cycle: f dQ) = — 7{ aw

Can we use this to contradict Kelvin?

62

No! It must do something else: deposit heat into a cold reservoir

Consider Carnot cycle

A) isothermal expansion

B) adiabatic expansion B
C) isothermal contraction LT
I

D) adiabatic contraction

net heat absorbed: Qp — Qc =W done by the system

Def.: efficiency 1751:1_@

H Qu
Kelvin forbids n=1 & Q¢ =0

Ty = const, @y into system

Q@ =0, T, p decrease

Te = const < Tj,, Q¢ out of system

Q =0, T, pincrease

Carnot’s theorem: Of all engines operating between a hot reservoir H and

a cold one C', a reversible one is the most efficient.

= all reversible engines have the same n = n(Ty,T¢)
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Proof: Consider an irreversible engine “Ivor” and hot
use it to drive a reversed Carnot < W 9
Ivor Carnot
= Q) — Qpu extracted from H, , reversed
e Q@
Qv — Qc = Qy — Qg deposited to C oid

Clausius = Q' > Qu

:>771vor:1—Q_/C:Q/H_Q/c:QH—QC<QH_QC

> = TCarnot
Qy Q' Q' Qu

Suppose [vor were reversible. Then likewise we’'d show Mryor > Ncarnot
= A reversible Ivor has the same 7 as Carnot. The only variables are Ty, T

= n=n0Tu,Tc)

D.3.2 Thermodynamic temperature scale and ideal gas

0" Law = 3 a function O(p,V) whose equality implies thermal equilibrium

What shall we choose? ©, VO, ...?

Consider 2 Carnot engines A, B

3 h>T
= Q2= Q1 [1 —n(Th, T3)] 1
LA W
AN Qs =Qx[1—n(13T5)] = Qi [1 —n(Th, )] [11 — (T, T3)] Q
2
Now regard AB = A+ B as a compount Carnot engine Q B> T3
2
= Qs = Qi [1 (T3, Ty)] B [-wsy
= 1= (T ) = [L— (T3, 1)) [L— (1o, ) &
Ty cancels on rths. = 1—n(T1,T3) = ?E;ﬁ;

T:
Def.: Thermodynamic temperature: Choose T such that n =1 — Tz
1
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Carnot cycle for ideal gas

ideal gas: T = k];—VT

3
energy F = iNkBT

Note: Without statistical physics (19" century) these are empirical

A — B: isothermal expansion: dI'=0 = dE=0 = dQ = —dW

B B B BN T
= QH:/(ZQ:/ —dW:/ pdV:/ i l’fdvakngHmE
A A A A

Vv Va
B — C': adiabatic expansion: dQQ =0 = dE = —pdV = gNdeT
NkgT 3 av - 3dT
= NkgT — = —NkgdT —-—— ==
= —anzglnTchonst = p~ VTS p

= TV?? = const

o vi®
= TaVyP=ToV)? = T_ffzvg/?)
c

V Ve
C — D : isothermal compression: Q¢ = —NkgT In VD = NkgTc In V—C
c D

Note: Qc > 0; heat given away by engine

To  vi® vl

D — A: adiabatic compression: T Vg/g =Ty Vj/g = 57 73
Ty VD/ VC/

QC’ TC lIl(Vc/VD) TC
Balance: -]1--—=1-——=1—-—
" H TH hl(VB/VA) TH

= Thermodynamic 7" = ideal gas T
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D.3.3 Entropy

Notation: Count () as heat absorbed by the system

@ <0 = system releases heat
Set Ty =Ty, Th=Tc = Q1=Qu, Q2=—-CQc

Qc T 2. Q,
Carnot cycle = << — % — for any Carnot cycle =0

Subdivide Carnot cycle: P

Normal cycle ABC'D: = % + @ =0

T Tc

Mini cycle EBGF: = Qar | Qos _
Tre¢  Th

Bizarre cycle AEFGCD: = Qap = Qar + Qrn

QFG = _QGF
= QAE + QFG + QC’D o QAB - QEB QGF + QC’D

TH TFG TC TH TF G TC

We can approximate any reversible cycle through such subdivisions!

aq
?_
Bd B

= for any two states A, B: / TQ is pathindependent,
A

= for any reversible cycle j{ 0

as long as the process is reversible

Def.: Fix some reference state O

For any state A with p, V' we define the entropy

AdQ : :
S(p,V) = T asgiven by a reversible path
o
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Comment: dS = 0? = 18 law dE =TdS —pdV

= This entropy is the same as that defined in Sec. A

Irreversibility
moo1-Qcp 1 Q¢ @u-Qc Qu-Qc
Qu ~ Qu Qy ~—  Qm

Consider a reversible and an irreversible machine doing the same work:

1 1
W=Qy—Qu=Qu—Qc = QIIJSE
Qu Q¢ Qw Qo .., LNy 1 1
= TH_T—c_ﬁ Tc+(QH QH)(TH Tc)_w<TH TC)SO
Q| @

d
Subdivision of Carnot cycle = % 19 < 0] for any path ;  “Clausius inequality”

Consider two states A, B, path I irrev., path II rev. P
| B
-5 [ =
Tk
d@ A I
= /— < S(B)—S(A); — < dS forirrev. process

Suppose, path I is adiabatic = d@Q =0 = S(B) > S(A)
If path I is also rev. = S(B) = 5(A)

Isolated systems can only evolve to equal or higher entropy — time arrow
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D.4 Thermodynamic potentials: Free Energy, Enthalpy
We have many thermodynamic variables: p, V, T, E S, ...

We can choose any two to describe the system. Which? Depends. ..

E.g. energy is best expressed as E(S,V): dE =TdS — pdV

Free energy
good if T = const

F=FE-TS = dF=-5dT —pdV  “Legendre trafo”

OF OF

or|, =% av), = ?

T

What’s “free” about F'?

Consider an isothermal process = dF = —pdV

B
= F(B)—-F(A) = / —pdV = —*“work done by system”
A

= F = measure of work free to be done at constant T’

Gibbs Free Energy

Def.: Gibbs free energy G=FE +pV —TS

Consider system S with fixed pressure, and a reservoir R such that
Viot = Vr + Vs = const

= Stot (Frot, Viet) = Sr (Erot — Es, Viet — V) + Ss(Es+, Vs)

0SSR 0Sr oS p

~ Sr(Eiot, Viet) — =—=—Fs — ——Vs + Ss(Es, Vz — ==

= (Etots Viot) O, S OV, s+ Ss(Es, Vs) ‘ av|, T
E3+pV3—TSS

Siot max if Gibbs free energy G = E 4+ pV — TS = F + pV is min.
dG = =SdT + Vdp
with N: dF = —=SdT — pdV + pdN, dG = —-SdT + Vdp+ pdN

67
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Comment: G =G(T,p,N); only N isextensive = G(p,T,N)=pu(p,T)N

R eRe

HEON TN

Enthalphy

Def.: Enthalpy H=FE+pV = dH=TdS+Vdp

E, F, G, H are “thermodynamic potentials”

D.4.1 Maxwell’s relations

Regard E = E(S,V); 1* law: dE =TdS —pdV

, oF
oS

|4

Second derivatives commute =

oB| _ _
v, 7
O’FE B 0’FE
2SOV oV IS
dp oT
- | = — “M 11 Relations”
= 39 y PG . axwell Relations

mathematically trivial, physically non-obvious!

Play the same game for F: dF = —-SdT —pdV

and for G, H:

To remember:

L 95 _op
v\, OT|,
8_5 — a_v , 8_T = 0_\/ —> 4 Maxwell relations
op |1 or|, oplg 05|,

cross-multiplication always — TS, pV ; 4 ways to construct Egs.

ar|  os|  ap| v

7l 3. 8., @,

keep the conjugate variable constant:

minus signs: not obvious ... , sorry
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Heat capacity revisited

Taking further derivatives of the Maxwell eqs. , we can derive

further useful relations — example sheet

. oS )
These include for C’V—Ta—T o Cp—Tg—Tp.
| | 0G|
ov |, orz, = p |y or?|,
ov | Op
Cp—Cv—Ta—Tpa—TV

For ideal gas: (), — Cy = Nkp
C, > Cy  because more heat needed to increase 7' at constant

pressure; some goes into work

D.5 The 3" law

We have only considered changes in entropy so far; no reference S

3" law: “Nernst’s postulate”: lim S(T) =0
T—0

can be relaxed to: %—>0 for T—0, N — o0

= the ground state entropy must not grow too much with N

Comment: In Sec. A.2.2, we saw: AS = / Yar

C
T
integral must converge = Cy ~T" with n >0

3
ideal gas: Cy = §N kg ~T° violates 3" law

= The 3" law tells us that the low T world is QM, not classical
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E Phase transitions

Abrupt, discontinuous changes in systems; cf. BE condensate

E.1 Liquid-gas transition

Recall van der Waals EOS: p =

[
kpT  a Vv it ~TeeeT
- V=== iR\ —T=T,
v—>0 v? N A - T=1009T,
" ,
3shapes: T >Tp: = ideal gas; ignore — term
8a

T = Tci ]{JBTC = ——

57 — inflection point

T < T¢: kT =~ — realized in range v > b = local min, max
v

b v
p
At T < T¢: for some pressures: > 1 volume possible
d
Va: ' >0 = unstable
dv |,
. A B c
expand system — p increases T
e
squeeze system — p decreases
b %
Vi: wv22b: atoms are as close as they can be — liquid
van der Waals is not supposed to work for
liquids, but let’s ignore that for now
Voe:r v>0b:

gas

E.1.1 Phase equilibrium

What’s going on between A and C?7 Co-existence of gas, liquid
— chemical equilibrium fuiq = ftgas

Recall: Gibbs free energy G: pu = %
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Maxwell construction

Clearly, between A, B, p(v) does not behave like van der Waals

At A) p= i

At O) 1= figas

We now assume that fuiq = ftgas and from A to C, p does not change.

What does this imply for p(v)

P P
along isotherm: du = or dp
op |7
Op| _ 1061 _ 1
dplp N Op N,T N P+ A B _ ... C
iq K
PVeT) .
= p(p,T) =unq+/ (N )dp
Dliq b V4

Vv
from A to C' we don’t want p to change. N >0

= the only way to avoid a change in p is dp =0

= horizontal line from A to C' in pv diagram

But what is piq 7

Maxwell: Assume the van der Waals EOS were correct.

PVpT) p
= u(p,T) = puiq +/ (N )d = Hgas
~~~ Pliq ~~~
=HA =pc
c B c '
:>/ Vdp:/ Vdp+/ Vdp = Pigt
A A B
= The shaded areas AB and BC' must be equal b v

= The coexistence isotherm between A and C'is p = const = py;q such that Axp = Apc

As we move from A to C', more and more liquid becomes gas.
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E.1.2 The Clausius-Clapeyron Equation

p
Consider the liquid-gas transition in the p — T plane.

liquid N
Say, we sit in the gas phase at T' < T very close to the liquid edge. / gg’%ﬁ{i'
Then increase p just a bit.

gas

— liquid ; V' shrinks discontinuously.
— phase transition Tc =

Hiq = Hgas = Gliq - Ggas

how does GG change along the line of phase transition?

dGiq = —SiiqdT + Viigdp = dGyas = — SgasdT + Vgasdlp
— @ _ Sgas - Sliq

dT Vgas - Viiq
Def.: latent heat L = (Sgas — Siiq) T’

dp L

= Clausius-Clapeyron Eq.: T = W
gas — Vliq

Def.: For an n' order phase transition, the n'" deriv. of the thermodynamic potential

(typically F' or (3) is discontinuous.

F
Here: V = % , S= —g—T discontinuous

= liquid-gas phase transition is 1°* order.
As T —=To @ Vig = Vaas -

One can show that at Ty we have a 2" order Ph.Tr.

At T > T¢ no distinction between gas, liquid. P

In general, phase diagrams also include a solid phase.
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E.1.3 The critical point
Critical point: inflection point in p = p(V')

op 0 _ 8

Now consider vdW EOS: pv® — (pb + kpT)v® + av — ab = 0
T <Tc = 3roots
T>Tc = 1root
T =Ty all 3 roots coincide
= po(v—ve)? =0

8a

C ffs. = kplc = —
ompare Coe€elrs BLC 27()’

The law of corresponding states

27 (kpTc)?
Invert the last relations: b = -C ;oa=— (ksTc)
3 64 pc
- T
Def.: reduced variables: T'= —, 0= 1, D= P
Tc ve pc
8 T 3
= vdW: p=— e
v P=35- : 02

pc, Te, ve only depend on 2 vars.: a, b

= eliminate a, b

UC:Bb,

pPc =

3
= compressibility ratio PCYC _ 2 should hold for all gases
kgTe 8
Experiment: Z;C ;C =0.28...0.3. OK, given that vdW is not really good for liquids.
Blc

wal

B H g B B Ok &
T T

Coexistence curve for various gases in reduced

variables is nearly universal: Ne, Oy, CO, CHy,. ..

Chemical makeup appears irrelevant — “universal” behaviour N
N

73

27b?

3ahEEEss

-;Ix'?;&,,.l T

S,

A

N1

\

X

¢

ke L e g
2 & & B 1P 1 4 Lk 1B W 2 oA &



E PHASE TRANSITIONS

Critical exponents

1) How does wgs — tiiq behave at the critical point?

8 T 3 8T 3 8T 3
dW: D = — _—— = — — — = —
v P=35- s 0% 3hyg—1 T, Bl — 1 UL,
-~ T = (3771101 - 1) (377gas __21) (ﬂliq + @gaS) (*)

752
8Ugas Uliq

Critical point = Ugas, Vliq = 1 = T—1
€ €
a0

9 1_)1101:1——

Expand (%) In €= 0gs — Uliq = Ugas =1+ 5

_ 1 _\2
s TAL - (i)

= VUgas — Vliq ™~ (TC — T)1/2

2) How does v change with p along a critical isotherm?
There exists a unique function p = p(v,T¢)

0 0?
Furthermore =2 = 22 —( at critical point

v Ov2

Taylor expansion = p—pc ~ (v —v¢)?

10
3) How does the compressibility x = —— 8_U change as T — T from T >Tg ?
v Op|rp
0
At the critical point: Ll P
v |,
: Ip
Taylor expand in 7' — Ty = g =—a(T-Tc)+... a = const
v Tv=vc
N 1
K ~
T—-1Te

How do these agree with experiment? How good is our vdW based model?
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Answer: Experimental results do not depend on the type of gas. Good!

But the exact scaling is different:  vgas — viig ~ (T — 1) ~0.32

p—pc~ (v— UC)M'8
1
Ky —m —
(T_Tc)z1.2

The exponents are called “critical exponents”

Conclusion: The vdW EOS does a good job qualitatively, but is quantitatively inaccurate.
N? 1

~ R~

N T-T:’

One can show that for 7" — T¢: i.e. diverges.

We work with averaged quantities! Becomes inaccurate for large fluctuations

— New physical areas...

E.2 The Ising model
N sites in a d-dimensional lattice: each has spin up: T, s; = +1, or ¢ ¢ ¢ ¢ ¢ :
spin down: |, s; = —1 Pyt
VM
N o« o o
magn. field B = Fp = —B Z S; 1 has lower energy = 1 is “favored”
i=1

In contrast to our 2-state spin system from Sec. A.2.3, we use here interaction:
EI =—-J Z Si S
(i)

(ij) = summation over “nearest-neighbour pairs”
Number of nearest neighbours: ¢ ; d=1=q=2, d=2=qg=4, d=q=2d

We consider J >0 = neighbours prefer to be aligned.

CE: Z:Ze_BE[si} = exp | JZsisijBZsi
{si} {si} (i) i
1 0

1
Def.: magnetization: m = I z;<s,> = N30B In Z
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E.2.1 Mean-field theory
m is the average spin per particle

= s5;5; = [(si —m) +m| [(s; —m)+m)]

= (s; —m)(s; —m) +m(s; —m) +m(s; —m) +m?

Mean field theory: Fluctuations in the particle spin are small when summed over (ij) .

This is a weaker assumption than assuming small {(s; —m)?) !

= E:EB—I—E]:—JZ[W’L(Si—i—Sj)—mﬂ _BZSZ'
(ij) g

1
= §Jqu2 — (Jgm+B) Zsi
0 2) ‘

(1) Each particle has ¢ nearest neighbours: N¢ pairs, but every one is counted twice!

N
= The sum Z has Tq pairs — try for small NV ...
(ig)
For periodic boundary conditions this is exact.

For non-periodic BCs, a good approximation for large N.

N
(2) Again, we have 7(1 pairs in the sum.
Particles ¢ and j appear equally in the sum s; + s;

1

= one sum over ¢ and the factor 5

cancels the factor 2 from the sum s; + s;.

1
Comments: e The §J Ngm? term in E is merely a constant factor in Z

= no effect on physics

e We now have a non-interacting system with B.g = B + Jgm

N
7 — e—%ﬁJquz Z o Z ePBeft 22551 — < Z 6ﬁBeffSi>
S1 SN s;i=*+1

N
= 7 = ¢~ 2hINam (e_BBeff + eﬁBe“) = e 2BINam? 9N (ogp N B Beg
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1 0
=m = NG oB InZ = tanh(6B + fJgm) ;  implicit equation for m

1) B = 0: = m = tanh(8Jgm)

1
tanhx ~ x — gx?’ = slope of tanh(8Jgm) at m =0: BJq

m
a) BJq < 1 = only one solution: m = 0 ”
at high 7" (small ), temperature randomizes fanh
m
the system = no average magnetization
b) BJg > 1= 3 solutions: m =0, =+ my
m -
m = 0 can be shown to be unstable. ’
. . . . - tanh
at low 7', interactions win out and align
the spins (either up or down) m
T —0:0—00 = tanh becomes Heaviside function

= mg==l1

The critical T" seperating a), b) is: kT = Jq

Note: Magnetization turns off at finite T' = T

2)B#0:a)f—0:m=tanh[3(B+ Jgm)| =~ f(B+ Jgm)

B

=ma ——
M GsT

Note: now m smoothly decreases to 0 at infinite 7'
b) low T: 'm asymptotes to +1 as T'— 0, but the sign of B

determines the sign of m : sign(m) = sign(B);

the other solution can be shown to be metastable
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Summary

B =0:

B # 0:

phase transition at T' = T

can be shown to be of 2° order

as we vary 1" at B =0

no phase transition as we vary T’
but if we vary B at fixed T' < T, we have

a phase transition: m swaps sign

1 0

1 0

———F

N OB

= 1% order phase transition

E.2.2 Critical exponents

+H1-

Let’s compare the 1°° order phase transition of the Ising model with the liquid-gas one.

Ising: Fix T < T¢, vary B from positive to negative (or vice versa)

= 1% order transition: magnetization m jumps

lig.-gas: Fix T' < Ty, vary pressure across the liquidization value

= 1% order transition: v jumps from Ugas 1O Viig

Critical exponents; cf. gas-liquid
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PHASE TRANSITIONS

mat B=0asT — T

1
Recall: m = tanh(5B + $Jgm) = tanh(5Jgm) ; tanhx ~z — gx?’

T=T.= BJg=1

TSJTC:>5J(]:1+E

1 3 1+3
:>m:tanh[(1+e)m]%(1—|—e)m—( —26) m? =~ (1+e)m — i m?
143 1

=1a~1l4e— §€m2 = (§+e)m2%e = m~ +V3e

Jq Jq Jg 1 Jq
S .y Py o WO S S
ST wle kT e~ D E pmpTe = T)
= |m ~ +(Te — T)"?
:}d—mN(TC—T)_1/2—>OO at TC

dTl

Cf. Ugas — Uliq ~ (TC — T)1/2

Fix T =T¢, how does m varyas B — 07

B
At T=Tc: BJg=1 = m:tanh{J—+m]
q

Note: For simplicity we assume now that m grows less than linearly with B
We shall see that this is true.

Expand tanh for small B, m

N B L(B ’ B Lo
m~—+m——-|(—+m| ~—+m—-m’+...
Jq 3\ Jq Jq 3
1 3 B 1
=>-mx— = ~ B3
3m Jq m

cf. Vgas — Viig ~ (p — pc)l/ 3 along isotherm
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0
3) Def.: magnetic susceptibility x = N 8—7;

T

Fix B = 0; how does x change as T — T¢ from T 2 T¢ ?

Jq

m = tanh (8B + BJqm) = x = —a— <1+—X

cosh?(B Jgm) N

; cf. gas compressibility

) at B=0

T—T: = BJg—1 and m —=0 = cosh?(fJgm)— 1

1

$X:N6<1+%x) = Nﬁ%xﬂ—ﬁh)wc(——%)

Tc

for gas

= ...= x~T-Tx)"; cf.KJNT T
—lc

How good are our mean-field predictions? Depends on dims. of lattice...

d=1: Wildly wrong: Analytic solution of d = 1 Ising model

= no phase transition; cf. Sec. 5.2.4 in [2]

1 1
d:2: NT—Ta: an — = mf = =
mo (C ) (8% 8 At 2
m ~ BY . San =15 Omi =3
. 7
X’\’(T—TC) : Van:Z Yt = 1

d=3: Numerics = a=x0.32, 0~048, ~v=~1.2

Same as van der Waals! Both are wrong in the same way.

Memory of microphysics has been lost...

d = co: Mean field theory turns out to be exact.

Explanation: Fluctuations spoil mean-field theory approximation.

small d = few neighbors = high fluctuations
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E.3 Landau Theory

Unified way to look at phase transitions: Microphysics arbitrary.
Key variable: Free energy F'; we defined it for equilibrium configurations.

Now take its definition for any configs.

1 1 N
e.g.: Ising model: F = 3 InZ = §<]qu2 -3 In (2 cosh S Beg)

Note: F'is a function of m

Equilibrium: F' can be shown to be minimal

F
= or =0 = m=tanh(fBy); cf. Sec. E.2.1

om
In Landau theory, m is called an order parameter:

m#0 = order; m =0 = randomness

E.g. gas-liquid transition: m = Vgas — Vliq

E.3.1 Second order phase transitions

Here we consider systems with symmetry under m — —m

= Expansion of F' in m has only even powers: F(T;m) = Fy(T) + a(T)m* + b(T) m* + ...
1 1 1
B =0 Ising model: Use coshx ~ 1+ §x2 + E:EA‘, In(l+y)~y— §y2, Taylor in m, B

NJ N33 T ¢t
= ...= F(T;m)=—NkgT In2+ [Tq(l—Jqﬁ)} m2+%m4+...

F
Equilibrium: g—m =0. Solutions depend on signs of a(T"), b(T).

—am)>0
--a(T)<0

We assume b(T') > 0 ; otherwise we’d need m® terms.
Consider F'(m): a(T) >0 = F has only one extremum.

a(T) <0 = F has three extrema.

Isingmodel: a(7T) >0 < T >7T¢ = 1 equilibrium: m =0

a(T)<0 & T <Te = 2equilibria: m = +my
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If a(T') is smooth = Equilibrium changes smoothly from m =0 tom # 0 at T' < T¢.
= 2% order phase transition at 7' = T¢ where a(Tg) =0

Once we know the equilibrium value m, plug this into F(T';m)

F
— F(T) — all physical quantities: S = —g—T , Cy=T g—; o

Critical exponents: assume that near Te: b(T) = by, a(T) =~ ag(T —T¢)

= .= my~+ ;TO(TC—T)I/Q for T < Tt
0

Comments: Landau theory predicts mg ~ (T — T)"/? for all dims. d of the Ising model

At T < T¢ the system must choose between mg, —mg — symmetry breaking

E.3.2 First order phase transitions

Now consider systems where F' also has odd powers of m:
F(T;m) = Fy(T) + o(T)m + a(T)m?* + 4(T)m?* + b(T)m* + . ..
Example: B # 0 Ising model: Taylor expansion in m, B:

N N
F(T:m) = —NkyT n2+4 242 (B+ Jgm)*+
2 205 T

We again assume b(7') >0 for all T

\ F :
\ B<0 !
‘\ --B>0 /
\\ h
Low T': either one min or two min, one max \ i
\ 1
\\ ,’
When «(T), v(T') change sign \ meta stable/ |
\ : /
\ : /
B
= true ground state changes from m <0 to m >0 ~_ / m

" true groundstate
High T: double-well potential is lost

F
= single min in F shifted from m =0; e.g.:
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