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Chapter 1

Introduction

It is probably not an exaggeration to rate the development of quantum theory and

general relativity in the early twentieth century among mankind’s most remarkable

achievements. The conceptual ideas employed therein to successfully model natural

phenomena are so alien to human day-to-day experience that the theories’ influence

has gone beyond the realm of scientific application and also touched some of our

most profound philosophical ideas. Among the most bizarre concepts introduced

by quantum theory and relativity we find the unertainty principle, superposition

and reduction of states, the big bang and black holes. It is the physical properties

of black-hole-binary systems and their role in contemporary research in the areas of

fundamental physics, astrophysics and gravitational wave physics which forms the

subject of the present thesis.

Black holes are predicted by Einstein’s theory of general relativity. According to

the singularity theorems of Hawking and Penrose [167, 166], spacetime singularities

are an inevitable consequence if one makes minimal assumptions on the matter-

energy present in the spacetime. By implication of the cosmic censorship conjecture,

singularities must be causally disconnected from the exterior spacetime via an event

horizon which represents the fundamental definition of a black hole. The singular

nature of black holes adds an even more bizarre feature to the theory of general

relativity: by construction, general relativity is not valid at singular points and

thus predicts its own incompleteness as a physical theory. Indeed, it is generally

accepted, that a unified theory of quantum gravity will overcome the pathologies

encountered at spacetime singularities. In spite of intense research efforts, however,

such a combination of general relativity and quantum mechanics is currently not

available.

From the viewpoint of differential geometry, black holes are regions of spacetime

where the curvature prevents light rays from escaping towards null infinity, i. e. re-
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CHAPTER 1. INTRODUCTION 2

gions which are causally disconnected from their surroundings. Spacetime curvature

is a fundamental concept of Einstein’s theory of general relativity, as gravitation is

a manifestation of this curvature rather than a force in the traditional sense. The

basic quantity which encapsulates all information about the spacetime curvature is

the metric, a set of ten functions of space and time coordinates. This metric obeys

the Einstein equations which equates the Einstein tensor, a complex combination

of the metric and its first and second derivatives, with the mass-energy tensor de-

scribing the matter distribution. The Einstein equations thus represent a system of

ten second order partial differential equations, one of the most complicated systems

of equations in all of physics. Einstein himself did not expect physically meaningful

solutions to be found analytically and it came as a surprise when Karl Schwarzschild

found his famous solution of a static, spherically symmetric vacuum spacetime just

a few months after the publication of general relativity in 1916. This solution is

now known as a “Schwarzschild black hole”, but the term black hole was not coined

until much later by John Wheeler. The Schwarzschild solution has led to invaluable

insight into general relativity and was soon generalized to include electric charge in

the form of the Reisner-Nordström solution. The key simplification leading to these

analytic solutions is the high degree of symmetry of the spacetime which reduces

the Einstein equations to a one-dimensional problem with no time dependence.

Relaxing the assumption of spherical symmetry to allow for a spacetime with non-

vanishing angular momentum led to a much more complex system of equations even

in the limit of stationarity. It took more than four decades until Roy Kerr found

the analytic expressions for the metric of an axisymmetric spacetime containing

a rotating black hole [183]. Again, the inclusion of electric charge resulted in a

generalization, the so-called Kerr-Newman solution.

For a long time, these black hole solutions were considered a mathematical

feature rather than objects of physical relevance. This picture has changed dra-

matically in the course of recent decades, however. Not only are black holes now

accepted as a common end product of the evolution of very massive stars, they are

also recognized as almost ubiquitously present in the form on super-massive black

holes (SMBH) at the centers of at least more massive galaxies [193]. The forma-

tion history of these SMBHs is subject of ongoing research in astrophysics and is

likely to be closely interrelated with structure formation in the universe in general

(see e. g. [126, 160, 293, 159, 209, 210, 295, 200, 294]). Observations of the central

regions of galaxies have also revealed significant correlation of the masses of black

holes with the structure of the galaxy cores, specifically the velocity dispersions and

the density profiles [131, 145, 218, 223, 75, 219]. Given the all absorbing nature of
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black holes, it is quite remarkable, that they also form the engine for the strongest

sources of electromagnetic radiation observed in the universe. Active galactic nuclei

are now commonly believed to be driven by accretion around black holes. Their

observation at cosmological redshifts provides valuable constraints on the forma-

tion history of SMBHs. Most notably, the discovery of the most luminous quasar

at z ≈ 6 in the Sloan Digital Sky Survey [129] implies that black holes of masses

around 109 M⊙ were already in existence less than 109 years after the big bang.

Black holes also play a fundamental role in the ongoing effort to detect grav-

itational waves. This type of radiation is general relativity’s analogue of electro-

magnetic waves and is a direct consequence of the Einstein equations. In fact,

such radiative solutions were recognized by Einstein himself, but were subject of a

long-lasting debate on whether they represent gauge effects or truly physical phe-

nomena. There is no doubt left on the physical nature of gravitational waves (GW)

now, but their direct detection is made enormously difficult by their extremely weak

interaction with matter. To date, therefore, the only evidence for the existence of

gravitational waves is indirect and based on observations of binary pulsar systems.

Most notably, decade long observations of the Hulse-Taylor pulsar 1913+16 show

a gradual decrease in the orbital period which is in excellent agreement with the

energy loss of the system expected from emission of gravitational waves according

to the theory of general relativity [177, 284]. This indirect evidence has led to the

award of the 1993 Nobel Prize to Hulse and Taylor and also provided motivation

for the construction of laser interferometric detectors in multi-national collabora-

tions such as the American LIGO [6, 125], the European GEO600 [207] and VIRGO

[53, 9] and the Japanese TAMA [283, 20]. A space based interferometer, LISA [168],

is targeted for launch in 2018 and will facilitate high signal-to-noise ratio measure-

ments of low-frequency gravitational wave sources. The strongest source for all

these detectors is the inspiral and coalescence of black hole binaries. Obtaining a

detailed theoretical understanding of these binary systems is crucial to support the

effort to directly detect GWs.

The enormous complexity of the Einstein equations in the absence of strong

symmetry and/or time independence makes it impossible to study binary black hole

systems analytically in the framework of full general relativity. In consequence, the

theoretical modeling has pursued two alternative approaches. The first replaces

general relativity by an approximative description of the physics which allow for

analytic studies. In particular, binaries can be described with good accuracy in the

framework of post-Newtonian (PN) theory as long as they orbit each other with

sufficient separation (see [61] for a review). In the late stages after the merger of the
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binary, in contrast, the system closely resembles a single Kerr hole and is described

well by perturbation theory, i. e. the linearization of Einstein’s equations around a

Kerr background. We will return to both of these approximation theories below.

The second approach to studying binary systems is to use numerical methods to

solve the full Einstein equations. The research field concerned with this approach

is called numerical relativity and is the main subject of this work.

It is a remarkable coincidence that major breakthroughs in numerical relativ-

ity have been achieved at almost exactly the same time that the above mentioned

ground-based laser interferometers have advanced to the stage that they are ca-

pable of performing observation runs at or close to the design sensitivity. These

are therefore very exciting times for black-hole and gravitational-wave physics and

the community is about to open an entirely new window to the universe with un-

precedented opportunities to gain fundamentally new insight into the structure and

evolution of the universe.

The main purpose of Chapters 1-7 of this work is to provide the context for the

published articles which form the core of this thesis. For this purpose, we summarize

in Chapter 2 the 3+1 decomposition of spacetime. A list of ingredients for a numer-

ical simulation is given in Chapter 3. Methods to extract physical information from

a simulation are discussed in Chapter 4. In Chapters 5 and 6, we present a brief

overview of the history of black hole simulations and summarize results obtained

in the last few years following the breakthrough in binary simulations in 2005. We

conclude with the set of published scientific articles which form the core of this

work.

Notation: We use geometric units, that is we set the gravitational constant G

and the speed of light c to unity. We use Einstein summation, that is repeated

indices represent implicit summations, as for example in

T α
µn

µ ≡
3
∑

µ=0

T α
µn

µ. (1.1)

Specifically, Latin indices run from 1 to 3 and Greek indices from 0 to 3. In sign

convention we follow [148] and use the convention of Misner, Thorne and Wheeler

[226].



Chapter 2

The “3+1” decomposition of

general relativity

The numerical solution of the Einstein equations faces a multitude of conceptual

difficulties commonly not present in other areas of computational physics. We will

discuss various of these problems further below, but we cannot even get started

without addressing the most fundamental problem; the Einstein equations are ex-

pressed in terms of geometrical objects, so-called tensors. Computers, in contrast,

exclusively operate on numbers. The first step in translating the Einstein equations

into a form digestible for a numerical treatment is therefore to use a basis expansion

and consider the components of the equations Gαβ = 8πTαβ, where G and T are the

Einstein and matter tensor to be discussed in more detail below. The components

of any tensor can be represented in the form of arrays on discrete numerical grids.

There still remains the question of the hyperbolic, parabolic and/or elliptic nature

of the Einstein equations. The former two typically describe physical systems as

the time evolution of the state, the latter in the form of equilibrium configurations.

The most common approach to disentangle the nature of the Einstein equations

is the so-called “3+1” decomposition based on the canonical work of Arnowitt,

Deser and Misner (ADM) [30] and later formulated by York [302, 303]. The result

is a combined hyperbolic-elliptic systems, that is, the equations separate into a set

of evolution equations plus some constraints.

The key idea in this procedure is to decompose the four-dimensional spacetime

into a one-parameter family of three-dimensional spatial slices. Each of these slices

describes a snapshot of the system under consideration and the Einstein equations

tell us how the system evolves from one snapshot to the next. Each slice is described

in terms of the components of two fundamental tensors or “forms”, the spatial three-

metric and the extrinsic curvature. In practice, one evolves the components of these
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tensors and we need a basis expansion to assign unique meaning to these fields of

numbers. Commonly this basis is a coordinate basis, so that our remaining task is

to specify the coordinates. The physics of the system can only be interpreted as a

combination of the tensor components (their numerical values) with the meaning of

the coordinates. While the choice of coordinates is in principle arbitrary because of

the covariance of general relativity, the actual choice of coordinates turns out to be

crucial for obtaining a stable numerical scheme. We will discuss this issue in more

detail below.

In this thesis, we focus on numerical work based on the 3+1 decomposition. We

emphasize, however, that alternative approaches have been investigated. The most

important alternative is based on the characteristics of the Einstein equations, the

light or null cones. These characteristic or null foliations of spacetime have been

pioneered in the seminal work of Bondi and Sachs [69, 258] and lead to a remarkably

simple hierarchy of the Einstein equations. The main difficulty of the characteristic

approach is the break-down of the characteristic coordinate systems in regions of

strong curvature due to the formation of caustics. The characteristic approach is still

subject of considerable research and has also inspired the combined use with 3+1

or Cauchy formulations of general relativity in the form of Cauchy-characteristic

matching. For further details the reader is referred to the review articles [198, 297]

and references therein.

An alternative combination of the benefits of the 3+1 and characteristic decom-

position can be obtained using the conformal field equations based on the studies

by Friedrich [137]. Here one evolves hyperboloidal surfaces which are spatial every-

where but asymptote towards null infinity. More information about this approach

can be found in Frauendiener’s review article [136] as well as references therein.

We conclude this introduction by pointing to further review articles on nu-

merical relativity and black hole simulations. All the items mentioned above are

summarized in the article by Lehner [198]. A comprehensive summary including

a detailed description of the “3+1” formulation in lecture-style format is given in

Gourgoulhon’s review article [148]. A review focusing more on the mathematical

aspects of numerical relativity and the relationship between numerical and mathe-

matical relativity is given in Jaramillo et al. [182]. More details on the numerical

techniques used for modeling compact binaries including a more in-depth discussion

of neutron stars is given by Baumgarte and Shapiro [52]. The most recent review

article by Pretorius [252] summarizes results of black hole simulations performed

after the breakthroughs of 2005 with particular emphasis on the final stages of the

coalescence.
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Because of its conceptual importance for the remainder of the present thesis,

we now address in more detail the “3+1” decomposition of the spacetime manifold

and the Einstein equations.

2.1 The Einstein equations

The fundamental quantity which we need to determine is the four-dimensional

spacetime metric gαβ. As the metric is a symmetric tensor, this corresponds to

ten independent components. Once we know the metric, we can calculate the

Christoffel connection

Γα
βγ =

1

2
gµα (∂βgγµ + ∂γgµβ − ∂µgβγ) , (2.1)

where gαβ is the inverse of the metric. From the connection we obtain the covariant

derivative

∇αT
β...

ρ... ≡ ∂αT
β...

ρ... + Γβ
µαT

µ...
ρ... + ... − Γµ

ραT
β...

µ... − ... , (2.2)

with corresponding additional terms for each further index of T , and the Riemann

tensor

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓ

α
βγ + Γα

µγΓ
µ
βδ − Γα

µδΓ
µ
βγ. (2.3)

We thus have all the information to compute geodesics in this spacetime, geodesic

deviation and, as we will see below, the total mass and the gravitational radiation

generated in the spacetime.

In order to determine the metric, we need to solve the Einstein equations

Gαβ ≡ Rαβ −
1

2
Rgαβ = Tαβ , (2.4)

where the Ricci tensor and scalar are defined as contractions of the Riemann tensor:

Rβδ = Rµ
βµδ and R = Rµ

µ. The matter energy tensor Tαβ describes the matter

distribution of the spacetime.

Finding solutions to the Einstein equations is actually a simple task. Just take

any metric, compute the Riemann tensor according to Eq. (2.3), calculate the Ricci

tensor and scalar and finally the matter tensor Tαβ from Eq. (2.4). This provides

a solution to the Einstein equations with the matter sources Tαβ . The problem

with this approach is that matter tensors calculated in this way will in general not

correspond to any physically meaningful or realistic matter distribution. The dif-
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ficult part is therefore not finding solutions to the Einstein equations, but rather

finding physically meaningful solutions. This is also the remarkable feature of the

Schwarzschild and Kerr solutions. They represent meaningful solutions, now be-

lieved to closely resemble real, existing, physical objects. We therefore need to first

prescribe the energy matter tensor Tαβ and then determine the metric from the

system of partial differential equations (2.4).

Black holes are vacuum solutions to the Einstein equations and as such obey

the vacuum Einstein equations which can be written as

Rαβ = 0. (2.5)

In the remainder of this work we will exclusively study systems with vanishing

energy matter tensor Tαβ = 0. We do not abandon the energy matter tensor,

however, without emphasizing that the simulation of compact binaries involving

neutron stars has been subject to comparable numerical efforts as has been the

study of black-hole binaries. Indeed, the first orbital simulations of compact binaries

to have been achieved in numerical relativity were neutron-star-binary evolutions

[269, 212, 222]. For more details and recent developments of neutron-star, mixed

black-hole-neutron-star as well as boson-star binaries, the reader is referred to these

papers as well as [52, 237, 19, 268, 128] and references therein.

As a starting point for the 3+1 decomposition we consider a four-dimensional

manifold M with coordinates xα and a metric of signature − + ++. We next

require a foliation. That is, we assume that there exists a function t(xα) of the

spacetime coordinates xα with non-vanishing gradient everywhere. Without loss of

generality we assume the the gradient satisfies gµν∇µt∇νt < 0. In consequence, the

slices t = const are spacelike in the sense that the norm of any vector tangent to

the slices is positive, i. e. has the opposite sign of the norm of ∇t. The foliation is

graphically illustrated in Fig. 2.1 where we show two hypersurfaces corresponding

to t = 0 and t = dt. We next consider vectors v tangent to a hypersurface Σt with

fixed t. By definition these vectors have vanishing inner product with the gradient

of t: vµ∇µt = 0. The timelike normal field of the hypersurfaces is therefore given

by

nα =
∇αt

√

−∇µt∇µt
, (2.6)

and its dual vector field is nα = gαµnµ.

It turns out to be convenient to use coordinates adapted to the 3+1 foliation.

These are given by t and three further coordinates labeling points inside each hyper-

surface Σt. These spatial coordinates xi define a three-parameter family of curves
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t(x )=0α

Σ0

n

n

t(x )=dtα
β

Σdt

α
∂t

Figure 2.1: Illustration of a timelike foliation of spacetime. One spatial dimension
is suppressed for presentation purposes.

xi = const which thread the foliation, that is, any such curve intersects each hy-

persurface Σt exactly once. In Fig. 2.1 we have illustrated such a curve together

with its tangent vector ∂t. We emphasize that ∂t is in general not orthogonal to the

hypersurfaces Σt.

We have now split the coordinate freedom into two different parts. First, we

can choose the foliation via the function t, second we have the freedom to label

the points inside any hypersurface by choosing the spatial coordinates xi. In the

majority of formulations of the Einstein equations, this freedom is encapsulated in

the following two functions. First, the lapse function is defined as

α =
√

−∇µt∇µt. (2.7)

Loosely speaking, it represents a measure for the separation in proper time between

two neighboring hypersurfaces Σt and Σt+dt. Translated into a more numerical

language, the lapse function enables us to control the advance in proper time cor-

responding to an advance in coordinate time dt. Often, one wants to slow down

the advance in proper time in regions where the code encounters a singularity by

locally decreasing the lapse towards zero.
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The second gauge function is the shift vector defined by

βi = (∂t)
i − αni. (2.8)

as illustrated in Fig. 2.1. The shift vector determines how points with identical

spatial labels xi are identified on neighboring slices.

Given the decomposition of spacetime into a timelike foliation of spacelike slices,

it will be helpful to apply a similar decomposition to the geometric objects. For

this purpose we define the projection operator

⊥µ
α = δµα + nµnα. (2.9)

For any given tensor this enables us to define its spatial projection. For example,

for a tensor T α
β we have

⊥T α
β = ⊥α

µ⊥ν
βT

µ
ν , (2.10)

and likewise for tensors with different arrangements of indices. Projections onto the

time direction are directly obtained from contraction with the unit normal field nα.

For our example we obtain the time projection T µ
νnµn

ν . We can also define mixed

projections, as for example ⊥α
µT

µ
νn

ν .

In particular, we can apply the projection operator to the metric itself and

obtain

γαβ ≡ ⊥gαβ = gαβ + nαnβ = ⊥αβ . (2.11)

This projection of the metric defines an induced three-dimensional metric on the

hypersurface in the sense that its effect on all geometric objects tangent to the

hypersurface is the same as if the spacetime metric were acting on them, and its

contraction with objects orthogonal to the hypersurface vanish.

We now recall the definitions of the connection and the Riemann tensor in

Eqs. (2.1) and (2.3). These definitions are valid for an arbitrary dimension and

thus also apply to the induced metric. We merely replace Greek with Latin indices

in these definitions and obtain the three-dimensional Christoffel connection and

Riemann tensor. From the connection we derive the three-dimensional covariant

derivative Da. For example, for a three-dimensional tensor with one upper and one

lower index, the covariant derivative is

DaT
b
c = ∂aT

b
c + Γb

iaT
i
c − Γi

caT
b
i. (2.12)

If we use coordinates adapted to the 3+1 decomposition, this can be shown to be
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identical to the spatial components of

DαT
β
γ = ⊥α

µ⊥β
ν⊥ρ

γ∇µT
ν
ρ. (2.13)

In summary, we can apply the entire machinery of differential geometry to the

induced three-metric γαβ just as we applied it to the four-metric gαβ . We still

need to work out, however, how these three-dimensional objects are related to their

four-dimensional counterparts.

Before we address this question, though, we need to introduce the extrinsic

curvature which is defined as

Kαβ = −⊥µ
α⊥ν

β∇νnµ. (2.14)

As illustrated in Figs. 2.2-2.4 of Ref. [148], the extrinsic curvature can be interpreted

as the variation of the timelike unit normal field on the hypersurface. We emphasize

that Kαβ is by definition a purely spatial quantity. A straightforward calculation

leads to the important equivalent relation

Kαβ = −1

2
Lnγαβ , (2.15)

where Ln is the Lie-derivative along the unit normal field nα.

We next address the question of how the four-dimensional Riemann tensor is

related to the three-dimensional quantities. This is best done by considering the

projections of the four-dimensional Riemann tensor. The calculations are lengthy

but straightforward and the interested reader is referred to [148]. Here we merely

list the resulting relations

⊥µ
α⊥ν

β⊥γ
ρ⊥σ

δR
ρ
σµν = Rγ

δαβ +Kγ
αKδβ −Kγ

βKαδ, (2.16)

⊥µ
α⊥ν

β⊥γ
ρn

σRγ
σαβ = DβK

γ
α −DαK

γ
β, (2.17)

⊥ρα⊥µ
βn

σnνRρ
σµν = LnKαβ +

1

α
DαDβα +KαµK

µ
β , (2.18)

where we use the symbol R to distinguish the three-dimensional Riemann tensor

from its four-dimensional counterpart R. These equations are often referred to as

the Gauss-Codacci or Gauss-Codacci-Mainardi equations. We note that all further

projections vanish due to the symmetry of the Riemann tensor. Contracted versions

of these equations are straightforwardly obtained by multiplication with the metric

gαβ.

If we look at the right hand sides of these relations, all terms except for the Lie
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derivative of Kαβ are purely spatial expressions. In adapted coordinates (t, xi) we

are therefore allowed to replace Greek by Latin indices which run from 1 to 3 only.

The Lie derivative of the extrinsic curvature, on the other hand, can be rewritten

as

LnKαβ = L 1

α
(∂t−β)Kαβ =

1

α
(L∂t − Lβ)Kαβ =

1

α
(∂tKαβ − Lβ)Kαβ , (2.19)

where the Lie derivative of the extrinsic curvature along the shift vector β is again

a purely spatial quantity.

Finally, we are in the position to decompose the Einstein equations Rαβ = 0

themselves. Again we refer the reader for details of the calculations to [148] and

summarize the results. As with the Riemann tensor, there are three projections.

First, we can project both indices onto the time direction. Inserting the above

projections of the Riemann tensor into Rµνn
µnν leads to

H ≡ R+K2 −KmnK
mn = 0 (2.20)

where K = γmnKmn is the trace of the extrinsic curvature. This equation is known

as the Hamiltonian constraint. It does not contain any time derivatives but instead

is a relation which must be obeyed by the three-metric γij and the extrinsic curva-

ture Kij on each hypersurface. Similarly, we obtain the momentum constraint from

the mixed projection ⊥Rαµn
µ

Mi ≡ DiK −DmK
im = 0 (2.21)

All the information about the time evolution is contained in the spatial projection

⊥Rαβ = 0 which leads to

(∂t −Lβ)Kij = −DiDjα + α (Rij − 2KimK
m

j +KijK) . (2.22)

Together with Eq. (2.15), this equation forms a second order in time evolution

system for the induced metric γij. This system together with the Hamiltonian

and momentum constraints are often referred to as the “ADM” equations. This

term is not strictly correct because Arnowitt, Deser and Misner used the canonical

momenta in place of the extrinsic curvature in their original work [30]. We will

follow common notation here, however, and will talk of the ADM equations in the

remainder of this work.

It is this set of equations which is at the heart of the majority of work in
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numerical relativity. It is highly instructive to discuss these equations in more

detail. First, we note that the equations do not provide any information on the

gauge functions α and βi. This is expected as these functions incorporate the

coordinate freedom of general relativity and therefore can be specified arbitrarily.

Second, we count the degrees of freedom. We have a second order system in time for

the six independent components of the symmetric three-metric γij . Four of these

are determined by the constraints, so that there remain two dynamic degrees of

freedom, the two degrees of freedom of gravitation. Finally, the Bianchi identities

∇νR
α
βλµ = 0, ∇νG

µν = 0, (2.23)

can be shown to propagate the constraint equations through the evolution. That

is, if the constraints are satisfied on some initial hypersurface and the evolution

equations hold, then the constraints are automatically satisfied on all other hyper-

surfaces. This greatly simplifies the task of numerically evolving data; it is sufficient

to enforce the constraints on the initial data and evolve these using Eqs. (2.15) and

(2.22).

In summary, we have reformulated the Einstein equations as an initial value

problem. Given an initial snapshot of the three-metric γij and the extrinsic cur-

vature Kij, we merely need to specify gauge functions α and βi and subsequently

can evolve the data and reconstruct the entire spacetime. It is this conceptual sim-

plicity of numerical relativity that has inspired the community with a great deal of

optimism following the early work in the 1970s. In the next section, we will discuss

the difficulties which have prevented the community from successfully implement-

ing the above recipe for several decades and also the solutions which finally have

resulted in the breakthroughs of 2005.



Chapter 3

The ingredients of numerical

relativity

3.1 The formulation of the Einstein equations

We have discussed in detail how the ADM equations provide a conceptually simple

recipe for evolving a given set of initial data using numerical methods in general

relativity. Unfortunately, all attempts of implementing these equations have re-

sulted in numerical instabilities after timescales much shorter than the dynamical

timescale of the systems under consideration. Because of their enormous complex-

ity, the evolution equations defy all attempts of directly applying standard stability

analysis. Most likely, the instabilities observed in numerical relativity for such a

long time are a consequence of various causes. It is now commonly believed, how-

ever, that the structure of the ADM equations makes them an unlikely candidate

for providing long-term stable numerical evolutions.

The key difficulty here is that the Einstein equations are a constrained system.

We have seen above, how the Einstein equations can be decomposed into evolution

equations and constraints. This decomposition is not unique, however. For exam-

ple, we can add any combination of the constraints to the right hand side of the

evolution equations and thus obtain a different system. All such decompositions

describe the same physics and will have identical physical (constraint satisfying)

solutions. But the evolution equations also admit non-physical (constraint violat-

ing) solutions and this unphysical solution space depends on the decomposition. In

particular, some decompositions will allow for unphysical solutions which rapidly

grow beyond control. We need to bear in mind in this context that any numerical

solution will inevitably satisfy the constraints only within some accuracy, so that

14



CHAPTER 3. THE INGREDIENTS OF NUMERICAL RELATIVITY 15

such rapidly growing solutions, if present, are likely to be excited by numerical

noise. It is desirable, for this purpose, to have a smooth dependence of the space-

time solution on the initial data. This quality is encapsulated in the well-posedness

of the system of equations. While a well-posed system does not guarantee stable

numerical evolutions, it is generally accepted that a well-posed evolution system is

a much more likely candidate for successful numerical simulations.

The common approach to obtain well-posedness and thus some bounds on the

deviation in the time evolution of neighboring initial data sets is based on using

strongly or symmetric hyperbolic systems (see e. g. [155] and references therein for

definitions). Indeed, it has been shown in [188] that a first order reduction of the

ADM equations is weakly hyperbolic and in [94] that the standard finite differencing

applied to weakly hyperbolic systems results in ill-posed systems.

As a result of the continued problems encountered in evolutions using the ADM

equations, a wealth of alternative formulations of the Einstein equations has been

suggested in the literature [66, 267, 139, 18, 51, 188, 65, 144, 260, 228]. To date,

however, only two of these have been demonstrated to facilitate long-term sta-

ble evolutions of black-hole binary spacetimes. These are the Baumgarte-Shapiro-

Shibata-Nakamura (BSSN) system [267, 51] and the generalized harmonic gauge

(GHG) formulation [144, 247]. We will now discuss these two systems in some more

detail.

3.1.1 The BSSN system

The BSSN system results from the ADM equations by applying the following mod-

ifications. First, the extrinsic curvature is split into its trace and a tracefree part.

Second, a conformal transformation is applied to the three-metric and the extrinsic

curvature. Finally, a contracted version of the Christoffel symbols of the conformal

metric is introduced as an additional variable. The BSSN variables are then given

by

φ =
1

12
ln(det γij), γ̃ij = e−4φγij,

K = γmnK
mn, Ãij = e−4φ

(

Kij −
1

3
γijK

)

,

Γ̃i = γ̃mnΓi
mn = −∂mγ̃im (3.1)

This corresponds to a rearrangement of the degrees of freedom which is similar to

the York-Lichnerowicz split underlying most of the initial data calculation which

we will discuss below in Sec. 3.3. Expressing the ADM equations in terms of these
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variables leads to the BSSN system

∂tγ̃ij = βm∂mγ̃ij + 2γ̃m(i∂j)β
m − 2

3
γ̃ij∂mβ

m − 2αÃij, (3.2)

∂tφ = βm∂mφ+
1

6
(∂mβ

m − αK), (3.3)

∂tÃij = βm∂mÃij + 2Ãm(i∂j)β
m − 2

3
Ãij∂mβ

m + e−4φ (αRij −DiDjα)
TF

+α
(

K Ãij − 2Ãi
mÃmj

)

, (3.4)

∂tK = βm∂mK −DmDmα + α

(

ÃmnÃmn +
1

3
K2

)

, (3.5)

∂tΓ̃
i = βm∂mΓ̃

i − Γ̃m∂mβ
i +

2

3
Γ̃i∂mβ

m + 2αΓ̃i
mnÃ

mn +
1

3
γ̃im∂m∂nβ

n + γ̃mn∂m∂nβ
i

−4

3
αγ̃im∂mK + 2Ãim (6α∂mφ− ∂mα)−

(

σ +
2

3

)

(

Γ̃i − γ̃mnΓ̃i
mn

)

∂kβ
k,

(3.6)

where the superscript TF means that we take the trace free part of the preceding

expression. The last term on the right hand side of Eq. (3.6) vanishes in the

continuum limit by virtue of the definition of Γ̃i in Eq. (3.1). It has been shown

in [298], however, to cure instability problems observed in simulations which do

not employ octant symmetry [15]. In practice, setting the free parameter σ = 0

proves satisfactory. Alternatively to using this term, Alcubierre et al. [17] achieve

stable evolutions by recalculating Γ̃i from the metric γ̃ij whenever it appears on

the right hand side of Eqs.(3.2)-(3.6) in undifferentiated form. So far, all successful

implementations of the BSSN equations also require us to enforce the vanishing of

the trace of Ãij . This is realized numerically by replacing Ãij with Ãij − γ̃ij γ̃mnÃmn

after each time step. Some codes also enforce in a similar way the constraint

det γ̃ij = 1.

A further modification of the BSSN system has been introduced by Campanelli

et al. [98] who evolve the conformal factor in terms of the variable χ = e−4φ. Using

this “χ-version” of the BSSN system has in some instances been found to result in

better convergence properties [86]. Similarly, Marronetti et al. [215] report beneficial

behavior when evolving W ≡ e−2φ instead.

The hyperbolicity of the BSSN system was studied in [259] and provided first

insight into how well-posedness of the BSSN system is actually achieved. The sen-

sitivity of the hyperbolicity properties of the system under minor changes in the

equations may also explain why certain modifications, such as the enforcement of

trÃij = 0, appear to be necessary to obtain long-term stability. Notwithstanding
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the various open questions underlying the stability properties of the different formu-

lations of the Einstein equations, the BSSN system has become the most popular

choice in practice for writing the Einstein equations in simulations of black hole

and/or neutron star binaries.

3.1.2 The generalized harmonic formulation

In contrast to the BSSN system, the generalized harmonic formulation is not derived

from the ADM equations. Instead, it is based on the four-dimensional version of

the Einstein equations in harmonic gauge. The harmonic gauge condition is

�xα ≡ ∇µ∇µx
α = 0, (3.7)

and casts the Einstein equations in a particularly convenient form. Specifically, the

Ricci tensor can be written as

Rαβ = −1

2
gµν∂µ∂νgαβ + . . . , (3.8)

where the dots denote further terms containing the metric and its first derivatives,

but no second derivatives. The principal part of the Einstein equations Rαβ = 0

is therefore identical to that of the wave equation which has made this gauge very

popular in analytic studies of the Einstein equations (see e. g. [88]).

Even though this structure is also very appealing from a numerical point of view,

it has not been used successfully in black hole simulations. It has been shown by

Garfinkle [144] how one can generalize this system to accommodate arbitrary gauge

choices while still preserving the wave-like character of the principal part. This is

realized by introducing the source functions

Hα = �xα, (3.9)

as first introduced by Friedrich [138]. In the special choice of harmonic gauge

Hα = 0. With these functions, the Einstein equations in vacuum can be written as

Rαβ = −1

2
gµν∂µ∂νgαβ + . . .− 1

2
(∂αHβ + ∂βHα) , (3.10)

where again the dots denote terms only involving the metric and its first derivative.

The introduction of the auxiliary gauge functions Hα thus preserves the wave-like

principal part of the Einstein equations for arbitrary gauge choices.

As yet, no simple geometric interpretation of the Hα analogous to that of lapse
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α and shift βi has been found, but the two sets of gauge functions are connected

via the differential relations [248]

Hµn
µ = −K − 1

α2

(

∂tα− βi∂iα
)

, (3.11)

⊥i
µH

µ =
1

α
γik∂kα +

1

α2

(

∂tβ
i − βk∂kβ

i
)

− γmnΓi
mn. (3.12)

Just as lapse and shift need to be specified in addition to the evolution of the BSSN

equations, the functions Hα need to be specified by the user in the GHG system.

The definition (3.9) of Hα takes on the role of a constraint

Cα = Hα − Γµ
µα + gµν∂µgνα, (3.13)

which can be shown to be related to the Hamiltonian and momentum constraints

via [203]

[H, Mi] = (Gαβ − 8πTαβ)n
β = ∇(αCβ)n

β − 1

2
nα∇βC

β. (3.14)

While these constraints are propagated in the continuum limit by the evolution

equations, this can become problematic in numerical simulations, where constraints

will always be violated due to numerical inaccuracies. If these constraint violations

grow without control, they may give rise to numerical instabilities.

We have already seen, how the addition of the constraint to the right hand

sides of the evolution equations can cure numerical instabilities in the case of the

BSSN equation (3.6) for the variable Γ̃i. A similar cure using the constraint Cα

as suggested by Gundlach et al. [154] turned out to be an important ingredient

in Pretorius’ first simulation of a black-hole binary through inspiral and merger

[247]. These cases represent good examples of the intricacies involved in numerically

evolving the Einstein equations.

For further details of the generalized harmonic formulation the reader is referred

to Sec. III C of [252].

3.2 Gauge conditions

We have seen in the previous sections that the Einstein equations do not predict the

evolution of the gauge variables α and βi in the BSSN system or Hα in the gener-

alized harmonic formulation. Instead, these functions are specified by the user and

represent the coordinate freedom of general relativity. Indeed, any choice for these

functions is guaranteed not to affect the physical properties of the system under
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investigation. If the choice of gauge has no impact on the physics of the system, one

may wonder why it it necessary to discuss gauge conditions at all. The reason is that

the choice of gauge does have a strong impact on the performance and stability of a

numerical code. A simple example to illustrate this problem arises in evolutions of

a single Schwarzschild black hole [274]: A simulation starting on a time-symmetric

hypersurface using geodesic slicing, i.e. α = 1 everywhere, in combination with

vanishing shift, will hit the singularity after the short coordinate time of ∆t = πM ,

where M is the mass of the Schwarzschild hole. Because of the divergent nature of

the metric components at the singularity, a computer is not capable of representing

the singularity using numbers and instead produces “non-assigned-numbers” (nan)

at some grid-points. These quickly swamp the computational grid and render the

entire simulation useless.

A common strategy to avoid this problem is to reduce the lapse function α

as the hypersurfaces get closer to a singularity [201, 274, 17]. The corresponding

slow down in the advance of proper time “bends” the hypersurfaces around the

singularity. Such singularity avoiding slicings are frequently used in numerical codes.

A potential danger arising out of this procedure, however, is the so-called slice

stretching (see for example Sec. V B in [23]). Whereas the advance of proper time

at points xi close to the black hole singularity is slowed down, points further away

from the black hole advance almost normally, i.e. with α ≈ 1. As the evolution

proceeds, these differences accumulate and eventually neighboring points on the

numerical grid represent spacetime events far away from each other. Unless the

shift vector is carefully chosen to counteract this effect, this leads to resolution

problems near the black hole and gives rise to numerical instabilities.

Alternatively to specifying the slicing in terms of the lapse α, it turns out to

be beneficial in certain situations to use a densitized version Q ≡ γ−n/2α, where

γ is the determinant of the physical three-metric and n a free parameter. Most

notably, Khokhlov et al. [185] have shown that the use of fixed gauge conditions,

that is specification of the gauge in terms of prescribed functions of the spacetime

coordinates for α and βi almost always yields an ill-posed system. Using fixed gauge

in combination with a densitized lapse with n > 0, however, has been shown to result

in well-posedness. This approach has been successfully used in head-on collisions

of Kerr-Schild data [281, 280]. The use of a densitized lapse has also played an

important role in hyperbolicity studies of the Einstein equations (see, for example,

[142, 188, 94, 259]), and has been used as an ingredient in alternative formulations

of the Einstein equations (see, for example, [195]). In the case of gauge conditions

formulated in terms of differential equations, as for example in the moving puncture
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approach discussed below, numerical experiments indicate, that the original lapse

function performs equally satisfactorily as its densitized counterpart and is the

preferred choice for simplicity reasons.

The detailed study of the impact of gauge conditions and the reasons why some

conditions work so much better than others is still subject to ongoing research and

there remain many questions, in particular in connection with the shift vector. To

date, the choice of gauge conditions in numerical codes has been motivated by the

avoidance of singularities and slice stretching, but failsafe recipes for their derivation

are currently not known. Instead, the selection of gauge conditions is based on a

combination of educated guessing and empirical testing in black hole simulations.

Gauge conditions used in early numerical simulations were inspired by geomet-

rical ideas. The maximal slicing condition K = 0 derives its name from the fact

that the three-dimensional volume of spatial hypersurfaces obeying this condition

are maximal [274]. This condition leads to an elliptic equation for the lapse function

and is therefore computationally expensive and non-trivial to implement. Similarly,

the minimization of the strain (cf. Eq. (4.5) of [274]) leads to an elliptic condition

for the shift vector. To the authors knowledge, these gauge conditions have not

yet been implemented in more recent simulations of black hole mergers, so that it

remains unclear, to what extent the instabilities encountered in early simulations

are based on this choice of gauge. In any case, maximal slicing and the minimal

distortion shift form the basis of many modified gauge conditions employed in the

course of the following decades.

A remarkable simplification of the implementation of gauge conditions like max-

imal slicing is the idea of driver conditions [46, 15, 17]. Here, the elliptic equation is

replaced by a parabolic or hyperbolic equation which drives the gauge ever closer to

an equilibrium state similar to the equation of heat conduction. The key numerical

advantage is that such evolution equations are substantially easier to implement

because there arises no need for solving elliptic equations.

The idea of driver conditions was particularly appealing for stationary or quasi-

stationary spacetimes and has commonly been used for puncture type initial data

(see Sec. 3.3 below). By using co-moving or co-rotating coordinates, most of the

black hole dynamics can be absorbed in the coordinates and the spacetime vari-

ables show little actual change in coordinate time [17, 87, 16, 307, 123]. The most

prominent conditions are the “1+log” slicing

∂tα = −2αK, (3.15)
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and a second order in time Γ-driver condition for the shift. Different groups use

slightly different Γ-driver conditions. For example, the version reported in [16] is

∂tβ
i =

3

4
αpψ−n

BLB
i, (3.16)

∂tB
i = ∂tΓ̃

i − ηβi, (3.17)

with parameter choices p = 1 or 2, n = 2 or 4 and η ∈ [2, 5]. In these simulations,

the conformal factor is split into an analytic part ψBL of the Brill-Lindquist solution

and a regular remainder (see, for example, Sec. IV C of Ref. [17]).

Gauge conditions were studied in a more general way by Bona and Massó [67]

(for further discussion see also [14] and references therein). The above mentioned

harmonic gauge as well as the driver conditions are special cases of the Bona-Massó

family of gauge conditions [67]. This general class of gauge conditions has been used

in various analytic studies to investigate singularity avoidance and the formation of

gauge shocks [12, 253, 13].

While these ingredients still form a major part of the current generation of nu-

merical codes, the simulation of black-hole binaries through merger has so far only

been successfully accomplished after abandoning the idea of co-rotating coordinates

and instead allowing the black holes to move throughout the computational domain.

The first inspiral and merger was obtained by Pretorius [247] who used the general-

ization of the harmonic formulation described in the previous section. Specifically,

he constructed his gauge by evolving the gauge functions according to.

�Ht = −ξ1
α− 1

αη
+ ξ2n

ν∂νHt, (3.18)

Hi = 0. (3.19)

A few months after Pretorius’ breakthrough, the relativity groups of the University

of Brownsville and NASA Goddard independently discovered an evolution method

now commonly referred to as the moving-puncture approach [98, 41]. In contrast

to previous puncture simulations, the conformal factor is no longer decomposed

into an analytically known part plus a regular piece but is instead evolved as a

single quantity. In combination with modifications of the “1+log” slicing and the

Γ-driver condition which allow the black holes to move across the computational

domain they obtain a remarkably straightforward technique for evolving black-hole

binaries. Several groups have now developed codes using this moving puncture
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method. All codes use the modified “1+log” slicing condition

∂tα = βi∂iα− 2αK, (3.20)

but they differ in the modifications applied to the Γ̃-driver condition for the shift

vector. A sample of the exact gauge conditions reported by various groups is given

as follows

Code Reference

UTB [98] ∂tβ
i = Bi, ∂tB

i = 3
4
∂tΓ̃

i − ηBi,

Goddard [41] ∂tβ
i = 3

4
αBi, ∂tB

i = ∂0Γ̃
i − ηBi,

PSU [169] ∂tβ
i = 3

4
αBi, ∂tB

i = ∂0Γ̃
i − ηBi,

Lean [278] ∂tβ
i = Bi, ∂tB

i = ∂tΓ̃
i − ηBi,

Bam [86] ∂0β
i = 3

4
Bi, ∂0B

i = ∂0Γ̃
i − ηBi,

AEI [41] ∂tβ
i = 3

4
αBi, ∂tB

i = ∂0Γ̃
i − ηBi,

where ∂0 = ∂t − βi∂i. The free parameter η has an influence on the eventual

coordinate radius of the black holes [86] and typical choices for this parameter are

in the range 0.5 ≤ η ≤ 2 with no significant impact on the quality of the simulations

except for instabilities arising at outer refinement boundaries observed in some cases

for large values of η (cf. Ref. [279]). A more detailed analysis of different gauge

conditions in moving puncture evolutions of black-hole binary spacetimes is given

in van Meter et al. [221].

3.3 Initial data

We have so far discussed the differential equations determining the time evolution

of the spacetime hypersurfaces. In order to start an evolution, however, we first

need to construct an initial data set. This task confronts us with two problems.

First, the initial data need to satisfy the Hamiltonian and momentum constraints

(2.20), (2.21). The second problem is that the initial data set must represent a

snapshot of an astrophysically realistic system. The construction of initial data is

an entire branch of research in numerical relativity and we cannot cover all aspects

of this work in this report. For a more comprehensive summary of the initial data

calculation we refer the reader to Cook’s review article [110].

Most of the work on solving the constraints is based on the York-Lichnerowicz

split [201, 299, 300, 301, 302], which rearranges the degrees of freedom via a confor-
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mal rescaling and the split of the extrinsic curvature into its trace and a tracefree

part according to

γij = ψ4γ̃ij, (3.21)

Kij = Aij +
1

3
γijK. (3.22)

It turns out to be convenient to further decompose the tracefree part of the extrinsic

curvature into a longitudinal and a transverse part. Two approaches to this decom-

position have been used. In the physical traceless decomposition [233, 234, 235],

this procedure is applied directly to the traceless part of the extrinsic curvature Aij ;

in the conformal traceless decomposition [302, 305], it is applied to a conformally

rescaled version

Aij = ψ−10Ãij or Aij = ψ−2Ãij . (3.23)

Both approaches eventually require us to specify the conformal metric γ̃ij, the trace

of the extrinsic curvature K and the symmetric transverse tracefree part of the

extrinsic curvature. The four constraint equations are solved with these freely

specified functions and provide solutions for the conformal factor ψ and the potential

of the longitudinal part of the extrinsic curvature. The detailed equations can be

found in Sec. 2.2 of [110]. A particularly useful property of these splits is that

the momentum constraint decouples from the Hamiltonian constraint if we assume

conformal flatness, i. e. γ̃ij = δij , and K is a constant. This simplification is

frequently used in the practical calculation of initial data sets.

More recently, an alternative approach, called the thin-sandwich decomposition

[304], has become a very popular alternative to this approach. Loosely speaking, the

key idea here is to replace the extrinsic curvature in terms of the time derivative of

the metric using the evolution equation (2.15) for the metric. Eventually, one freely

specifies the conformal metric γ̃ij, its time derivative, the trace of the extrinsic

curvature and a conformally rescaled version of the lapse function. Solving the

constraint not only provides us with the extrinsic curvature and the three-metric

on the initial slice, but also with a lapse function and shift vector. The advantage

of this approach is that we can directly impose a condition on the time derivative

of the three-metric and obtain lapse and shift corresponding to this condition. This

is particularly useful in the construction of quasi-equilibrium data, as for example

a circularized binary in co-rotating coordinates, where the time derivative of the

metric is assumed to vanish. A more detailed description of the thin-sandwich

approach is presented in Sec. 2.3 of [110].

Having obtained the framework which facilitates an efficient solving of the con-
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straint equations, there remains the second difficulty we mentioned at the beginning

of this section. How do we obtain realistic black-hole initial data? There are two

main approaches to this problem. First we discuss the generalization of analytically

known single black hole solutions.

As one might expect, the approaches discussed above provide relatively simple

methods to derive the Schwarzschild solution. If, for example, we assume confor-

mal flatness and a time symmetric initial data set, i.e. Kij = 0, the momentum

constraints can be shown to be trivially satisfied and the Hamiltonian constraint

becomes

∇̄2ψ = 0, (3.24)

where ∇̄ is the flat space Laplace operator. The simplest solution to this equation

is

ψ = 1 +
M

2r
, (3.25)

which gives us the Schwarzschild solution in isotropic coordinates. This solution

can be generalized straightforwardly to any number of black holes. Indeed, the

linearity of the Hamiltonian constraint (3.24) immediately allows us to superpose

solutions to obtain [224, 81]

ψ =

N
∑

i=1

Mi

|~r − ~ri|
(3.26)

These are known as Brill-Lindquist initial data and represent N holes at positions

~ri. It can be shown that each of the poles in these solutions corresponds to spatial

infinity in an asymptotically flat hypersurface, that is, each hole provides a con-

nection to a different universe, so that we have in total N + 1 universes. A similar

solution where all holes provide a connection between the same two asymptotically

flat universes has been found by Misner [225].

Both, the Brill-Lindquist and the Misner data, represent N black holes at the

moment of time symmetry, that is, black holes with vanishing linear and angular

momentum. It is a remarkable property that analytic solutions for the momen-

tum constraints can even be found in the generalized case of Misner data with

non-vanishing momenta [74]. These data are commonly referred to as Bowen-York

data and start again with the simplifying assumption of conformal and asymp-

totic flatness as well as maximal slicing K = 0. With the analytic solution of the

momentum constraints, there merely remains the task of solving numerically the

Hamiltonian constraint for the conformal factor. Even more remarkable, the total

linear momenta ~Pi and spins ~Si associated with the individual holes in the limit

of isolated holes appear as explicit parameters in the analytic Bowen-York extrin-
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sic curvature and thus provide us with a straightforward physical interpretation

of the initial data. The total energy of the spacetime is also obtained relatively

straightforwardly from the 1/r falloff term of the conformal factor as r → ∞. The

corresponding generalization to Brill-Lindquist data was developed by Brandt and

Brügmann [79]. These data are known as puncture data and form the starting point

for most of the so-called “moving puncture simulations” mentioned above.

In spite of the great popularity of these initial data, there are some concerns

associated with the underlying simplifying assumptions. First, it has been shown

that there are no spatial hypersurfaces of the Kerr spacetime with non-zero spin

parameter for which the three-metric can be written in a conformally flat way [143].

It turns out that the initial data thus calculated represent the snapshot of a rotating

black hole plus a non-vanishing gravitational wave content. We will return to this

spurious gravitational radiation further below. At this point, we merely note that

all binary-black hole data successfully evolved to date contain such spurious initial

radiation. In comparison with the merger waveform, however, this spurious or junk

radiation is rather low in amplitude and appears to represent a smaller problem

than anticipated, at least in the case of non or slowly rotating black holes with

small linear momentum. Alternative non-conformally flat black hole initial data

based on generalizations of the single hole Kerr-Schild solution [183, 184] have been

investigated in initial data studies as well as numerical evolutions [216, 80, 214, 213,

70, 280, 278].

A popular alternative to puncture type initial data is often referred to as “ex-

cision data”. The idea here is to incorporate black holes in the form of horizon

boundary conditions into the initial data. A black hole is defined by the pres-

ence of an event horizon, that is, a boundary which defines a region of spacetime

from which null-geodesics cannot extend all the way to null-infinity. A more conve-

nient framework encapsulating horizons in numerical relativity is that of apparent

and isolated horizons ([124, 33, 73, 150] and references therein) which provides

boundary conditions for the metric and extrinsic curvature components at the hori-

zon. These conditions are particularly convenient to apply in combination with the

quasi-equilibrium assumption and, thus, the thin-sandwich approach. Black hole

data have been constructed along these lines in [111, 112, 242, 181, 114, 28] and

form the starting point for most of the simulations performed with the generalized

harmonic formulation [39, 90, 243, 78].

We conclude this discussion with a counting of the physical parameters of a

general black-hole binary initial data set. First, we need to fix the total scale of

our problem which corresponds to fixing the total ADM mass of the system. Once
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we have fixed the scale, six parameters are required to determine the spins ~S1 and
~S2 of the two holes and one parameter for the mass ratio q = M1/M2. In general

we also need to take into account the eccentricity of the orbits. The emission of

gravitational waves has the effect of circularizing the orbit [241], however, so that

for many purposes, it is sufficient to consider quasi-circular orbits1. In Most cases,

we therefore have seven physical parameters (see, however, [279, 172] and references

therein for investigations of eccentric binaries and their relevance in astrophysics).

In practice, current numerical codes are able to evolve a binary for at most a few

tens of orbits at acceptable computational cost, so that we need to specify an initial

separation of the binary. This can be done, for example, in the form of a coordinate

separation or an initial orbital frequency. Constructing a quasi-circular orbit then

requires the accurate specification of the orbital angular momentum corresponding

to a circular orbit. Three methods have been used in the literature to minimize the

eccentricity of the initial configuration. The effective potential method [109, 48] is

inspired by Newtonian physics and starts with a fixed value of the orbital angular

momentum. It then varies the separation of the orbit and defines the quasi-circular

configuration as that which minimizes the binding energy of the binary. The second

method is based on the approximate stationarity of a circular binary in co-rotating

coordinates. Mathematically, this corresponds to the existence of an approximate

helical Killing vector which is used to impose the approximate symmetry of the

binary under rotations [149, 151, 290] (see also [289] for a sequence of parameters

for quasi-circular puncture initial data sets). Finally, the post-Newtonian formalism

predicts the angular momentum of a binary with given separation on a quasi-circular

orbit (see, formula (64) in [86] based on the 3PN accurate calculations in ADM-

transverse-traceless gauge of [118]).

A comparison of the three methods applied to a non-spinning, equal-mass bi-

nary starting about two orbits prior to merger is given in [86], and finds excellent

agreement between the resulting momentum parameters. The phase of the result-

ing waveforms turns out to be rather sensitive to the initial parameters, however,

so that the three methods lead to notably different merger times. We will return

to the issue of residual eccentricity in the initial data below in Sec. 6.1 when we

discuss methods to further improve the initial momentum parameters.

1The term ’quasi’ refers to the fact that the orbit is continuously shrinking because of the
energy loss of the system
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3.4 Mesh refinement and outer boundary

conditions

We now turn our attention to the more technical aspects of numerical simulations

of black-hole spacetimes. The majority of codes solve the set of partial differential

equations determining the evolution of the binary using standard finite differencing

techniques (see, for example, Sec. 2.3 of [277] and Sec. II of [307]). The only

exception is the Caltech-Cornell effort [262] which employs spectral methods (see,

for example, [152]). For both methods, the accuracy of the numerical simulations

is determined by the resolution, that is the total number of grid points. Because of

the three-dimensional nature of the grids, a mild increase in resolution results in a

substantial increase in computational costs and memory requirements.

A major difficulty in performing such simulations arises out of the presence of

different length scales in the spacetimes under consideration. The black hole size

is approximately given by the mass of the hole M . Gravitational waves, however,

have wavelengths about one or two orders of magnitude larger and need to be

extracted sufficiently far away from the strong-field region, ideally in the wave-

zone. This wave-zone starts approximately at distances of 102 M . In order to avoid

contaminations from the outer boundary, the computational domain needs to be

several times as large as that value. With current computational resources, it is

impossible to evolve such large domains with the resolution required to resolve the

steep gradients near the black hole horizons. The only solution to this problem is

the use of mesh-refinement, that is, the use of different resolutions in different parts

of the computational domain. This applies both, to the finite differencing codes as

well as the Caltech-Cornell spectral code.

Mesh refinement has been made popular in numerical relativity by Choptuik

who thus obtained the required accuracy in his discovery of critical phenomena

[107]. Because of the movement of black holes, it is not sufficient to use fixed mesh

refinement, where the regions of increased resolutions remain stationary in time.

Mesh refinement where the zones of refinement change in time is called adapted

and generally measures the steepness of the gradients to determine what resolu-

tion is needed in a particular region of the domain. The implementation of mesh-

refinement in black-hole evolutions does not require the full machinery of adapted

mesh-refinement because it is relatively straightforward to locate black holes via

their apparent horizons and black holes are rigid objects and preserve their shape

to a remarkable degree. A common approach in the current generation of black-

hole codes is the so-called moving boxes method. That is, the computational grid
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Figure 3.1: Illustration of mesh-refinement in black hole simulations.

consists of a nested set of rectangular boxes with decreasing size and increasing res-

olution. A subset of these boxes follows the black hole motion and thus guarantees

that sufficient resolution is maintained near the black holes. This is illustrated in

Fig. 3.1 where the black holes are represented by their apparent horizons (white

hemispheres).

While mesh-refinement is conceptually rather straightforward, it represents a

formidable book keeping exercise in general relativistic simulations and also a po-

tential source of instabilities. Indeed, it is often hard to generalize stability studies to

numerical techniques with mesh-refinement and commonly the success of a method

is only established in practice by evolving black-hole data.

An alternative to mesh-refinement is the use of coordinates which are “stretched”

further away from the black holes and thus result in an effectively lower resolution.

These so-called “fish-eye” coordinates allow one to push the outer boundary to

larger radii at acceptable computational costs [35].

Fixed mesh-refinement was first used in black-hole simulations by Brügmann [83]

in fixed form for a dynamically sliced Schwarzschild hole. Pretorius’ first simula-

tions of a black-hole inspiral and merger used mesh-refinement based on a modified

Berger-Oliger [56] scheme (see [250, 249] for details). Further refinement pack-

ages include Carpet [263, 1] which provides mesh-refinement for several codes

[169, 278, 103, 192] using the Cactus computational toolkit [2], Paramesh [208]
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used by the Goddard group [40], Samrai [3] which is used by openGR [4] and

had [5, 202] used for mixed binary evolutions in [19].

A closely related topic concerns the specification of conditions at the outer

boundaries. A potential danger arising from outer boundary conditions is the vio-

lation of the constraints. Furthermore, it is not immediately clear, to what extent a

given set of boundary conditions preserves the hyperbolicity of the set of evolution

equations. Several conditions ensuring the constraints and/or the hyperbolicity have

been suggested in the literature [140, 95, 141, 261, 156, 187, 203]. To our knowl-

edge, however, only that of [203] has been successfully used for black-hole-binary

evolutions in the Caltech-Cornell code [243, 78]. Pretorius [247, 249] instead uses a

compactification of the spacetime. In contrast to characteristic formulations where

compactification is natural and common, it inevitably implies a loss of resolution

at sufficiently large distances from the binary when applied to slices approaching

spatial infinity. The reason is simply that the characteristics, i.e. null geodesics are

curves of constant phase of gravitational waves whereas space-like curves are not.

Pretorius solves this difficulty by using numerical dissipation in the outer parts of

the computational domain and thus avoids high-frequency noise.

All other codes use the relatively simple outgoing Sommerfeld condition; see,

for example, Sec. VI A of Alcubierre et al. [17]. For the studies performed so far,

this choice appears to provide sufficient accuracy provided the outer boundary is

located at sufficiently large distances from the strong field sources. It remains to

be seen, to what extent improvements will be needed in future studies.

3.5 Singularity treatment

A further complication in black hole simulations normally not encountered in other

areas of computational physics is the presence of singular points in the spacetimes.

Two types of singularities can arise in general relativity; coordinate singularities, as

for example the famous r = 2M in the Schwarzschild metric, and physical singular-

ities. If the code encounters either of these, it will crash because metric components

will diverge at the singularities. We have already discussed this point in the con-

text of singularity avoiding slicings which slows down the evolution in the vicinity

of singular points.

An alternative to this approach has been suggested by Unruh as cited in [285]

and is based on the cosmic censorship conjecture which stipulates that there exist no

naked singularities. Instead, a singularity will always be surrounded by a horizon,

that is, a causal boundary that disconnects a region of spacetime from the exterior
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in the sense that no information, not even light, can travel from the inner region

to the exterior. In consequence, the external spacetime is completely independent

from what is happening in the interior. It is possible therefore, to remove this

interior part containing the singularity from the computational domain and evolve

exclusively the exterior spacetime. This is graphically illustrated in Fig. 3.2, where

y

x

dss

test

Figure 3.2: Illustration of black hole excision.

the dots represent grid points and the circle the horizon. Points outside the horizon

are evolved normally (black dots). Inside the horizon there is a layer of boundary

points (grey) where data is commonly obtained from extrapolation from exterior

points. The inner points (white) are simply ignored, that is “excised” from the

numerical simulation.

Black hole excision has been used in the 1990s using a technique called causal

differencing [266, 24]. More recent implementations in finite differencing codes

have been based on straightforward extrapolation. The so-called “simple excision”

method of Alcubierre and Brügmann [15] provided a remarkably straightforward

method to obtain long-term stable evolutions of single black holes and has also

been used in simulations of orbiting binaries in co-rotating coordinates [87, 123].

More general techniques accommodating moving black holes via dynamic excision

have been used in [80, 270, 248, 280, 247, 243]

An alternative method to handle the coordinate singularity inherent to puncture

data was the decomposition of the conformal factor. In the simulation, only the

regular piece was evolved. The recent “moving puncture” simulations differ from

that approach in that they evolve the entire conformal factor. One consequence is

that the nature of the coordinate singularity also changes its nature [165, 161, 50,
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82, 287, 162] and may loose contact with the asymptotic spatial infinity. Given the

finite numerical resolution, however, these features inside the black hole horizon are

not resolved in a numerical simulation and the moving-puncture method appears

to provide a kind of automatic and natural excision.

Among the current generation of black hole codes, explicit excision is imple-

mented in the generalized harmonic codes of Pretorius and the Caltech-Cornell

effort and in the second order accurate version of Sperhake’s Lean code. The im-

plementation in the spectral Caltech-Cornell code is special in the sense that they

use a so-called dual-coordinate frame to accommodate the motion of the holes.

Using two coordinate systems and transforming variables between these systems

avoids the necessity to move the excision region across the computational domain;

see [262] for details.



Chapter 4

Diagnostics

Once we have successfully evolved a spacetime containing black holes, there still

remains the task of extracting physical information from the simulation. This pro-

cedure faces two major difficulties. First, a computer simulation only produces a

large set of numbers which represent coordinate dependent quantities. We need to

construct physical, that is gauge invariant, combinations from these quantities. A

second problem is that not all physical concepts familiar from Newtonian physics

are well-defined in general relativity. In particular, this applies to local quantities as

for example the energy contained in a particular region of spacetime. In the follow-

ing we will discuss all important quantities currently used in numerical relativity to

extract physical information from the simulations. For this purpose we assume that

all ADM variables are known in some part of the spacetime. These variables are

the lapse α, the shift β, the three-metric γij and the extrinsic curvature Kij . These

variables can always be computed straightforwardly from the evolution variables,

even if we use a formulation not based on the ADM equations.

4.1 Global quantities

Global quantities provide us with information characterizing the entire spacetime.

They are usually defined by evaluating variables at spatial or null infinity. In most

contemporary numerical evolutions, the computational domain does not extend all

the way to infinity, so that we need to approximate global quantities by calculating

them at large but finite distances from the strong field region near the black holes.

The total mass or energy of the spacetime is given by the so-called ADM mass

32
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[30] which is obtained from the three-metric by the surface integral

MADM =
1

16π
lim
r→∞

∫

Sr

√
γγijγkl(∂jγik − ∂kγij)dSl, (4.1)

Here γ is the determinant of the three-metric, Sr the coordinate sphere r = const,

Rm the unit normal field on that sphere and dSl = Rldθdφ with standard angular

coordinates θ and φ.

Similarly, the total linear and angular momentum of the spacetime can be cal-

culated from (see e. g. [302])

Pi =
1

8π
lim
r→∞

∫

Sr

√
γ (Km

i −Kδmi) dSm, (4.2)

Ji =
1

8π
ǫil

m lim
r→∞

∫

Sr

√
γxl (Kn

m −Kδnm) dSn, (4.3)

where ǫil
m is the three-dimensional Levi-Civita tensor.

We emphasize that all these quantities are by construction time independent.

In contrast, the Bondi-mass [69] is evaluated at null infinity, thus takes into account

the radiation of energy to null infinity in the form of gravitational waves and varies

with retarded time. It is a natural diagnostic tool in characteristic formulations but

not directly available in 3+1 evolutions.

4.2 Local quantities

We have already mentioned that it is often impossible to define local concepts of

energy and momenta. In the case of black holes, however, it is possible to use the

concept of horizons [33] to define mass and spin associated with the horizon and

thus with the black hole. Imagine for that purpose a three-dimensional hypersurface

Σ and a closed two-dimensional surface S embedded in Σ (see for example Fig. 1

in Ref. [124]. On each point of S one can define in and outgoing null vectors n̂α

and ℓα. The expansion of in and outgoing light cones is given in terms of these null

vectors by

θ(ℓ) = qαβ∇αℓβ, θ(n̂) = qαβ∇αn̂β, (4.4)

where qαβ is the induced two-metric on the surface S. A marginally trapped surface

is defined by the condition that the outgoing expansion vanishes θ(ℓ) = 0 and the

ingoing expansion satisfies θ(n̂) < 0. Loosely speaking, this means that all light

cones on the trapped surface are tilted inwards to such an extent that light rays

cannot escape outwards. In general, a black-hole spacetime has more than one
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marginally trapped surface and the apparent horizon is defined as the outermost

marginally trapped surface.

The main task in a numerical simulation is to locate surfaces S with vanishing

expansion θ(ℓ) = 0. Various apparent horizon finders have been developed by the

numerical relativity community. For more details on the numerical methods to

locate the apparent horizon and the physical interpretation of the horizon properties

the reader is referred to [49, 22, 124, 178, 33, 286, 194] and references therein.

For the discussion in the remainder of the work, the most important quantity is

the irreducible mass of the horizon which is defined in terms of the horizon area by

Mirr =

√

AAH

16π
. (4.5)

In the limit of an isolated hole, i.e. a black hole whose interaction with other holes

or matter sources is negligible, one can use the world tube of apparent horizons,

the so-called isolated horizon, to define the angular momentum associated with the

horizon

J(i) =
1

8π

∮

S

φm
(i)R

nKmndS, (4.6)

where Rn is the outgoing unit normal field on S and φm
(i) is the Killing vector

associated with the rotational symmetry and the index (i) labels the axis of the

rotation, e.g. the x, y or z component of the spin (see [33] for more details). Finally,

we can use the spin of the black hole to calculate the total black hole mass M

according to Christodoulou’s formula [108]

M2 =M2
irr +

J2

4M2
irr

. (4.7)

In the limit of a stationary spacetime with a single black hole, this mass corresponds

to the ADM mass. In spacetimes with a black-hole binary we can use the individual

black hole masses and the ADM mass to define the binding energy

Eb =MADM −M1 −M2. (4.8)

This definition assumes, however, that there are no other forms of energy present

in the spacetime. In numerical practice, this condition is normally violated because

initial data sets contain some spurious gravitational radiation in addition to the

black holes. In many cases, however, this spurious energy content turns out to be

small compared with the right hand side of Eq. (4.8) and the resulting error in the

binding energy is small.
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4.3 Gravitational waves

Arguably the most important information resulting from a simulation of black holes

is the amount and structure of the gravitational waves emitted in the course of the

inspiral and merger. The gravitational wave signal enables us to calculate the loss

of energy and linear and angular momentum of the system and also predicts the

strain h+,× exerted upon a distant gravitational wave detector.

The most common method to extract gravitational waves from a numerical sim-

ulation is based on the Newman Penrose formalism [232]. Specifically, one defines

a tetrad ℓα, n̂α, mα and m̄α where n̂ and ℓ are ingoing and outgoing null vectors

and m is a complex linear combination constructed out of two spatial unit vectors

such that

−ℓ · n̂ = 1 = m · m̄, (4.9)

and all other inner products vanish.

The Newman-Penrose scalar Ψ4 is defined in terms of this tetrad and the Weyl

tensor as1

Ψ4 = Cαβγδn̂
αm̄βn̂γm̄δ. (4.10)

In 3+1 simulations, the Weyl tensor is obtained from the fundamental forms ac-

cording to the Gauss-Codacci equations (2.16)-(2.18). In practice, Ψ4 is calculated

on a sphere of constant coordinate radius rex and is therefore a function of the

angular coordinates θ, φ and the time t.

It can be shown that under a tetrad rotation which leaves ℓ and n̂ unchanged but

rotates m, m̄ through an angle ϑ, the Newman-Penrose scalar Ψ4 transforms into

e−2iϑΨ4, that is as a spin-weight −2 field. It is therefore convenient to decompose

Ψ4 in a series of spin-weight −2 spherical harmonics Y −2
ℓm , where ℓ = 2, ... and

m = −ℓ, ..., ℓ denote the multipole indices [288]. At extraction radius rex we can

describe the gravitational wave signal in the form of mode coefficients ψℓm(t) of the

series expansion

Ψ4 =
∑

ℓ,m

ψℓm(t)Y
−2
ℓm (θ, φ). (4.11)

It turns out that the complete signal is often dominated by a small number of

modes, normally including the quadrupole moments ℓ = 2. It is for this reason that

gravitational waveforms are often presented in the form of one-dimensional plots

showing some ψℓm(t).

In order to ensure that Ψ4 is a measure for the outgoing gravitational waves,

1There are ambiguities in the overall sign of this definition in the literature
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the tetrad has to be chosen with care. In the case of spacetimes perturbatively

close to the Kerr-solution, the appropriate choice is the Kinnersley tetrad [190]. In

general numerical simulations, however, it is not clear how one can unambiguously

identify the Kinnersley tetrad. Instead, one commonly constructs the tetrad from

the timelike unit normal field n and three spatial triad vectors u, v and w according

to

ℓα =
1√
2
(nα + uα) , (4.12)

n̂α =
1√
2
(nα − uα) , (4.13)

mα =
1√
2
(vα + iwα) . (4.14)

The triad vectors, in turn, are constructed by applying a Gram-Schmidt orthogo-

nalization to the coordinate triad

ui = [x, y, z], (4.15)

vi = [xz, yz,−x2 − y2], (4.16)

wi = ǫimnv
mwn. (4.17)

There remains some freedom in starting the orthogonalization with u, v or w and

different implementations have been used by the community. So far, the choice does

not seem to have a notable impact on the resulting waveforms.

The approximative character of the tetrad makes it necessary to extract gravi-

tational waves at a sufficiently large distance from the strong field region near the

black holes. In practice, extraction radii of the order of 100MADM are used in most

current simulations. A more general discussion of various issues in the standard

wave extraction procedure is given by Lehner and Moreschi [199]. Methods for

approximating the Kinnersley tetrad more systematically have been investigated in

[54, 230, 231, 229], but have not yet been incorporated into the current generation

of black-hole codes.

The energy and linear and angular momentum radiated in the form of gravita-

tional waves is given in terms of the Newman-Penrose scalar Ψ4 via the integrals
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(see, e.g. [97, 257])

dErad

dt
= lim

r→∞

(

r2

16π

∫

Ω

∣

∣

∣

∣

∫ t

−∞

Ψ4dt̃

∣

∣

∣

∣

2

dΩ

)

, (4.18)

dPi,rad

dt
= − lim

r→∞

(

r2

16π

∫

Ω

ℓ̂i

∣

∣

∣

∣

∫ t

−∞

Ψ4dt̃

∣

∣

∣

∣

2

dΩ

)

, (4.19)

dJi,rad
dt

= − lim
r→∞

r2

16π
Re

∮

Ĵi

[

∫ t

−∞

(

∫ t̃

−∞

Ψ4dt̄

)

dt̃

]

(
∫ t

−∞

Ψ4dt̃

)

dΩ,

(4.20)

where

ℓ̂i = [− sin θ cos φ, − sin θ cos sinφ, − cos θ], (4.21)

sin θĴx = − sin θ sin φ∂θ − cos θ cosφ∂φ + is cosφ, (4.22)

sin θĴy = sin θ cosφ∂θ − cos θ sin φ∂φ + is cosφ, (4.23)

Ĵz = ∂φ, (4.24)

and s = −2 is the spin weight.

In practice, the integrals are evaluated on coordinate spheres with radius rex

where one also calculates Ψ4. The errors arising from the use of finite radii can be

estimated by calculating the quantities at different extraction radii and studying

the variation of Ψ4 and the momenta analogous to a convergence study of the code’s

performance at different grid resolutions. The uncertainties depend on the details of

the simulation, but in general are of the order of a few percent or less for extraction

radii of the order of 102 MADM (see e. g. [78, 278]).

An alternative method for extracting gravitational waves is based on the Zerilli-

Moncrief formalism [306, 227] and provides the GW signal in the form of two gauge

invariant perturbation functions. More details about this method and applications

can be found in [8, 7, 280, 192] and references therein.
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A brief history of black hole

simulations

Attempts at solving the Einstein equations numerically date back to the 1960s and

1970s and the pioneering work by Hahn, Lindquist, Eppley, Smarr and coworkers

[158, 127, 271, 273, 272]. These early attempts focused on initially time symmet-

ric, spacetimes in axisymmetry and were therefore restricted to head-on collisions

of black holes. The resulting simulations turned out to be relatively short-lived,

however, compared with the dynamic timescale of the problem. Considering that

modern supercomputers are just about powerful enough to facilitate numerical sim-

ulations of black-hole binaries, it is clear, that the early numerical studies were

inhibited by the computational resources available at the time.

It was therefore more than a decade later, before the significant increase in

computer power led to a systematic reinvestigation of the problem in the framework

of the “Grand Challenge” (see e. g. [25, 26, 27, 38, 113, 21]). These studies predicted

a total radiation of the order of 10−3MADM emitted in the head-on collision of two

black holes [26]. Simulations of unequal-mass binaries revealed a gravitational recoil

or kick of up to 10 − 20 km/s [21]. Simulations were also performed for the first

time in three dimensions [23]. In spite of this progress, however, the fundamental

difficulties with instabilities in the numerical simulations was not overcome. After

the end of the Grand Challenge, a joined effort by the universities of Pittsburgh,

Penn State and Texas investigated grazing collisions using the black hole excision

method [80].

The 1990s also saw the first investigation of alternative ways to write the Einstein

equations. Bona and Massó wrote the evolution equations in the form of balance

laws [66, 67, 68], not dissimilar to the way the equations of hydrodynamics are

commonly implemented numerically. Even though their efforts did not overcome

38
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the stability problems, the idea of using alternative formulations was gradually

adopted by other groups and eventually provided a major ingredient in solving the

binary black-hole problem (cf. Sec. 3.1). Most importantly, test simulations using

the BSSN formulation [267, 51] demonstrated improved stability properties.

The BSSN system also played an important role in the studies of the numerical

relativity group of the Albert Einstein Institute in Potsdam starting in the late

1990s. These efforts used initial data of puncture type, factored out the Brill-

Lindquist conformal factor during the evolution and employed coordinate conditions

which keep the black hole centers fixed on the numerical grid. These studies resulted

in the first grazing collisions of black holes [84], the first use of mesh-refinement

in black hole simulations [83] and the first long-term stable simulations of black-

hole head-on collisions [17] as well as single black hole spacetimes [15]. A guiding

principle for many of these studies was to absorb as much as possible the dynamics

of the system in the coordinates and use gauge conditions which drive the system

into quasi-stationarity. Eventually, this approach led to simulations of orbiting

binaries on time scales similar to the orbital period [87, 123].

In view of the persistent stability problems, the Lazarus project attempted to

use fully non-linear evolutions until shortly before the merger of the binary, but then

match the evolution to a perturbative treatment (see [34, 36] and references therein).

This approach facilitated the evolution of relatively short, plunging configurations

and provided estimates on the gravitational recoil [96] as well as the first results on

spinning binaries [37].

By early 2005, the combined methods of the BSSN formulation, improved gauge

conditions and/or black hole excision allowed the community to study head-on col-

lisions of black holes using mesh-refinement, more accurate fourth order numerical

schemes and/or non-conformally flat initial data of Kerr-Schild type [133, 280, 307].

The year 2005 also saw the eventual breakthrough, when Pretorius used the

remarkable combination of the generalized harmonic formulation of the Einstein

equations, implicit numerical schemes and spatial compactification to provide the

first simulation of a binary through inspiral and merger [248]. About half a year

later, the groups at Brownsville and Goddard independently discovered a method

to evolve and merge black-hole binaries of puncture type using a relatively straight-

forward to implement generalization of previous puncture evolutions with the BSSN

system [98, 41]. Retrospectively, it is quite remarkable that these two notably differ-

ent methods have provided within a few months a successful path to the “holy grail

of numerical relativity”. As of 2008, there exist about ten independent numerical

codes of one or the other method which have been demonstrated to produce stable
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and convergent simulations of at least some types of black-hole binary spacetimes

[249, 40, 100, 169, 278, 86, 262, 282, 192, 128]

In the next section we will summarize the results obtained with these codes in

the course of the last two and a half years.



Chapter 6

Properties of black-hole binaries

The majority of published articles forming the core of this thesis are concerned with

numerical simulations of black-hole binaries and the extraction of physical results

from those evolutions. Those numerical simulations have been performed with the

Maya code developed at Penn State University [270], Sperhake’s Lean code [278]

and Brügmann’s Bam code [86]. In each case, the code used is specified explicitly.

Performing numerical simulations of general binary spacetimes has only become

possible in the last few years following the breakthroughs of 2005. The results pre-

sented in the articles are best viewed in the context of the improved understanding

of black-hole binaries as developed by the relativity community as a whole. In this

section we therefore provide as background a summary of numerical results on the

dynamics of black-hole binaries pertaining to astrophysics, the ongoing effort to

detect gravitational waves and fundamental physics. Further details on all studies

are given in the references cited in the course of this section. More details on the

author’s work as presented in this thesis is given in the set of published articles

attached below.

Following the breakthroughs of 2005, the numerical relativity community has

generated a wealth of results on black-hole binary spacetimes. In order to present

these results, it is instructive to discuss the units commonly used in the modeling

of black holes. We have already mentioned that the speed of light c and the gravi-

tational constant G are set to unity throughout this work. This choice can be used

to relate cgs units, commonly used in astrophysics, according to

1 s = 2.9979× 1010 cm, (6.1)

1 g = 7.4237× 10−29 cm. (6.2)
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It is quite natural, in consequence, to use but one of these units to express dimen-

sional physical quantities in general relativity. For example, we can write the mass

of the sun as

M⊙ = 1.989× 1033 g = 1.477 km = 4.923× 10−6 s. (6.3)

We can thus easily compare the mass of the sun M⊙ = 1.477 km with the solar

radius R⊙ = 6.960 × 105 km and see that the sun is an object well described by

Newtonian gravity.

In the case of black hole spacetimes, we have a further simplification in that

such spacetimes are scale invariant. In Sec. 3.3 we have summarized the physical

parameters of generic black-hole initial configurations. In particular, we noted

that the total ADM mass of the system merely represents a scaling factor in a

numerical simulation. That is, expressed in units of the ADM mass, all quantities

of a simulation have the same numerical value irrespective of the magnitude of the

mass itself. A single numerical simulation thus represents a one-parameter family

of solutions. A further consequence is that dimensional quantities are commonly

expressed in units of the black hole mass M or the ADM mass of the system

MADM. The conversion to cgs or SI units is straightforward, however, once the

mass is specified, for example as 10 M⊙ = 14.77 km = 4.923× 10−5 s.

While the total mass of the system does not affect a numerical simulation,

we emphasize, that it is important for the interpretation of the results from the

viewpoint of gravitational wave detection. Suppose, a characteristic frequency is

given by ω = C/MADM, with C some constant. The maximal sensitivity of the

LIGO detector is located in a window around 150 Hz. The ADM mass of the

system will determine the system’s characteristic frequency and thus where this

frequency is located in the LIGO sensitivity range. For the case of a binary of two

non-spinning holes of mass 5M⊙ each it is the earlier inspiral phase which falls into

the maximum sensitivity range of LIGO, whereas for a system of two black holes of

mass 50 M⊙, it is the merger and ringdown signal. This is illustrated in Fig. 4 of

Pan et al. [238].

In gravitational wave data analysis, there exist further parameters which de-

scribe the location of the black-hole binary relative to the earth: the source’s po-

sition on the sky and its inclination relative to the plane of the detector. These

parameters are not related to the physical properties of the binary, however, and

need not concern us in this work.
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6.1 Non-spinning, equal-mass binaries

The inspiral of two non-spinning black holes of equal mass represents the sim-

plest binary configuration and has been the first to be evolved successfully through

inspiral, merger and ringdown [247, 41, 98]. This scenario is currently the best

understood type of binary systems and we will use it here to also illustrate the

fundamental characteristics of a black-hole inspiral and merger and the resulting

waveform patterns.

In realistic astrophysical scenarios, the binary will complete thousands of orbits

or more before coalescence. Unless there is significant interaction with third party

objects, the binary will loose all orbital eccentricity due to the circularizing effect

of gravitational wave emission [241]. Numerical simulations are currently able to

simulate only a few tens of orbits by which time most binaries are expected to be in

quasi-circular configuration. In order to accurately model such systems, numerical

simulations need to start from initial data which represent as closely as possible

a snapshot of a binary in quasi-circular inspiral. In practice, this has commonly

been approximated in one of the three methods we discussed in Sec. 3.3. All of

these methods, however, result in measurable eccentricity in the orbits (see, for

example, [90, 44, 243, 180]). This small residual eccentricity is a major source

of uncertainty in the comparison of numerical with post-Newtonian results [78]

and improved methods to further reduce the eccentricity have been designed using

iterative procedures [243, 78] or the integration of post-Newtonian equations over

a larger number of orbits [180].

For illustration of the binary inspiral, we show in the upper panel of Fig. 6.1

the puncture trajectories of the holes as obtained for the simulation of a relatively

short inspiral starting from the so-called R1-configuration (see Table I of [40]). For

trajectories containing more orbits, see, for example, Fig. III of [78]. One of the

most remarkable features of both, moving punctures as well as evolutions using

the generalized harmonic formulation is the similarity of the black hole coordinate

trajectories with the intuitively expected picture. In fact, the gravitational wave

signal obtained from using the coordinate trajectory of the apparent horizon in the

quadrupole formula for GW emission [241] shows remarkable agreement with the

wave signal extracted from the numerical simulation (see e. g. Fig. 7 of [90]. Bearing

in mind the gauge dependence of the trajectories, this result was by no means to

be expected.

Even though Fig. 6.1 shows a relatively short inspiral, it illustrates the three

phases commonly used to describe a binary evolution. First, however, we note the
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Figure 6.1: Upper panel: Trajectories of the two holes in the inspiral of two equal-
mass, non-spinning holes starting from a coordinate separation d/M = 6.514M (see
entry R1 in Table I of [40]. Lower panel: The ℓ = 2, m = 2 mode of the Newman-
Penrose scalar Ψ4 extracted from the same simulation at radius rex = 60 M .

small pulse near t = 70M . This pulse is an unphysical artifact of the approximative

nature of the initial data as described in Sec. 3.3. Starting at around t = 100M we

see a few cycles with relatively long wavelength which are generated in the inspiral.

The large amplitude part of the waveform between approximately 210 and 240 M

represents the plunge and merger stage and the remainder is the so-called ringdown

of the merged hole. Here, the signal is closely approximated by an exponentially

damped sinusoid.

Our example in Fig. 6.1 also illustrates the relatively smooth transition from the

inspiral to the ringdown and is representative for simulations performed by other

groups. This smooth transition is taken advantage of in the effective one body

approach (EOB) [91, 93] which employs analytic tools to approximately bridge

the gap between the post-Newtonian methods used to model the inspiral and the

close-limit ring-down part of the waveform modeled by perturbation theory. The

EOB approach is given flexibility in the form of free parameters which has enabled

it to reproduce numerical results with an accuracy significantly higher than the

numerical accuracy [120, 121] (see also [122] for the corresponding study of unequal

mass binaries).

The accuracy of numerically generated waveforms is likely to play a crucial

role in their eventual use in gravitational wave observations. Uncertainties in the

numerical results arise from various sources. Those errors arising from numerical

limitations, as for example discretization error, outer boundary effects and wave

extraction at finite radii, can be assessed rather straightforwardly, e. g. convergence

analysis, extraction at different radii etc. The impact of the initial data, however,

represents a more challenging problem, because different initial data types require
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different evolution methods. As a first step, orbital simulations starting from Cook-

Pfeiffer excision and puncture data have been compared in [39] and showed qual-

itatively good agreement. A more detailed comparison is currently inhibited by

residual spin in the excision data. Such problems are not present in comparisons of

head-on collisions of black-hole binaries. The comparison of collisions starting from

Brill-Lindquist, Misner and superposed Kerr-Schild data exhibit good quantitative

agreement [278]. Minor differences, of the order of a few per cent in radiated en-

ergy, in the evolutions of Kerr-Schild data might be attributed to spurious radiation

present in these data [63]. In summary, these results are reassuring, though more

detailed comparisons will be needed in the future.

All simulations of the last orbit of equal-mass, non-spinning binaries agree rather

well on the total radiated energy and angular momentum in the course of the

inspiral, merger and ringdown. About 3.5 % of the total mass and about 21 % of

the total angular momentum of the binary system are carried away in the form of

gravitational waves. Contributions from the earlier stages of the inpiral have been

estimated to radiate a further 1.5 % of the total mass (see e. g. [91]). The radiation

is dominated by the ℓ = 2, m = ±2 quadrupole contribution which carries > 98 %

of the total radiated energy [40, 100, 278, 86, 59]. This is illustrated in the upper

panel of Fig. 6.1 where we show the ℓ = 2, m = 2 mode as well as the next strongest

mode ℓ = 4, m = 4. From Eq. (4.18) we see that the energy scales with the square

of the wave amplitude and it becomes clear that only a small fraction of the energy

is contained in ℓ = 4, m = 4. All other modes are negligible compared with these

two.

The dominant role of the quadrupole radiation is no surprise and directly fol-

lows from post-Newtonian studies (see [61] and references therein). Indeed, most

of the inspiral phase up to about the last few orbits is rather well described by the

post-Newtonian approximation and one of the most important questions facing the

community right now is to determine, how close to the merger the PN approxima-

tion breaks down. For this comparison it is often convenient to split the complex

Newman-Penrose scalar Ψ4 into phase and amplitude

Ψ4(t) = A(t)eiφ(t). (6.4)

Sometimes, the wave signal is also expressed in terms of the gravitational wave
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polarizations + and × related to Ψ4 according to 1

Ψ4 = ∂t∂t(h+ − ih×), (6.5)

and the amplitude phase decomposition is applied to h+ and h×. The Newman-

Penrose scalar is the standard choice of describing gravitational waves in numerical

relativity, whereas h+ and h× are more directly related to the displacements in

gravitational wave detectors and thus more popular in GW data analysis. For the

comparison between numerical and post-Newtonian results, the choice of variables

is not important, however.

First comparisons between numerical and PN results demonstrated that the PN-

adiabatic model agrees better with the numerical results at larger BH-separations,

but gives reasonable results even when extrapolated to the formation of a common

apparent horizon [90]. This study also found the highest 3PN and 3.5PN order

to result in the best agreement with the numerical data. A study using numerical

waveforms covering the last 14 cycles of the inspiral was presented in [44, 43] and

revealed an accumulated phase discrepancy of about 1 rad until shortly before

the merger. Subsequent numerical simulations using improved initial data and

higher order finite differencing [179] or spectral methods resulted in even better

agreement [164, 78]. The most comprehensive comparison performed by the Caltech

group [78] showed a phase difference between numerical and various PN waveforms

of about 0.1 rad. The particularly good agreement observed for the Taylor T4

approximant result appears to be more coincidental, as it is significantly smaller

than the discrepancies among the different PN results. Comparisons with post-

Newtonian results uniformly found higher order amplitude corrections to the PN

waveforms to improve the agreement with numerical results [90, 164, 78].

So far we have focused on quasi-circular binaries. While the majority of systems

are indeed expected to have vanishing eccentricity, some astrophysical scenarios,

as for example third body interactions, may induce eccentric orbits. The effect

of significant eccentricities on the dynamics of the binary and the gravitational

wave signal has been studied in [279, 172]. Relatively small eccentricities cause

a small increase in the radiated energy and angular momentum, whereas binaries

with large eccentricities plunge rather than inspiral which significantly reduces the

energy and momentum emission. Binaries with larger eccentricity also emit an

increasing fraction of their energy in the ℓ = 2, m = 0 mode as opposed to the

dominating ℓ = 2, m = ±2 modes. The results obtained so far indicate, that there

1see [59] for a discussion of the constants of integration
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exists a relatively sharp distinction between orbiting and plunging configurations:

simulations with orbital angular momentum L . 0.8M2 plunge, those with L &

0.8 M2 inspiral. Hinder et al. [172] also demonstrated that the GW merger signal

shows universality for angular momenta above the critical value.

A remarkable behavior of black-hole binaries has been found by Pretorius [251]

when fine tuning the linear momentum parameter of the holes in the initial data.

Such fine tuning leads to binaries which exhibit “zoom-whirl” behavior, that is,

they inspiral initially, but then may stall at some finite separation for a while

and eventually merge or separate. A similar behavior is known in the structure

of geodesics of single black hole spacetimes. Similar black-hole encounters were

studied by Washik et al. [296] who show that the maximum spin parameter of the

final hole resulting from such mergers is a/M . 0.78 and is obtained for orbital

angular momentum L ∼M2.

6.2 Unequal mass binaries

Spacetimes containing black-hole binaries of unequal mass are no longer symmet-

ric under rotations by 180 degrees around the axis defined by the orbital angular

momentum. This loss of symmetry has important consequences for the gravita-

tional wave emission. In particular, the radiation of linear momentum is no longer

isotropic and results in a net-loss of linear momentum of the binary system. By

conservation of linear momentum, this imparts a recoil or kick on the final merged

hole. At the leading order, this effect arises from the overlap of the mass-quadrupole

with the octupole and flux-quadrupole moments [72, 240, 55]. This kick is a gen-

uinely relativistic effect and has significant repercussions on astrophysical systems

containing black holes [75, 159, 209, 219, 295, 200, 71, 174, 153, 236, 292, 204].

It might also manifest itself directly in astrophysical observations of quasi-stellar

objects without host galaxies [157, 211, 173, 220, 205] or the distorted morphology

of ×-shaped radio sources [217, 209, 219].

The kick generated by the inspiral and merger of unequal mass binaries has

been the subject of various approximative studies [134, 135, 130, 62, 115, 275, 276],

but highly accurate results require the solution in the framework of fully non-linear

general relativity and, thus, numerical relativity. First numerical studies of certain

mass ratios revealed kick velocities of the order of 100 km/s [169, 42]. In order to find

the maximum kick resulting from unequal-mass binary inspiral, González et al. [147]

calculated the kick for mass ratios ranging from q ≡M1/M2 = 1 to q = 4 and found

a maximum kick of 175±11 km/s for the mass ratio η ≡ q/(1+q)2 = 0.195±0.005.
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Figure 6.2: The recoil velocity resulting from the inspiral and merger of a non-
spinning binary with mass ratio η =M1M2/(M1 +M2)

2 as calculated in [147]. For
comparison the figure also includes values from Refs. [96, 169, 42, 115, 275].

This is illustrated in Fig. 6.2. The recoil as function of η is well modeled by Fitchett’s

[134] formula

v = Aη2
√

1− 4η(1 +Bη), (6.6)

with the coefficients A ≈ 1.2×104 and B ≈ −0.93 [147]. This velocity is larger than

the escape velocities of about 30 km/s for globular clusters and falls into the range of

escape velocities predicted for dwarf galaxies, but is significantly smaller than that

from giant elliptic galaxies of the order of 1000 km/s [219]. The resulting ejection

or displacement of the black hole following a merger has important repercussions

on models for the formation history of black holes as well as the structure of host

galaxies and the population of intergalactic black hole populations (see e. g. [75,

219, 295, 159, 236]).

In contrast to the emission of linear momentum, the radiated energy and angular

momentum is maximal in the equal mass case. Radiated energy and the final spin

parameter of the single hole are well approximated by fitting formulas [147, 59]

Erad = 0.0363 M

[

4q

(1 + q)2

]

, (6.7)

jfin = 0.089 + 2.4
q

(1 + q)2
. (6.8)

A further consequence of the reduced symmetry of unequal-mass binaries is

the more complex structure of higher order multipoles. In the equal-mass case,

all radiation modes with odd m vanish by symmetry. For unequal masses, this is
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no longer the case and the second strongest mode is typically ℓ = 3, m = ±3.

Additionally, it turns out that the percentage of energy radiated in higher (ℓ > 2)

modes increases from less than two per cent for q = 1 to more than 10% for

q = 4. This is illustrated in Fig. 12 of [59]. This sensitivity of higher order modes

to the mass ratio is significant for gravitational wave data analysis because the

inclusion of higher order modes in the analysis is likely to improve the accuracy

of parameter estimates and the detection range of gravitational wave observations

(see e. g. [31, 32]).

The comparison of numerical with post-Newtonian results for unequal-mass bi-

naries represents a more challenging task, because of the increased computational

cost of numerical simulations as the mass ratio q deviates more strongly from 1.

There are currently not as accurate and long numerical waveforms available for the

comparison. The sequence of unequal-mass binaries generated for the kick calcula-

tions in [147] was used in Berti et al. [59] for a comparison with post-Newtonian re-

sults in the inspiral and black-hole quasi-normal mode studies (see [105, 197, 191, 57]

and references therein for an introduction to quasi-normal modes) in the ring down

phase. Similar to the equal-mass study in [90], post-Newtonian results were found to

predict remarkably well the relation between wave frequency and amplitude. The

convergence of the PN series is non-monotonic but the inclusion of higher order

terms improves the agreement with the numerical results. Spin and mass param-

eter estimates obtained from the black hole ring down are in excellent agreement

with the values derived from the measured gravitational radiation and balance ar-

guments. Intriguing oscillations observed in the quality factor estimates obtained in

the ring down phase could indicate non-linear effects but might also be artifacts of

numerical noise. Simulations of higher accuracy are required to conclusively address

this issue.

The first study on the use of numerically generated waveforms in gravitational

wave data analysis was performed by Baumgarte et al. [47]. They discuss sources

of uncertainties in using numerical waveforms and estimate that first detection

efforts will require about 100 templates to cover the zero-spin part of the parameter

space. Pan et al. [238] used a set of numerical waveforms of equal and unequal-

mass binaries and studied the agreement of the numerical waveforms with a variety

of PN template families. For this study they used the fitting factor (FF) [29]

which takes into account the instrumental sensitivity and is a standard tool in

matched filtering data analysis. They thus found good agreement with FF≥ 0.96

for total masses of 10 − 20 M⊙ and ground-based detectors. For larger masses of

the binary, the detectors become increasingly sensitive to the merger and ringdown
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part of the waveform, but the addition of a phenomenological 4PN term extends

the range of high fitting factors to about 120 M⊙. The EOB method as well as

the phenomenological Buonanno-Chen-Valisneri [89] family of waveforms similarly

leads to high fitting factors in in the mass range 10− 120 M⊙. The EOB approach

is compared in further detail with numerical simulations in Buonanno et al. [93],

where the addition of a 4PN term is shown to result in phase agreement within

8 % of a GW cycle at the end of the ring down phase. The EOB method was also

used by Damour and Nagar [119] to compare the predictions for the spin of the

final merged hole. Agreement of about 2 % with the numerical results was found.

We have already mentioned the study in [122] which uses the EOB method to

fit numerically generated waveforms of unequal-mass binaries to within tiny phase

differences.

The generation of phenomenological waveforms is the subject of Refs. [10, 11].

Hybrid waveforms obtained from matching numerical with PN waveforms are used

to create a parameterization of unequal mass inspiral waveforms and study their use

in GW data analysis. The results indicate that the detection range of ground-based

interferometers might be enhanced significantly by using such waveform families.

A particular type of binaries of relevance for gravitational wave physics are the

so-called extreme mass ratio inspirals (EMRI) consisting of a stellar size compact

object orbiting around a supermassive black hole. EMRIs are considered one of the

most important sources of the space interferometer LISA (see e. g. [175, 176]). Mass

ratios of q ∼ 10−6 characteristic of such systems are currently beyond the range of

capabilities of numerical relativity and the modeling of these scenarios is commonly

done in the framework of perturbation theory and self force calculations (see [245]

for a review). Numerical results might still be of interest for less extreme mass

ratios, as simulations with q = 10 appear to be feasible and their comparison with

approximative studies might allow for some calibration of the methods analogous

to the comparison between numerical and PN results.

6.3 Spinning binaries

Spinning binaries are by far the most complex black-hole binaries. Bearing in

mind, that six out of the seven free physical parameters determine the spin, this

is not surprising. Indeed, the resulting parameter space is so large, that only a

subset has been studied in any detail so far. The majority of work has gone into

studying binaries where the spins are aligned or anti-aligned with the orbital angular

momentum. The case of the spin being aligned with the orbital angular momentum
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may also be the astrophysically most likely scenario as accretion processes have

been argued to result in alignment of spin and orbital angular momentum [64].

A particularly intriguing question concerns the formation of naked singularities

as would be the case for Kerr holes with spin parameter a/M ≥ 1. In particular,

spins aligned with the orbital angular momentum might be suspected to lead to a

very large spin of the final merged hole. The simulations presented in Ref. [99] (see

also [246]), however, demonstrate the difficulties in creating a maximally spinning

black hole in this way. The larger the spin magnitude, the longer the inspiral lasts

and the more angular momentum and energy is radiated from the system before

merger. For the interpretation of this delayed inspiral it is helpful to consider the

innermost stable circular orbit (ISCO) [189, 109, 91, 48, 117, 244, 60, 116, 151]. In

particular, it can be shown that the ISCO separation decreases for binaries with

aligned spins and increases for spins anti-aligned with the orbital angular momen-

tum [244]. Assuming that the ISCO gives a measure for the merger separation,

this result agrees with the delayed and accelerated inspiral observed for aligned and

anti-aligned inspirals respectively.

Binaries with spins which are not parallel to the orbital angular momentum

exhibit spin-precession. Campanelli et al. [102, 103] studied the precession using

configurations where the spins are either in the orbital plane or oriented at 45

degrees relative to the plane. They use a simplified method to determine the spin

of the individual holes where they integrate the flat space Killing vectors over the

horizon surface. Their simulations demonstrate the precession of the individual

spins as well as the realignment of the spin of the final black hole, the so-called

spin-flip, which may explain the reorientation of jets observed in radio galaxies

[239, 196]. The spin-orbit interaction was studied in special configurations starting

either without spin but with orbital angular momentum or the other way round in

[101]. In both cases the result is a transfer of momentum from spin to orbit or vice

versa. This coupling also contributes to the generally more complex structure of

spinning binaries.

An effect we have already discussed in the context of unequal-mass binaries, is

the recoil or rocket effect in binary black hole mergers. Post-Newtonian studies

predicted contributions to the recoil arising from the spin-spin and spin-orbit cou-

pling in black-hole binaries [186]. One of the most surprising results as yet obtained

from numerical simulations of black-hole binaries is the magnitude of the recoil in

spinning binaries. The first studies focused on spins parallel to the orbital angu-

lar momentum and anti-aligned with each other. These scenarios generate kicks

of up to 500 km/s [170, 103, 192] for inspirals and some tens of km/s for head-on
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collisions [106]. Even larger kicks of up to 1, 300 km/s were predicted by [103] for

configurations with spins in the orbital plane, but pointing in opposite directions.

Subsequent numerical studies of this scenario revealed unexpected kick magnitudes

of about 2, 500 km/s for spin amplitudes a/M ≈ 0.7 which implies maximum values

of 4, 000 km/s extrapolated for a/M → 1 [103, 146, 104]. Kicks above 1000 km/s

are also predicted by the EOB model [264]. Such large recoil velocities would in

fact be sufficient to eject black holes even from giant elliptic galaxies. Given that

galaxies with bulges appear to ubiquitously harbor supermassive black holes [132],

it appears that these “superkicks”, while theoretically possible, are not realized very

often in actual galactic mergers. This is also indicated by the Monte Carlo study

employing the EOB model by Schnittman et al. [264] which predicts that only a few

percent of mergers with mass ratios 1 ≤ q ≤ 10 and spin magnitude a1 = a2 = 0.9

with random spin orientation results in kicks above 1000 km/s.

The surprising magnitude of the recoil for spinning configurations has sparked

a wealth of more detailed investigations and attempts to generate fitting formulas

valid for general types of initial configurations. A multipolar analysis of the recoil

was presented Schnittman et al. [265] for unequal masses and non-zero and non-

precessing spins. Including specific multipoles with ℓ ≤ 4 was found to determine

the kick within a few percent, higher order multipoles being almost negligible.

This is in agreement with numerical studies which show the kick to be dominated

by overlaps between low multipoles [170, 246]. Schnittman et al. further found

these multipoles to describe well, how the kick is built up during the inspiral and

merger, including breaking effects in the late stages. The numerical results were

found to be well reproduced by an “effective Newtonian” formula. A heuristic

formula suggested in Campanelli et al. [103] for the kick magnitude was tested

by Lousto and Zlochower [206] using numerical simulations of three families of

unequal-mass, spinning binaries. They observe good agreement between the model

and the numerical simulations and find most of the kick to be generated close to the

merger of the holes. The most recent investigation by Baker et al. [45], however,

called into question the kick magnitude for unequal masses. In particular, they

observe a dependence on η3 instead of η2 which implies fewer kicks above 1000 km/s,

though still more than the number predicted by the EOB study of Schnittman and

Buonanno [264]. The dependence of the kick on the orientation angle of the spin

in the initial orbital plane was systematically analyzed in [171, 85]. The sinusoidal

dependence is in agreement with the heuristic model of [103]. This dependence of

the recoil on the spin-orientation can be understood intuitively in terms of frame

dragging (see Sec. IV C 2 and in particular Fig. 5 in [252]). The key idea is that the
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two holes exert frame dragging on each other and thus generate a periodic motion of

the line connecting the holes in the direction of the orbital angular momentum. The

frame dragging is terminated at merger and the initial spin-orientation determines

at which phase of the periodic motion the merger occurs. A further result shown in

Brügmann et al.[85] is the proportionality of the recoil to the difference in energy

emission in the ℓ = 2, m = +2 and m = −2 modes. 2.5 Post-Newtonian order

predictions were found to accurately model the spin evolution up to about 60 M

before the merger, but not beyond that, illustrating the need for more sophisticated

models, such as that of [264]. The asymmetry in the quadrupole radiation of these

superkick also implies that such GW sources appear brighter in some directions than

others. Implications of spinning binaries for GW detection were also investigated

by Vaishnav et al. [291]. They calculate the match between waveforms resulting

from different spinning binary configurations and find the inclusion of higher order

multipoles necessary to break the degeneracy between the waveforms in the context

of matched filtering analysis.

Comparisons of PN predictions with numerical results for the emitted gravi-

tational waveforms from spinning binaries are currently restricted to the case of

spins aligned with the orbital angular momentum. First results indicate that these

scenarios might be modeled by PN theory with comparable accuracy as in the

non-spinning case [163]. There still remains a lot of work to do before more com-

prehensive statements can be made.

A question of significant astrophysical interest concerns the spin-distribution

arising from black hole mergers. This effect was investigated in a series of papers by

Rezzolla et al. [254, 255, 256] which provided semi-analytic fits. An analytic study

based on conservation of momentum was presented by Boyle et al. [77, 76] and

suggests a series of numerical simulations to nail down remaining free parameters

in their predictions. The analytic study by Buonanno et al. [92] pointed out a

particularly intriguing scenario: the generation of a non-spinning hole in a merger

of a binary with spins anti-aligned with the orbital angular momentum. According

to their model, this special case can only be realized in the case of unequal masses.

The fitting formulas of [254] as well as numerical simulations presented in Berti et

al. [58] agree remarkably well with the study of [92].



Chapter 7

Conclusions

In summary, numerical relativity has achieved what has for a long time been called

its “holy grail”: The simulation of a black-hole binary through inspiral and merger.

The methods used for this breakthrough have turned out to be remarkably robust

and have so far been applied with great success to a wider class of black-hole bi-

naries. In the course of the last few years, numerical relativity has thus produced

important results for astrophysics, including kicks and diagrams for the spin dis-

tribution of black holes. At the same time, the field has established a connection

with approximative theories. The good agreement with PN results is encouraging

from the point of view of generating hybrid waveforms for use in gravitational wave

detection and parameter estimates. The use of numerical waveforms in the data

analysis pipeline is currently being started and is widely expected to improve the

detection range even of the current generation of GW detectors. Numerical relativ-

ity has also opened the door to studying a variety of fundamental questions such

as the existence of zoom-whirl orbits and testing the cosmic censorship conjecture.

In spite of the dramatic progress of the field, many open questions remain. Most

outstanding among these are a more systematic investigation of the spin param-

eter space including calibration of the results versus approximative theories. The

accuracy of the simulations performed to date has probably been higher than antic-

ipated, but it remains to be seen, whether it will prove sufficient for the daunting

task to generate complete waveform template banks for the ongoing effort to detect

and observe gravitational waves. It will also be interesting to probe a larger range of

parameters, as for example the mass ratio or the kinetic energy of binary spacetimes

and compare results with analytic or perturbative predictions. Questions such as

these will keep the community busy for years to come and it remains to be seen,

how many surprises are still to be discovered in the dynamics of black-hole binaries.
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