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This thesis desribes the appliation of numerial tehniques to solve Einstein's �eld equations

in three distint ases.

First we present the �rst long-term stable seond order onvergent Cauhy harateristi math-

ing ode in ylindrial symmetry inluding both gravitational degrees of freedom. Compared

with previous work we ahieve a substantial simpli�ation of the evolution equations as well

as the relations at the interfae by applying the method of Geroh deomposition to both the

inner and the outer region. We use analyti vauum solutions with one and two gravitational

degrees of freedom to demonstrate the auray and onvergene properties of the ode.

In the seond part we numerially solve the equations for stati and dynami osmi strings

of in�nite length oupled to gravity and provide the �rst fully non-linear evolutions of osmi

strings in urved spaetimes. The inlusion of null in�nity as part of the numerial grid allows us

to apply suitable boundary onditions on the metri and the matter �elds to suppress unphysial

divergent solutions. The resulting ode is heked for internal onsisteny by a onvergene

analysis and also by verifying that stati osmi string initial data remain onstant when evolved.

The dynami ode is also shown to reprodue analyti vauum solutions with high auray. We

then study the interation between a Weber-Wheeler pulse of gravitational radiation with an

initially stati string. The interation auses the string to osillate with frequenies proportional

to the masses of its salar and vetor �eld. After the pulse has largely radiated away, the string

ontinues to ring but the osillations slowly deay and eventually the variables return to their

equilibrium values.

In the �nal part of the thesis we probe a new numerial approah for highly aurate evolu-

tions of neutron star osillations in the ase of radial osillations of spherially symmetri stars.

For this purpose we deompose the problem into a stati bakground governed by the Tolman-

Oppenheimer-Volko� equations and time dependent perturbations. In ontrast to onventional

treatments, the fully non-linear form of the resulting perturbative equations is used. In an Eu-

lerian formulation of the problem the movement of the surfae of the star relative to the �xed

numerial grid leads to diÆulties in the numerial as well as the algebrai analysis. In order

to alleviate the surfae problem we use a simpli�ed neutron star model to study the non-linear

oupling of eigenmodes. By virtue of the high auray of our numerial method we are able

to analyse the exitation of eigenmodes over a wide range of initial amplitudes. We �nd two

distint regimes, a weakly non-linear regime where the oeÆients of higher order eigenmodes

inrease quadratially with the initial amplitude and a moderately non-linear regime where this

inrease steepens and an initially present mode of order j ouples more eÆiently to modes of

order 2j, 3j and so on.

We onlude this work with the development of a fully non-linear perturbative Lagrangian

ode. We demonstrate how the diÆulties at the surfae of the star that arise in an Eulerian

framework are naturally resolved in the Lagrangian formulation. This ode is used to study the

formation of disontinuities near the surfae for initial data of low amplitude.
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Notation

Unless stated otherwise, the following onventions apply. Greek indies run from 0 to 3, whereas

Latin indies are used for 3-dimensional quantities. We will generally represent vetors and ten-

sors of higher rank with boldfaed letters (e.g. T). Sometimes we will denote vetors, i.e. tensors

of rank (1,0), by partial di�erential operators (e.g. �

t

). If we need to distinguish between a

one-form and a vetor, the one-form will be marked with a tilde (e.g. ~u). If a one-form is the

exterior derivative of a salar funtion f , it will be denoted by df and the tilde will be omitted.

If v is a vetor, then ~v is the assoiated one-form, i.e. ~v = g(v; :). In oordinate free language

the ontration of a one-form ~u with a vetor v will be written as h~u; vi. The 4-dimensional

Riemann tensor and its ontrations will be denoted by the standard R. For the 3-dimensional

Riemann tensor we always use R. We will use square brakets to denote the ommutator as

is done in quantum mehanis, so for example [r

�

;r

�

℄ = r

�

r

�

� r

�

r

�

. Throughout this

work we will use natural units with  = 1 = G and the sign onvention \�+++" for the metri.

v



1 INTRODUCTION 1

1 Introdution

In 1915 Albert Einstein published a geometrial theory of gravitation: The General Theory

of Relativity. He presented a fundamentally new desription of gravity in the sense that the

relative aeleration of partiles is not viewed as a onsequene of gravitational fores but

results from the urvature of the spaetime in whih the partiles are moving. As long as no

non-gravitational fores at on a partile, it is always moving on a \straight line". If we onsider

urved manifolds there is still a onept of straight lines whih are alled geodesis, but these

will not neessarily have the properties we intuitively assoiate with straight lines from our

experiene in at Eulidean geometry. It is, for example, a well known fat that two distint

straight lines in 2-dimensional at geometry will interset eah other exatly one unless they

are parallel in whih ase they do not interset eah other at all. These ideas result from the

�fth Eulidean postulate of geometry whih plays a speial role in the formulation of geometry.

It is a well known fat that one needs to impose it separately from the �rst four Eulidean

postulates in order to obtain at Eulidean geometry. It was not realised until the work of

Gauss, Lobahevsky, Bolyai and Riemann in the 19th entury that the omission of the �fth

postulate leads to an entirely new lass of non-Eulidean geometries in urved manifolds. A

fundamental feature of non-Eulidean geometry is that straight lines in urved manifolds an

interset eah other more than one and orrespondingly diverge from and onverge towards

eah other several times. In order to illustrate how these properties give rise to e�ets we

ommonly assoiate with fores suh as gravitation, we onsider two observers on the earth's

surfae, say one in Southampton and one in Hamburg. We assume that these two observers

start moving due south in \straight lines" as for example guided by an idealised ompass exatly

pointing towards the south pole. If we follow their separate paths we will disover exatly the

ideas outlined above. As long as both observers are in the northern hemisphere the proper

distane between them will inrease and reah a maximum when they reah the equator. From

then on they will gradually approah eah other and their paths will inevitably ross at the

south pole. In the framework of Newtonian physis the observers will attribute the relative

aeleration of their positions to the ation of a fore. It is lear, however, that no fore is

ating in the east-west diretion on either observer at any stage of their journey. In a geometri

desription the relative movement of the observers �nds a qualitatively new interpretation in

terms of the urvature of the manifold they are moving in, the urvature of the earth's surfae.

With the development of general relativity Einstein provided the exat mathematial foundation

for applying these ideas to the fores of gravitation in 4-dimensional spaetime. One may ask
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why suh a geometrial interpretation has only been developed for gravitation. Or in other

words whih feature distinguishes gravitation from the other three fundamental interations?

The answer lies in the \gravitational harge", the mass. It is a ommon observation that the

gravitational mass m

G

whih determines the oupling of a partile to the gravitational �eld is

virtually idential to the inertial mass m

I

whih desribes the partile's kinemati reation to

an external fore. High preision experiments have been undertaken to measure the di�erene

between these two types of masses. All these results are ompatible with the assumption that

the masses are indeed equal. The mass will therefore drop out of the Newtonian equations

governing the dynamis of a partile subjet exlusively to gravitational fores ma = GmM=r

2

,

where a is the aeleration of the partile, G the gravitational onstant, M the mass of an

external soure and r the distane from this soure. The partile mass m an be fatored out so

that the movement of the partile is desribed in purely kinemati terms. The redundany of

the onept of a gravitational fore is naturally inorporated into a geometri theory of gravity

suh as general relativity. It is important to note that this behaviour distinguishes gravity from

the other fundamental interations whih are assoiated with di�erent types of harges, suh

as eletri harge in the ase of eletromagneti interation. It is not obvious how and whether

it is possible to obtain similar geometri formulations for the eletromagneti, weak and strong

interation. The uni�ation of these three fundamental fores with gravity in the framework of

quantum theory is one of the important areas of ongoing researh.

In order to formalize the ideas mentioned above, general relativity views spaetime as a 4-

dimensional manifold equipped with a metri g

��

of Lorentzian signature where the Greek

indies range from 0 to 3. At any given point in the manifold the signature enables one to

distinguish between time-like, spae-like and null diretions. The metri further indues a

whole range of higher level geometri onepts on the manifold. It de�nes a salar produt

between vetors whih leads to the measurement of length and the idea of orthogonality. From

the metri and its derivatives one an derive a onnetion on the manifold whih failitates

the de�nition of a ovariant derivative. The notion of a derivative is more ompliated in a

urved manifold than in the ommon ase of at geometry and Cartesian oordinates beause

the basis vetors will in general vary from point to point in the manifold. It is therefore no

longer possible to identify the derivative of a tensor with the derivative of its omponents.

Instead one obtains extra terms involving the derivatives of the basis vetors. In terms of a

ovariant derivative these terms are represented by the onnetion. In general relativity one
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uses a metri-ompatible onnetion de�ned by

�



��

=

1

2

g

Æ

(�

�

g

�Æ

+ �

�

g

�Æ

� �

Æ

g

��

);

where the Einstein summation onvention, aording to whih one sums over repeated upper

and lower indies, has been used. These onnetion oeÆients are also known as the Christo�el

symbols and de�ne a ovariant derivative of tensors of arbitrary rank by

r

Æ

T

��



= �

Æ

T

��



+ �

�

�Æ

T

��



+ �

�

�Æ

T

��



� �

�

Æ

T

��

�

;

where �

Æ

represents the standard partial derivative with respet to the oordinate x

Æ

. So for

eah upper index one adds a term ontaining the onnetion oeÆients and for eah lower

index a orresponding term is subtrated. With the de�nition of a ovariant derivative we an

�nally write down the exat de�nition of a \straight line" in a urved manifold. A geodesi is

de�ned as the integral urve of a vetor �eld v whih is parallel transported along itself

v

�

r

�

v

�

= 0:

Based on the ovariant derivative we an also give a preise de�nition of urvature. For this

purpose the Riemann tensor is de�ned by

R

�

�Æ

= �



�

�

Æ�

� �

Æ

�

�

�

+ �

�

�

�

�

Æ�

� �

�

Æ�

�

�

�

:

If we use a oordinate basis, i.e. e

�

= �=�x

�

, this de�nition an be shown to imply that for

any vetor �eld v

�

R

�

�Æ

v

�

= r



r

Æ

v

�

�r

Æ

r



v

�

;

whih is ommonly interpreted by saying that a vetor v is hanged by being parallel transported

around a losed loop unless the urvature vanishes (see for example Misner, Thorne, andWheeler

1973). In order to desribe the e�et of the matter distribution on the geometry of spaetime

one de�nes the Rii tensor as the ontration of the Riemann tensor R

�Æ

= R

�

��Æ

, where again

the Einstein summation onvention for repeated indies has been used. The geometry and the

matter are then related by the Einstein �eld equations

G

��

:= R

��

� 1=2R g

��

= 8�T

��

;
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where R = R

�

�

is the Rii salar and T

��

the energy momentum tensor. The interation

between the matter distribution and the geometry of spaetime an be summed up in the words

of Misner, Thorne, and Wheeler: \Spae ats on matter, telling it how to move. In turn, matter

reats bak on spae, telling it how to urve".

Although the �eld equations look rather neat in the ompat notation we have given above,

this should not hide the fat that the Einstein tensor G

��

is in fat a ompliated funtion of

the metri g

��

and its �rst and seond derivatives. Due to the symmetry of the Einstein tensor

and the energy momentum tensor the �eld equations represent 10 oupled, non-linear partial

di�erential equations, whih written expliitly may ontain of the order of 100,000 terms in the

general ase. It therefore ame as quite a surprise when Karl Shwarzshild found a non-trivial,

analyti solution to these equations just some months after their publiation. Sine then many

analyti solutions have been found and a whole branh of the studies of general relativity is

onerned with their lassi�ation. Enormous insight into the struture of general relativity has

been gained from these analyti solutions, but due to the omplexity of the �eld equations these

solutions are normally idealized and restrited by symmetry assumptions. In order to obtain

aurate desriptions of astrophysially relevant senarios one may therefore have to go beyond

purely analyti studies. A partiularly important area of researh onneted with general rela-

tivity that has emerged in reent years onerns the detetion of gravitational waves. In analogy

to the predition of eletromagneti waves by the Maxwell equations of eletrodynamis, the

Einstein �eld equations admit radiative solutions with a harateristi propagation speed given

by the speed of light. Due to the weak oupling onstant of the gravitational interation, whih

is a fator of 10

40

smaller than the eletromagneti oupling onstant, gravitational waves will

have an extremely small e�et on the movement of matter and are orrespondingly diÆult to

detet. If one onsiders for example a metal bar of a length of several kilometres, estimates

have shown that the detetion of gravitational waves requires one to measure hanges in length

orders of magnitude smaller than the diameter of an atomi nuleus. Even though attempts to

detet gravitational radiation go bak to the work of Joe Weber in the early sixties, it is only the

reent advane of omputer and laser tehnology that provides sientists with a realisti hane

of suess. The urrent generation of gravitational wave detetors GEO-600, LIGO, TAMA and

VIRGO that have been onstruted for this purpose are omplex multi-national ollaborations

and have reently gone online or are expeted to go online in the near future. Due to the

extreme smallness of the signals, the aumulation of data over several years is expeted to

improve the hanes of a positive identi�ation of signals from extra-galati soures.

Con�dene in the existene of gravitational waves has been signi�antly boosted by the Nobel
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prize winning disovery of the binary neutron star system PSR1913+16 (Hulse and Taylor 1975,

Taylor and Weisberg 1989). The spin-down of this system has been found to agree remarkably

well with the energy-loss predited by general relativity due to the emission of gravitational

waves and is generally aepted as indiret proof of the existene of gravitational radiation.

In order to simplify the enormous task of deteting gravitational waves, it is vital to obtain

information about the struture of the signals one is looking for. It is neessary for this purpose

to aurately model the astrophysial senarios that are onsidered likely soures of gravita-

tional waves and extrat the orresponding signals from these models. Aording to Birkho�'s

(1923) theorem the Shwarzshild solution, whih desribes a stati, spherially symmetri va-

uum spaetime, is the only spherially symmetri, asymptotially at solution to the Einstein

vauum �eld equations. As a onsequene a spherially symmetri spaetime, even if it ontains

a radially pulsating objet, will neessarily have an exterior stati region and be non-radiating.

It is neessary, therefore, to use less restritive symmetry assumptions in the modelling of as-

trophysial soures of gravitational waves. In fat the most promising soures of gravitational

waves urrently under onsideration are the in-spiralling and merger of two ompat bodies

(neutron stars or blak holes) and ompliated osillation modes of neutron stars that inrease

in amplitude due to the emission of gravitational waves by extrating energy from the rotation

of the star. Even though a great deal of information about these senarios has been gained

from approximative studies, suh as the post-Newtonian formalism or the use of perturbative

tehniques, a detailed simulation will require the solution of the Einstein equations in three

dimensions. The ompliated struture of the orresponding models in ombination with the

enormous advane in omputer tehnology has given rise to numerial relativity, the omputer

based generation of solutions to Einstein's �eld equations.

In order to numerially solve Einstein's �eld equations it is neessary to ast the equations in

a form suitable for a omputer based treatment. Among the formulations proposed for this

purpose by far the most frequently applied is the anonial \3+1" deomposition of Arnowitt,

Deser, and Misner (1962), ommonly referred to as the ADM formalism. In this approah

spaetime is deomposed into a 1-parameter family of 3-dimensional spae-like hypersurfaes

and the Einstein equations are put into the form of an initial value problem. Initial data is

provided on one hypersurfae in the form of the spatial 3-metri and its time derivative and

this data is evolved subjet to ertain onstraints and the spei�ation of gauge hoies. It is

a known problem, however, that the ADM formalism does not result in a stritly hyperboli

formulation of the Einstein equations and in ombination with its ompliated struture the

stability properties of the ensuing �nite di�erening shemes remain unlear. These diÆulties
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have given rise to the development of modi�ed versions of the ADM formulation in whih the

Einstein equations are written as a hyperboli system. These and similar modi�ations of the

anonial ADM sheme have been suessfully tested, but an optimal \3+1" formulation has

yet to be found and it may well be possible that an optimal \3+1"-strategy depends sensitively

on the problem that needs to be solved.

An entirely di�erent approah to the �eld equations is based on the deomposition of spaetime

into families of null-surfaes, the harateristi surfaes of the propagation of gravitational ra-

diation. The Einstein �eld equations are again formulated as an initial value problem and by

virtue of a suitable hoie of harateristi oordinates one obtains a natural lassi�ation of the

equations into evolution and hypersurfae equations. The harateristi initial value problem

was �rst formulated by Bondi et al. (1962) and Sahs (1962) in order to failitate a rigorous

analysis of gravitational radiation whih is properly desribed at null in�nity only. It is a generi

drawbak of \3+1" formulations that null in�nity annot be inluded in the numerial grid by

means of ompatifying spaetime and instead outgoing radiation boundary onditions need

to be used at �nite radius. Aside from the non-rigorous analysis of gravitational radiation at

�nite distanes these arti�ial boundary onditions give rise to spurious numerial reetions.

A harateristi formulation resolves these problems in a natural way but is itself vulnerable to

the formation of austis in regions of strong urvature. It is these properties of \3+1" formula-

tions and the harateristi method that resulted in the idea of Cauhy harateristi mathing

(CCM), i.e. the ombination of a \3+1" sheme applied in the interior and a harateristi

formalism in the outer vauum region. This allows one to make use of the advantages of both

methods as we will illustrate in more detail below.

This thesis onsists of four parts. First we will investigate the Einstein �eld equations from

the numerial point of view. This inludes a detailed desription of the ADM and the har-

ateristi Bondi-Sahs formalism as well as a general disussion of �nite di�erene methods

and numerial onepts suh as stability and onvergene. Setion 3 is onerned with Cauhy

harateristi mathing as a numerial tool to solve the �eld equations. In partiular we present

a long term stable CCM ode for ylindrially symmetri vauum spaetimes ontaining both

gravitational degrees of freedom. In setion 4 we investigate the behaviour of stati and dy-

nami osmi strings in ylindrial symmetry. The numerial odes developed for the analysis

are desribed together with a detailed study of the osillations of a osmi string exited by

gravitational radiation. Finally in setion 5 we present a fully non-linear perturbative approah

to study non-linear radial osillations of neutron stars. The perturbative formulation enables

us to study non-linear osillations over a large amplitude range with high preision. In an
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Eulerian formulation, however, the surfae of the star gives rise to numerial diÆulties whih

leads us to investigate a simpli�ed neutron star model instead. The setion is onluded with

the development of a Lagrangian formulation of dynami spherially symmetri stars in whih

the surfae problems are resolved in a natural way. We use the exat treatment of the surfae

for the analysis of shok formation near the surfae for initial data of low amplitude.
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2 The �eld equations from a numerial

point of view

We have already mentioned that the Einstein �eld equations have to be put into an appropriate

initial value form before they an be integrated numerially. In this setion we will desribe in

detail the \3+1" deomposition of Arnowitt, Deser, and Misner (1962) and the harateristi

formalism introdued by Bondi et al. (1962) and Sahs (1962). The setion is ompleted by a

disussion of general numerial aspets and the desription of some �nite di�erening shemes

used later in this work.

2.1 The \3+1" deomposition of spaetime

2.1.1 The foliation

Following York (1979) we start the disussion of the \3+1" formalism with a 4-dimensional

manifold M with oordinates x

�

. Then a suitable funtion t(x

�

) de�nes a 1-parameter family

of 3-dimensional hypersurfaes by

t(x

�

) = onst: (2.1)

We will refer to these hypersurfaes as �

t

. Geometrially they are represented by the one-form

dt. Next we onsider a 3-parameter family of urves threading the family of hypersurfaes. By

threading we mean

(1) the urves do not interset eah other,

(2) the tangent vetors v of the urves are nowhere tangent to �

t

, i.e. hdt; vi 6= 0

everywhere.

In this ase the urves are parameterized by t and the tangent vetor with respet to this

parameterization is �

t

whih satis�es hdt;�

t

i = 1. This foliation is illustrated graphially in

Fig. 1. We are now in the position to onstrut basis vetor �elds in the manifold M . For eah

slie � we hoose three vetor �elds e

a

, so that they are linearly independent at eah point of �

and satisfy the ondition hdt; e

i

i = 0. Then at eah point P of M , the set of vetors f�

t

; e

i

g is

a basis of the tangent spae T

P

at this partiular point. We note that no use of a \metri" has

been made so far. All we have done is to foliate M into a 1-parameter family of 3-dimensional

slies and to hoose suitable basis vetors at eah point.
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t(x

�

) = 0

�

dt

�

0

t(x

�

) = dt

�n

β

n

�

t

Figure 1: Two hypersurfaes of the foliation of spaetime in the \3+1" formalism. �

t

is the

tangent vetor �eld to the urves threading the foliation and n the hypersurfae orthogonal

vetor �eld. The relation between these vetors is de�ned by the lapse funtion � and the shift

vetor β.

2.1.2 Gauge freedom

Without a metri, the onepts of length and orthogonality are not de�ned. It will, therefore,

be an essential step in the onstrution of a metri to give meaning to these notions. We let g

be a symmetri rank two tensor �eld, hoose a vetor �eld n with hdt; ni 6= 0 and demand

g(n; n) = �1 (n is a unit vetor); (2.2)

8

i

g(e

i

; n) = 0 (n is orthogonal to �); (2.3)

g(e

i

; e

j

) = γ
ij

; (2.4)

where γ
ij

is a positive de�nite metri inside the hypersurfaes �. At this stage the 3-metri γ

is unknown and below we shall see that its omponents are the dynami variables of the ADM

\3+1" sheme and thus need to be spei�ed on the initial slie (subjet to ertain onstraints).

It is important to note the minus sign in Eq. (2.2). It is this hoie in ombination with the

positive de�niteness of the 3-metri γ whih determines the spatial nature of the 3-dimensional

hypersurfaes and the time-like harater of the normal vetor n. To what extent we have

now spei�ed the metri will beome learer if we use the basis f�

t

; e

i

g. Furthermore we will
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introdue the lapse funtion � and the shift vetor βi de�ned by

�

t

= �n+ βie
i

; (2.5)

n =

1

�

(�

t

� βie
i

): (2.6)

Then the omponents of the metri beome

g

00

= g(�

t

;�

t

) = g(�n+ βie
i

; �n+ βie
i

)

= ��

2

+ βiβ
i

;

(2.7)

g

0i

= g(�

t

; e

i

) = g(�n+ βje
j

; e

i

)

= β
i

;

(2.8)

g

ij

= γ
ij

; (2.9)

whih orresponds to the anonial \3+1" line element

ds

2

= (��

2

+ β
i

βi)dt2 + 2β
i

dtdx

i

+ γ
ij

dx

i

dx

j

: (2.10)

From this equation we an see that the metri omponent g

tt

will be negative unless a large

shift vetor is hosen. In the remainder of this disussion we will assume a suÆiently small

shift vetor and therefore onsider t the time-like oordinate. In ontrast the positive de�nite

nature of the 3-metri γ implies that the xi are spae-like oordinates.

In order to investigate the remaining gauge freedom we will now onsider the impliations of a

di�erent hoie of lapse � and shift β. Aording to Eq. (2.5) suh a di�erent hoie would result

in a modi�ed relation between n and �

t

, i.e. a di�erent family of urves threading the foliation.

This, however, merely orresponds to a oordinate transformation (relabelling of the points in

the manifold) and we see that lapse and shift represent the oordinate or gauge freedom of

general relativity. They an in priniple be hosen arbitrarily without a�eting the resulting

spaetime.

The lapse an be interpreted as the proper time measured by an Eulerian observer, that is an

observer moving with 4-veloity n. If we onsider two hypersurfaes �

t

, �

t+Æt

, the di�erene in

oordinate time is by de�nition hdt; Æt � �

t

i = Æt. An illustrative way of desribing this result

is to say that Æt � �

t

points from �

t

to �

t+Æt

. On the other hand we know from Eq. (2.6) that

hdt; ni = 1=�. So the vetor onneting the two hypersurfaes in the normal diretion is � �Æt �n.

The proper length of this vetor is given by ds

2

= ��

2

Æt

2

and the proper time experiened by

travelling along the integral urve of n from �

t

to �

t+Æt

is � � Æt. In this sense, the lapse allows
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us to measure the length of vetors pointing outside the hypersurfaes. In numerial relativity

the lapse an be used to ontrol the advane of proper time in di�erent regions of spaetime as

the numerial ode is evolved into the future. Suitable hoies for � and β will be disussed in

setion 2.1.6.

The shift vetor on the other hand introdues the onept of orthogonality relative to the spatial

hypersurfaes �. For this purpose it is neessary to de�ne the salar produt between the spatial

basis vetors e

i

and vetors pointing out of the hypersurfae. The shift vetor whih is given

by β
i

= g(�

t

; e

i

) introdues this salar produt. As a result �

t

� βie
i

is orthogonal to � in the

sense that its salar produt with any vetor tangent to � vanishes. We an then use the lapse

funtion to resale this vetor to unit length and thus reover Eq. (2.3).

2.1.3 Extrinsi urvature K and the 3-metri γ

Even though we have determined a basis adapted to our foliation of spaetime, it is onvenient

to desribe the Cauhy initial value problem in a general basis. Following York (1979), we

introdue the projetion operator ? and a shorthand notation for the projetion of a tensor of

arbitrary rank ?T by

?

�

�

= Æ

�

�

+ n

�

n

�

; (2.11)

?T

�

��

= ?

�

�

?

�

�

?



�

T

�

�

: (2.12)

We an use this de�nition to write the 3-metri γ as the projetion of the 4-metri g onto �

γ
��

=?g

��

= g

��

+ n

�

n

�

; (2.13)

whih in the \3+1" basis redues to

γ
ij

= ?

�

i

?

�

j

g

��

= g

ij

; (2.14)

γ
0�

= 0: (2.15)

The 3-metri γ ompletely desribes the intrinsi properties of the 3-dimensional manifold �.

In partiular, the onnetion on � whih for a vetor v tangent to the slie is de�ned by

D

�

v

�

= ?

�

�

?

�

�

r

�

v

�

; (2.16)
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n

Σ

n

Σ

t+dt

t

Σ

Figure 2: Illustration of the e�et of a non-zero extrinsi urvature on the embedding of the

hypersurfae �. In the left plot we see that n points in di�erent diretions at di�erent points of

�. In the right plot distanes inrease or derease as an observer moves from one hypersurfae

to another.

with obvious extension to general tensors, turns out to be the Christo�el onnetion of γ
ij

if we

restrit ourselves to spatial quantities and use the \3+1" basis f�

t

; e

i

g. Furthermore we de�ne

the 3-dimensional Riemann tensor R by

[D

�

;D

�

℄v�D

[e

�

;e

�

℄

v = R(e

�

; e

�

)v; (2.17)

R(e

�

; e

�

)n = 0: (2.18)

Again, this amounts to the usual de�nition in terms of γ
ij

if the \3+1" basis is used.

In order to desribe the embedding of � into M , we de�ne the extrinsi urvature

K

��

= �?r

�

n

�

: (2.19)

This an be shown to be equivalent to

K

��

= �

1

2

?L

n

g

��

= �

1

2

L

n

γ
��

; (2.20)

where L

n

is the Lie-derivative along the unit normal vetor �eld n. In partiular this equation

implies that K is a symmetri tensor. The e�et of a non-vanishing extrinsi urvature is

shematially illustrated in Fig. 2 by the following two examples.

(1) At di�erent points of �, the unit normal vetor n points in di�erent diretions

beause of the embedding: ?rn 6= 0.

(2) Due to the extrinsi urvature an observer moving along n from one hypersurfae

to another observes an inrease or derease in distane between points with �xed

spatial oordinates. This orresponds to a hange of the 3-metri γ: L
n

γ 6= 0.

In setion 2.1.5 we will see that the extrinsi urvature K and the 3-metri γ are the dynami

variables of the ADM sheme and need to be spei�ed on an initial hypersurfae �

0

. With an
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appropriate hoie of lapse funtion and shift vetor we will then be able to evolve the 4-metri

over some region of the manifold.

2.1.4 The projetions of the Riemann tensor

In order to derive the equations that will �nally determine the evolution of the metri, we follow

Stahel (1962) and look at the projetions of the Riemann tensor. Given the 3-dimensional

hypersurfaes and the unit normal vetor �eld n there are three non-trivial projetions of R

����

:

(1) all four omponents are projeted onto �: ?R

����

,

(2) three times onto �, one onto n: ?R

����

n

�

,

(3) twie onto �, twie onto n: ?R

����

n

�

n

�

.

These are all non-trivial projetions we an onstrut sine projeting three or more omponents

onto n yields zero beause of the symmetry properties of R. It is a remarkable fat that the

�rst two projetions are entirely determined by the initial data aording to the Gauss-Codai

equations

?R

����

= R

����

+ K

��

K

��

� K

��

K

��

; (2.21)

?R

����

n

�

= D

�

K

��

�D

�

K

��

: (2.22)

These equations determine 14 of the 20 independent omponents of the 4-dimensional Riemann

tensor. The remaining 6 omponents are ontained in the third projetion of R aording to

the Mainardi equation

?R

����

n

�

n

�

= L

n

K

��

+ K

��

K

�

�

+

1

�

D

�

D

�

�: (2.23)

If we assume that the 3-metri γ and the extrinsi urvature K are given on some initial slie

we are able to derive 14 of the 20 omponents of the 4-dimensional Riemann tensor from these

initial data. The Lie derivative of the extrinsi urvature L

n

K

��

, however, is not known at

this stage and as a onsequene we annot determine the remaining 6 omponents of R

����

nor

an we evolve the extrinsi urvature and the 3-metri forward in time. We therefore need an

additional soure of information that relates the Lie-derivative L

n

K

��

, i.e. the time derivative

of the extrinsi urvature, to the initial data. In general relativity this extra information is
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given in the form of the �eld equations

R

��

�

1

2

R g

��

= 8�T

��

; (2.24)

where the Rii tensor R

��

= R

�

���

and the Rii salar R = R

�

�

desribe the geometry and

the energy-momentum tensor T

��

is determined by the distribution of matter in spaetime.

The terms on the left hand side of this equation are often ombined into the Einstein tensor

G

��

.

2.1.5 The role of the �eld equations

It is important to note that the �eld equations have not been used so far. We have seen that

the initial data K and γ determine a substantial part of the 4-dimensional Riemann tensor,

but 6 omponents, or put another way, the seond time derivatives of the 3-metri γ remain

unknown. It is Einstein's �eld equations that allow us to express the undetermined projetions

of the Riemann tensor?R

����

n

�

n

�

in terms of the other projetions?R

����

and?R

����

n

�

and

the matter distribution on �. That allows us to alulate the 4-dimensional Riemann tensor

R

����

on the initial slie �

0

. Furthermore we an alulate the time derivatives of γ and K and

evolve the variables onto the next slie �

dt

. Then the proess is repeated on eah new slie

and eventually we have (in priniple) determined the geometry of the whole spaetime. Lapse

and shift provide the remaining information for the omponents of the 4-metri g. Before we

look at the �eld equations in more detail, however, we have to turn our attention to the matter

distribution.

a) The energy-momentum tensor

We have already mentioned that the energy-momentum tensor represents the matter distribu-

tion in spaetime. We illustrate this by onsidering the omponents of T in a oordinate system

x

�

. One an then interprete the omponent T

��

as the �-omponent of ux of �-momentum as

measured by an observer at rest in the oordinate system. In the ase of spatial omponents

this is ommonly referred to as the (�; �)-omponent of the \stress". The onept extends to

the time omponent, so that T

�0

desribes the ux of �-momentum aross surfaes t = onst

whih is just the density of �-momentum. As a speial ase T

00

represents the energy density.

Similarly T

0�

is the energy ux aross surfaes x

�

= onst. It an be shown that the energy

ux T

0�

is equal to the momentum density T

�0

and that the stress omponents T

ij

are sym-

metri (see for example Misner et al. 1973). As a onsequene the energy momentum tensor is

symmetri: T

��

= T

��

.
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Below we will see that projeting the Einstein equations in the same way as the Riemann tensor

will naturally divide the equations into two di�erent groups, the onstraints and the evolution

equations. In the previous setion we have studied the projetions of the Riemann tensor,

whih determines the left hand side of the �eld equations (2.24), onto n and the hypersurfaes

�. It remains therefore to alulate the orresponding projetions of the right hand side of the

equations given by the energy-momentum tensor. For this purpose we de�ne the energy and

momentum density and the stress tensor by

� = T

��

n

�

n

�

; (2.25)

j

�

= ?T

��

n

�

; (2.26)

S

��

= ?T

��

: (2.27)

The evolution of the matter variables follows from the onservation of energy and momentum

r

�

T

��

= 0

L

�

t

� = ��D

�

j

�

+ �(S

��

K

��

+ � trK)� 2j

�

D

�

�+ Lβ�; (2.28)

L

�

t

j

�

= ��D

�

S

��

+ �(2K

��

j

�

+ j

�

trK)� S

��

D

�

�� �D

�

�+ Lβj
�

: (2.29)

In order to determine the time derivatives of S extra information is required whih usually

omes in the form of an equation of state.

b) The evolution equations

With the projetions of the Riemann tensor given by Eqs. (2.21)-(2.23) and those of the energy-

momentum tensor given by Eqs. (2.25)-(2.27) we are now in a position to projet the �eld

equations onto � and n. First we onsider the projetion of both omponents onto �

?G

��

= 8�?T

��

: (2.30)

Inserting the projetions of T and G and solving for the time derivative of K, we obtain

L

�

t

K

��

= �D

�

D

�

�+ �[R

��

� 2K

��

K

�

�

+ K

��

trK� 4� (2S

��

� γ
��

tr S+ �γ
��

)℄ + LβK�� ;

(2.31)

L

�

t

γ
��

= �2�K

��

+ Lβγ�� ; (2.32)
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where the evolution equations for the 3-metri are simply the de�nition of the extrinsi urva-

ture. It is this set of equations whih forms the ore of the ADM-evolution of the metri. Given

appropriate initial data on some initial slie �

0

for the extrinsi urvature K

��

and the 3-metri

γ
��

we an evolve these funtions into the future. The 4-dimensional Riemann tensor and thus

the geometry of the spaetime is determined at any time aording to Eqs. (2.21)-(2.23). The

appearane of Greek indies in the evolution equations should not hide the fat that there are

only six omponents eah for the extrinsi urvature and the 3-metri γ. This beomes lear

when we use the adapted basis f�

t

; e

i

g in whih ase all Greek indies an be replaed by Latin

indies in Eqs. (2.31), (2.32). We an also see then that there are no evolution equations for g

0�

or, put another way, in this basis the �eld equations do not ontain seond time derivatives of

the g

0�

. In this sense the problem is under-determined.

) The onstraint equations

If we onsider the remaining projetions of the �eld equations, we �nd that they an be expressed

in terms of the initial data only

G

��

n

�

n

�

=

1

2

�

R+ (trK)

2

� K

��

K

��

�

= 8��; (2.33)

?G

��

n

�

= �D

�

K

��

+D

�

trK = 8�j

�

: (2.34)

These equations impose onditions that need to be satis�ed by the hypersurfae data for all

values of t. They are alled the energy or Hamiltonian onstraint (2.33) and the momentum

onstraints (2.34). In this sense, the problem is over-determined. However, it an be shown

that by virtue of the ontrated Bianhi identities r

�

G

��

= 0 the onstraints are satis�ed for

all values of t if they are satis�ed by the initial data.

d) The initial data problem

The problem we are faing now is to �nd initial data for γ and K that satisfy the onstraint

equations. A systemati approah to solving this problem is given in

�

O Murhadha and York

(1974). We will illustrate their method in the vauum ase with \maximal sliing" (f. setion

2.1.6), where the vanishing of trK leads to a deoupling of the onstraint equations.

�

O Mur-

hadha and York start by introduing a onformal 3-metri and extrinsi urvature aording
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to

γ
ij

= �

4

^γ
ij

; (2.35)

K

ij

= �

�2

^

K

ij

: (2.36)

In the ase of maximal sliing the onstraint equations an then be written in the form

^

���

1

8

�

^

R+

1

8

�

�7

^

K

ij

^

K

ij

= 0; (2.37)

^

D

j

^

K

ij

= 0; (2.38)

where

^

D is the ovariant derivative with respet to
^γ and ^

� =
^γij ^D

i

^

D

j

is the onformal Laplae

operator. The onformal transformation of the 3-dimensional urvature salar is given by

R = �

�4

^

R� 8�

�5

^

��: (2.39)

One an further split the traeless

^

K

ij

aording to

^

K

ij

=

^

A

ij

�

+

^

D

i

W

j

+

^

D

j

W

i

�

2

3

^γij ^D
k

W

k

: (2.40)

Here

^

A

ij

�

is the transverse traeless part of the onformal extrinsi urvature

^

K

ij

satisfying

^

D

j

^

A

ij

�

= tr

^

A

ij

�

= 0; (2.41)

and the vetor W is to be determined by Eq. (2.38) whih in the ase of maximal sliing an be

written as

^

�W

i

+

1

3

^

D

i

^

D

j

W

j

+

^

R

i

j

W

j

= 0: (2.42)

In this formulation of the initial data problem the onformal 3-metri
^γ and the transverse

traeless part

^

A

�

are regarded as given. Then the momentum onstraint (2.40) has to be solved

to obtain W and the onformal fator � results from the energy onstraint (2.37). By means of

the onformal deomposition we have thus isolated � and W

j

as the four variables determined

by the onstraint equations on the initial hypersurfae.

Muh of the work that has gone into the alulation of initial data has been based on the

onformally at approah of Bowen and York (1980). In this approah one assumes the spatial

3-metri to be onformally at, so that γ
ij

= �

4

Æ

ij

. However, reent work has ast doubt
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on the suitability of this approah in the ase of blak hole initial data. The diÆulties arise

from the fat that there exist no onformally at spae-like slies of the Kerr spaetime (Garat

and Prie 2000). The initial data resulting from the onformally at approah will therefore

represent distorted Kerr blak holes whih generally radiate o� a burst of gravitational waves

whih ontaminates the evolution of binary blak holes or perturbed Kerr spaetimes (\lose

limit" alulations). Reent e�orts have therefore gone into the alulation of more realisti

initial data whih is not based on the onformally at approah (see for example Marronetti

and Matzner 2000).

A omprehensive desription of the general initial value problem and more details on solving

the onstraint equations an be found in York (1983).

2.1.6 The kinemati degrees of freedom: lapse and shift

In the previous setion we have seen that there are no evolution equations for the omponents

g

0�

of the metri if we use the adapted basis f�

t

; e

i

g. The line element (2.10), however, shows

that the g

0�

are ompletely determined by the lapse � and the shift vetor β and these an

be hosen arbitrarily without a�eting the metri. Nevertheless the hoie has a substantial

impat on the performane of a numerial sheme. For example a poor hoie of oordinates

an result in a ode whih runs into a singularity before interesting results are omputed. A

large number of gauge hoies have been suggested in the past, some of whih we will desribe

below. A more omprehensive disussion an be found in Piran (1983).

The lapse funtion

(a) Geodesi sliing

In geodesi sliing � is set to 1 everywhere. This means that the oordinate time is idential

to the proper time of Eulerian observers. Although this sliing ondition appears to be quite

natural it does not lead to any signi�ant simpli�ations of the equations and, worse, it is

singularity seeking. We illustrate this behaviour in the ase of the Shwarzshild spaetime in

Kruskal oordinates (Smarr and York 1978), by onsidering an Eulerian observer lose to the

blak hole. An Eulerian observer does not initially move in the spatial hypersurfae and will

fall into the singularity on a time sale �M , where M is the mass of the blak hole. Choosing

the orthogonal time of an Eulerian observer as oordinate time will therefore ause the ode to

rash on a oordinate time sale of �M . Far away from the blak hole, however, where Eulerian

proper time is lose to the proper time of an astronomial observer we would basially like the

ode to advane up to t ! 1. One way to aomplish this is to slow down the advane of
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n; �

t

t

t+ dt

r

t+ 2dt

t

�

t

= �n

n

Figure 3: In order to avoid the ode entering a singularity that forms after a �nite amount of

time (the shaded region indiates an assoiated horizon) the advane of proper time is delayed

in the entral region by use of an appropriate lapse funtion. For onveniene we have set the

shift vetor β = 0.

proper time near the formation of a singularity as illustrated in Fig. 3. This, however, implies

a di�erent hoie for the lapse funtion �.

An alternative way of avoiding the ode to enounter singularities onsists in utting o� the

singularity from the alulation assuming that it is hidden inside an apparent horizon and thus

no information is lost in the exision (Thornburg 1987, Seidel and Suen 1992). This approah

has attrated a lot of attention in reent years and has been suessfully implemented in the

evolution of blak holes (see Alubierre et al. 2001 for example). In this work, however, we will

not make use of these methods and therefore restrit this disussion to onventional tehniques

for avoiding singularities.

(b) Maximal sliing

The restritions arising from geodesi sliing were reognised long ago by Lihnerowiz (1944)

who showed that a muh more suitable hoie for � is obtained if one requires that the trae

of the extrinsi urvature vanishes: trK = 0. This hoie has been termed maximal sliing

sine the volume of an arbitrary region 
 of a hypersurfae � will be maximal with respet to

all other hypersurfaes that are idential with � outside 
 if trK = 0 (see for example York

1979). If we insert the energy onstraint (2.33) into the evolution equation for trK [obtained

from Eq. (2.31)℄ we obtain the following ondition for �

�� = R�

3

2

�

��

1

3

trS

�

�: (2.43)
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A number of useful properties have made maximal sliing one of the most popular hoies in

numerial relativity.

(1) It avoids singularities.

(2) The onstraint equations in the initial data problem are deoupled (f. setion

2.1.5).

(3) It leads to some simpli�ation of the evolution equations.

The major drawbak is that we have to solve the ellipti partial di�erential equation (PDE)

(2.43) on eah time slie.

() Hyperboli sliing

Hyperboli sliing is a generalised version of maximal sliing. The trae of the extrinsi urva-

ture is required to be onstant but not neessarily to vanish: trK = onst. The major di�erene

is that the hypersurfaes asymptotially extend to future or past null in�nity, depending on the

sign of trK, instead of spatial in�nity as in the ase of maximal sliing. This property makes it

an interesting hoie for the analysis of gravitational radiation.

(d) Polar sliing

Another sliing ondition where the lapse funtion is determined by enforing a ondition on

the extrinsi urvature is polar sliing (see Bardeen and Piran 1983 for a detailed disussion).

Using polar oordinates (r; �; �), one demands that

trK = K

r

r

, K

�

�

+ K

�

�

= 0: (2.44)

This ondition leads to a paraboli PDE for the lapse funtion � whih, in general, is easier

to solve than the ellipti PDE that appears for example in maximal sliing. Furthermore

polar sliing is strongly singularity avoiding as we will illustrate in the evolution of a spherially

symmetri dust sphere in Lagrangian gauge and polar sliing in setion 5.4. The main drawbak

of polar sliing is the irregular behaviour of the lapse funtion in the non-spherially symmetri

ase (Bardeen and Piran 1983). This problem an be overome by using an alternative ondition,

for example maximal sliing, near the origin and implementing a gradual transition to polar

sliing outside a �nite radius r.

(e) Harmoni sliing
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In harmoni sliing one requires that t is a harmoni time oordinate

�t = 0: (2.45)

In terms of the lapse funtion � this ondition results in equations similar to those of maximal

sliing

harmoni sl. maximal sl.

r

�

n

�

�

= 0, �trK = r

�

n

�

= 0,

�

t

p

γ = 0, �

t

p

γ
�

= 0.

Harmoni sliing is another singularity avoiding ondition and was used by Bona and Mass�o

(1992) to write the Einstein equations as a hyperboli system of balane laws. The same authors

and oworkers have shown that many other sliing onditions suite this purpose as well (Bona

et al. 1997).

(f) approximate oordinate onditions, driver onditions

The suggestion of so-alled driver onditions by Balakrishna et al. (1996) arises from the fat

that one is normally interested in the ensuing properties of the numerial evolution rather than

the exat shape of the lapse (or shift) funtion. In this respet one has to note that the �eld

equations are intrinsially oordinate independent and thus there is no need to implement a spe-

i� oordinate ondition exatly if an approximate implementation leads to a stable evolution.

Balakrishna et al. illustrate this e�et in the ase of maximal sliing trK = 0, where the impor-

tant property is the vanishing of the trae of the extrinsi urvature. They demonstrate how

this ondition is atually satis�ed with higher numerial auray if one imposes the \K-driver"

sliing ondition �

t

(trK) +  � trK = 0 where  is a positive onstant. This ondition will result

in an exponential deay in any deviation from trK = 0, whereas the original implementation of

maximal sliing has no suh built-in orretion mehanism. The lapse funtion � is determined

in this ase by an ellipti equation similar to Eq. (2.43) in maximal sliing. The only di�erene

is the appearane of the term  � trK on the right hand side of the equation. Balakrishna et al.

demonstrate the superior performane of the \K-driver" ondition in the ases of at spae and

a self-gravitating salar �eld.

A related proposal by Balakrishna et al. onerning ellipti oordinate onditions in general is

also based on the suitability of approximate implementations of oordinate onditions. Instead

of solving the ellipti equation diretly, whih in general is omputationally expensive, they

suggest \evolving the ellipti equations" by rewriting them in paraboli form whih is similar
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to the relaxation method of solving ellipti PDEs (see for example Press et al. 1989).

We have listed these methods under the heading of sliing onditions, but the same priniples

apply to the shift vetor.

(g) New sliing onditions used in blak hole evolutions

In reent work on 3-dimensional blak hole exision Alubierre et al. (2001) have ahieved

substantial progress in terms of stability and auray by using a new type of evolution equation

for the lapse funtion in ombination with \Gamma freezing" onditions for the shift vetor

(see below). Alubierre et al. propose to evolve the lapse � aording to

�

2

t

� = ��

2

f(�)�

t

(trK); (2.46)

where f(�) is a positive funtion of � whih they normally set to 2=�. The key feature of this

hoie is that the trae of the extrinsi urvature beomes time independent for the �nal state

of a stationary blak hole (see their paper for details).

The shift vetor

(a) Normal oordinates

In normal oordinates the shift vetor is set to zero

βi = 0; (2.47)

whih implies that the oordinate vetor �

t

is normal to the hypersurfaes �. Normal oordi-

nates have the advantage that they do not beome singular as long as the hypersurfaes have

a regular intrinsi and extrinsi geometry (Bardeen 1983). They do not, however, failitate a

substantial simpli�ation of the �eld equations.

(b) Minimal shear gauge

The minimal shear ondition suggested by Smarr and York (1978) leads to ellipti equations

for the omponents of βi. Smarr and York �nd this gauge hoie partiularly useful for the

desription of gravity in the wave zone. The major drawbaks are the omplexity of the ellipti

equations for βi and the fat that it barely simpli�es the �eld equations.

() Simplifying gauge hoies
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This is atually a whole lass of gauge hoies. The idea is to impose algebrai relations on the

metri omponents on the initial slie

f(γ
ij

; x

i

) = q(x

i

); (2.48)

and to hoose the shift vetor so that these algebrai relations hold on all future hypersurfaes.

The three omponents of the shift vetor allow us to impose three relations of this kind. In

partiular, we an hoose up to three metri omponents to vanish identially. Solving the

resulting equations for βi, however, is non-trivial and it annot even be guaranteed that suh a

solution does exist. Popular examples of this gauge hoie are

(1) Diagonal gauge, where the 3-metri γ is diagonalized.

(2) Radial gauge, whih employs polar oordinates (r; �; �) and imposes the ondi-

tions γ
r�

= γ
r�

= 0 and γ
��

γ
��

�γ 2

��

= r

4

sin

2

�. Radial gauge simpli�es the �eld

equations signi�antly and results in paraboli equations for the βi.

(3) Isothermal gauge is similar to radial gauge, exept that the third ondition on the

metri omponents is now γrr = γ��. The simpli�ations are not as substantial

as in radial gauge, but isothermal gauge an be used for a more general lass of

physial senarios.

(d) \Gamma freezing onditions"

We have already mentioned the substantial improvements that Alubierre et al. (2001) have

ahieved in their 3-dimensional blak hole evolutions using new gauge onditions. In ombi-

nation with the sliing ondition mentioned above under (g) they relate the shift vetor to

the evolution of the onformal onnetion funtions

^

�

i

introdued by Baumgarte and Shapiro

(1999) and Shibata and Nakamura (1995). In their simulations they use a ondition of the form

�

2

t

βi =
k

�

4

�

t

^

�

i

� ��

t

βi; (2.49)

where k = 0:75, � = 3=M , M is the initial ADM mass of the system and � is the onformal

fator introdued in the disussion of the initial value problem in setion 2.1.5. Alubierre et al.

all these onditions \Gamma freezing" beause they are related to the ellipti operator for βi

in the \Gamma freezing ondition" �

^

�

i

= 0.

A more detailed desription of di�erent gauge hoies an be found in Piran (1983).
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2.1.7 The urrent state of \3+1" formulations: reent progress and limitations

The standard \3+1" deomposition we have desribed above was �rst formulated by Arnowitt,

Deser, and Misner (1962). In the ourse of time numerous odes have been developed on the

basis of this formulation. The struture of the ADM evolution equations (2.31), (2.32), how-

ever, has been a onstant ause of onern. It is well known that these equations do not satisfy

any known hyperboliity ondition and the stability properties of the orresponding numerial

implementations remain obsure. In the ourse of the 1990s attention shifted towards modi-

fying the anonial ADM-formalism in order to obtain stritly hyperboli formulations of the

Einstein equations (see for example Bona et al. 1995, Friedrih 1996, Anderson et al. 1997).

The question to what extent these formulations result in a superior numerial performane and

thus whether the diÆulties enountered in the ADM formalism are entirely due to a possible

non-hyperboliity has not yet been answered.

An alternative modi�ation of the ADM-formulation whih has attrated a great deal of atten-

tion reently is based on a onformal deomposition of the original ADM-equations (Shibata

and Nakamura 1995, Baumgarte and Shapiro 1999). In this \BSSN"-formulation one starts

with a onformal transformation analogous to that used in the initial-value problem in setion

2.1.5 (d). The 3-metri γ
ij

is deomposed into the onformal metri
^γ
ij

and the onformal fator

� aording to Eq. (2.35). Similarly the extrinsi urvature is split up into the trae trK and

the onformal traeless extrinsi urvature

^

A

ij

. The set of fundamental variables is ompleted

by the onformal onnetion oeÆients

^

�

i

=
^γjk^�i

jk

. In terms of these variables Baumgarte

and Shapiro have obtained signi�antly improved stability properties as ompared with the

standard ADM-equations. The \BSSN"-formalism has also been suessfully implemented by

Alubierre et al. 2001.

Signi�ant progress in \3+1" numerial relativity has been ahieved by the implementation of

new sliing onditions and shift vetors in 3-dimensional evolutions of blak holes (Alubierre

et al. 2001). We have inluded these new gauge onditions in the list in the previous setion.

In spite of the progress ahieved in reent years, there remain some diÆulties intrinsi to any

\3+1" formulation. These are generally onerned with the restrition to a �nite grid in numer-

ial omputations. A lot of interest in the modelling of ompliated astrophysial senarios in

the framework of general relativity is motivated by the advent of highly sensitive gravitational

wave detetors. One of the fundamental requirements of a numerial simulation is therefore the

extration of gravitational waves and the generation of predited gravitational wave templates.

It is a well known fat, however, that gravitational waves are unambiguously de�ned at null

in�nity only. Penrose (1963) has shown how it is possible to desribe in�nity in terms of �nite
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oordinate values whih enables one to inorporate null in�nity in a �nite oordinate grid. In

numerial relativity, however, this \ompati�ation" is only pratial if the oordinates are

adapted to the harateristis of the underlying equations and it is not entirely lear how to

implement this tehnique in \3+1" formulations. Consequently approximative tehniques are

used to interprete gravitational waves at �nite radii. Furthermore outgoing radiation boundary

onditions need to be spei�ed at the outer grid boundaries. These will normally give rise to

spurious reetions whih ontaminate the numerial evolution.

The diÆulties onerning the interpretation of gravitational waves in \3+1" formulations have

been known for a long time and motivated the development of alternative deompositions of

spaetime as early as the early sixties (Bondi et al. 1962, Sahs 1962). In the next setion

we will disuss this harateristi formulation in more detail. A generi problem of this ap-

proah, however, arises from the fat that light rays are deeted by matter. In regions of

strong urvature the fousing of light rays may give rise to so-alled austis. If that is the ase

the harateristi foliation of spaetime whih is based on the null-geodesis will break down.

Regions of strong urvature are generally restrited to small regions around the astrophysial

soures. In this sense the \3+1" and the harateristi formalisms omplement eah other whih

has given rise to the idea of Cauhy-harateristi mathing, i.e. the use of a \3+1" sheme for

an interior region ontaining the astrophysial soure and a harateristi method in the outer

vauum region inluding null in�nity. In setion 3 we will disuss these ideas in more detail and

develop a Cauhy-harateristi mathing ode in ylindrial symmetry.

2.2 The harateristi initial value problem

In setion 2.1 we have seen how one an deompose spaetime into a 1-parameter family of

3-dimensional spae-like hypersurfaes. An alternative way to foliate spaetime is based on the

harateristi surfaes of the vauum �eld equations whih an be shown to be the null surfaes

of the underlying spaetime (Pirani 1965). Gravitational waves will as a matter of ourse travel

along null geodesis and the harateristi approah is thus partiularly suitable for the analysis

of gravitational waves. It is this property whih provided the main motivation for the ground

breaking work by Bondi et al. (1962) and Sahs (1962) whih we will follow in our desription

of the harateristi formalism. In this disussion we will onsider the vauum ase of the �eld

equations R

��

= 0. In the ase of Cauhy-harateristi mathing this is normally no restrition

sine matter is assumed to be present in the inner Cauhy region only.



2 THE FIELD EQUATIONS FROM A NUMERICAL POINT OF VIEW 26

2.2.1 Charateristi oordinates

We start our disussion with a 4-dimensional manifoldM and assume thatM is equipped with a

metri g of signature +2. In the Bondi-Sahs formalism the gauge freedom of general relativity

is used to impose the following onditions on the oordinates.

(1) It is assumed that there exists a salar funtion u with the property g(du; du) = 0,

whih means that the surfaes u = onst are null surfaes. Suh null surfaes will always

exist if the �eld equations admit wave-like solutions sine the orresponding harateristi

surfaes an be shown to be null (Pirani 1965).

(2) A normal diretion to these surfaes is de�ned by

~

k := du. It follows that h

~

k; ki = 0 and

r

k

k = 0, i.e. the tangent urves of k are null-geodesis. They are normal to the surfaes

u = onst [any vetor v in that surfae satis�es g(k; v) = 0℄ and lie in these surfaes

(hdu; ki = 0).

(3) In order to eliminate oordinate irregularities, the normal vetor k

�

is assumed to satisfy

the onditions

� := r

�

k

�

6= 0; (2.50)

j�j

2

:=

1

2

(r

�

k

�

)(r

�

k

�

)� �

2

6= �

2

; (2.51)

where � an be interpreted as the expansion and � as the shear of the ongruenes of null

geodesis.

(4) The next step onsists of labelling the geodesis. For this purpose we will use standard

angular oordinates � and �. These an always be hosen so that

hd�; ki = hd�; ki = 0; (2.52)

D := g

��

� g

��

� g

2

��

6= 0: (2.53)

The �rst ondition implies that the oordinates � and � are onstant along a geodesi and

the seond ondition ensures a non-degenerate 2-dimensional volume element det (g

AB

) 6= 0,

where upper ase Latin indies run from 2 to 3 orresponding to the oordinates � and �.

(5) Finally the null geodesis labelled by u; �; � are parametrized by a funtion r(u; �; �). In

order to obtain a regular parametrization it is neessary that the Jaobian matrix of r
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u

r

Figure 4: Charateristi oordinates in the ase of a null time-like foliation.

vanish nowhere. The onditions imposed in (3) on the expansion and shear ensure that

this will be the ase. Bondi and Sahs further require the oordinate r to satisfy the

relation

r

4

:= D(sin

2

�)

�1

: (2.54)

As a onsequene the area of the 2-spheres de�ned by u; r = onst is given by 4�r

2

and

r is the so-alled areal radius. This ondition orresponds to the radial gauge ondition

disussed in setion 2.1.6.

The oordinate lines u = onst and r = onst are shematially illustrated in Fig. 4 in the ase

of a time-like �

u

and a null vetor �

r

.

2.2.2 The Bondi-Sahs line element

With the oordinate onditions of the previous paragraph the gauge freedom of general relativity

has been used to onstrain the form of the metri. This proess is analogous to speifying lapse

and shift in the \3+1" formalism. The result an be shown to be the Bondi-Sahs line element

ds

2

= V

e

2�

r

du

2

� 2e

2�

dudr + r

2

h

AB

(dx

A

� U

A

du)(dx

B

� U

B

du); (2.55)

where upper ase Latin indies again run from 2 to 3 and h

AB

is de�ned by

2h

AB

dx

A

dx

B

= (e

2

+ e

2Æ

)d�

2

+ 4 sin � sinh( � Æ)d�d� + sin

2

�(e

�2

+ e

�2Æ

)d�

2

: (2.56)
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We note that the metri g as a geometri objet is still ompletely undetermined. This is

represented by the six unknowns V;U

A

; �; ; Æ whih orrespond to the six unknown funtions

γ
ij

in the \3+1" deomposition. We shall see below that the harateristi formulation leads

to a natural lassi�ation of the �eld equations and the two gravitational degrees of freedom

are ontained in the funtions  and Æ. The remaining quantities are determined on eah

hypersurfae irrespetive of their history.

2.2.3 Introdution of a tetrad

In order to lassify the �eld equations, it is onvenient to introdue basis vetors k; l;m; �m, where

l is a real and m; �m are omplex null-vetors and k is the null-vetor �eld introdued above.

These vetors are required to satisfy the relations

k � l = 1; (2.57)

m � �m = 1; (2.58)

l � l = k � k = m �m = l �m = k �m = 0: (2.59)

If we use the omplex onjugate of the last equation we further obtain

�m � �m = l � �m = k � �m = 0: (2.60)

With the orresponding one forms the metri an now be written as

g =

~

k


~

l+

~

l


~

k+

~

�m
 ~m+ ~m


~

�m: (2.61)

We note that in spite of the use of omplex vetors eventually all results will be real. In fat

if we write the omplex vetor as m = µ + iν, it follows diretly from the onditions imposed

on m, that µ and ν are spae-like vetors orthogonal to the null-vetors k and l. We onlude

that k represents the null-surfaes u = onst, l determines a unique null-diretion out of these

hypersurfaes and the omplex vetor m de�nes two spatial diretions orthogonal to both k

and l. The only remaining freedom is the phase of m whih is normally �xed by relating �m

to the shear � (see Sahs for details). The bene�t of this partiular basis is that it provides a

onvenient way to reate linear ombinations of the vauum �eld equations that an be lassi�ed

in a natural way.
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2.2.4 The �eld equations

We have already mentioned that the two gravitational degrees of freedom are ontained in

the metri funtions  and Æ. It is a remarkable property of the harateristi formalism that

it naturally leads to a lassi�ation of the �eld equations whih reets the isolation of the

gravitational degrees of freedom. As originally shown by Bondi the �eld equations an be

grouped into

(i) 6 main equations:

(a) 4 hypersurfae equations: R

��

k

�

k

�

= R

��

k

�

m

�

= R

��

m

�

�m

�

= 0,

(b) 2 evolution equations: R

��

m

�

m

�

= 0,

(ii) 1 trivial equation: R

��

k

�

l

�

= 0,

(iii) 3 supplementary equations: R

��

l

�

m

�

= R

��

l

�

l

�

= 0.

The reasoning for this lassi�ation is as follows. If we suppose that the main equations are

satis�ed, it an be shown that

(1) The trivial equation is satis�ed: R

��

l

�

k

�

= 0.

(2) R

��

l

�

m

�

vanishes along a null-geodesi (integral urve of k) either everywhere or

nowhere.

(3) If all equations exept R

��

l

�

l

�

= 0 are satis�ed, it follows from the Bianhi

identities that �

r

(r

2

R

��

l

�

l

�

) = 0.

We onlude that the trivial equation is an algebrai onsequene of the main equations. The

supplementary equations are satis�ed everywhere if they are satis�ed at some value r = onst

and the main equations are satis�ed. As far as the main equations are onerned, we note that

(1) the hypersurfae equations do not ontain any derivatives of the metri funtions

with respet to u,

(2) the evolution equations ontain the derivatives 

;u

and Æ

;u

(although in several

forms, e.g. 

;ur

).

2.2.5 Boundary onditions

The boundary onditions are determined by the requirements that

(1) the spaetime has Eulidean topology at large distane from the soure,

(2) the spaetime is asymptotially at,
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M

i

(�; �) presribed on u = u

0

, r = onst

(r; �; �); Æ(r; �; �) spei�ed on u = u

0

r = onst

r = onst

u = u

1

u = u

0

; Æ;M

i

Figure 5: Evolution of the initial data in the harateristi formalism.

(3) gravitational radiation obeys an outgoing radiation boundary ondition.

As shown by Sahs (1962) these requirements are neessarily satis�ed if the following boundary

onditions are imposed.

(1) For any hoie of u one an go to the limit r !1 along eah ray.

(2) For this u and any hoie of �; � we have

lim

r!1

V=r = �1

lim

r!1

(rU

A

) = lim

r!1

� = lim

r!1

 = lim

r!1

Æ = 0.

(3) For u

0

� u � u

1

, r

0

� r � 1, 0 � � � �, 0 � � � 2� all metri omponents and

quantities of interest an be expressed as a series in r

�1

with at most a �nite

pole at r =1.

2.2.6 Initial data and the integration of the �eld equations

The evolution of the metri variables V , U

A

, �,  and Æ an be split up into four steps. In the

disussion of these steps it will beome obvious what type of initial data we need to speify in

order to start the evolution of the metri. We have graphially illustrated the integration of the

�eld equations from time slie u

0

to u

1

in Fig. 5.

1.) We start by providing initial data for  and Æ on a hypersurfae u = u

0

. This means that

we need to speify two funtions of (r; �; �).
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earth

light one u = u

0

Figure 6: Information on a past light one is insuÆient to determine the future of the earth.

2.) Next the hypersurfae equations are integrated along r to obtain �, V , U

A

on the ini-

tial hypersurfae. For this purpose we need to speify three funtions of integration M

i

(�; �).

A potential fourth funtion of integration for � is �xed by the boundary ondition lim

r!1

� = 0.

3.) We use the evolution equations in order to alulate  and Æ on the future hypersurfae

u = u

1

. The evolution equations ontain the u-derivatives of  and Æ in the form 

;ur

, Æ

;ur

. Con-

sequently the solution requires in priniple the integration over r to obtain the orresponding

u-derivatives. For this purpose we need to speify two funtions of (u; �; �) as funtions of in-

tegration. These funtions are ommonly introdued as the omplex news funtion

�

�u

(u; �; �).

Below we will illustrate the meaning of news funtion in more detail.

4.) Finally, the supplementary equations are used to evolve the M

i

(�; �) onto the hypersurfae

u = u

1

.

We omplete the desription of the harateristi formalism with an explanation why the news

funtion needs to be spei�ed for all values of u. For this purpose we onsider the path of an

objet, e.g. the earth, in spaetime as illustrated in Fig. 6. Even if we have omplete data

on the past light one t + r = u

0

, we an still not determine the future of the earth. There

may be waves outside u = u

0

, that have not yet reahed the planet.

�

�u

(u; �; �) provides this

extra information and is, therefore, alled the news funtion. This is to be ontrasted with the

\3+1" deomposition disussed above, where the initial data on a slie t = onst ompletely

determines the evolution up to the spei�ation of boundary onditions.

In setions 3 and 4 we will use a similar harateristi formulation with a di�erent gauge hoie

to evolve ylindrially symmetri vauum spaetimes and dynami osmi strings. The presene

of matter in the latter ase does not result in any signi�ant ompliations ompared with the
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t

x
0

dt

dx

Figure 7: A 2-dimensional grid with onstant spaing. We note that the domain does not have

to be retangular and di�erent values for dt and dx may be used.

vauum ase desribed in this setion.

2.3 Numerial methods

In order to numerially solve a set of di�erential equations, the equations have to be ast into

a form suitable for a omputer based treatment. The most ommon method used for this

purpose is �nite di�erening whih replaes derivatives with �nite di�erene expressions and

thus onverts di�erential equations into large sets of algebrai equations. Alternative methods,

as for example spetral or �nite element methods have been used suessfully in various ases.

In this thesis, however, we will use �nite di�erene methods throughout and therefore restrit

our desription to this approah. In partiular, we will onentrate on �nite di�erening in the

ase of two dimensions, time and one spatial dimension, whih we will label by the oordinates

t and x.

2.3.1 The numerial grid

Given a system of di�erential equations, our aim is to determine the solution f in a subset


 � R

2

. In �nite di�erening the domain of f is replaed by a set of disrete grid points as

illustrated in Fig. 7 and the numerial sheme will provide values for f at these grid points

only. If information of the funtion f is required between the grid points we will derive the

orresponding values from interpolation.

Throughout this work, we will only use uniform grids whih means that the distane dx between

neighbouring grid points is independent of position x and time t. At any given value of t the
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interval [x

0

; x

K

℄ will therefore be replaed by the set of points (x

0

, x

0

+ dx, x

0

+ 2dx,: : : , x

K

)

with

dx =

x

K

� x

0

K

: (2.62)

In setion 5 we will demonstrate how a oordinate transformation to a new spatial oordinate

y an be used to simulate an inhomogeneous grid in terms of the original oordinate x without

abandoning the onept of a uniform grid.

For the presentation of �nite di�erene expressions it is onvenient to introdue a short hand

notation for the funtion values at the grid points. For this purpose we de�ne f

n

k

:= f(x

k

; t

n

).

If the meaning is obvious we may omit either index.

2.3.2 Derivatives and �nite di�erenes

We desribe the approximation of derivatives with �nite di�erenes in the ase of spatial deriva-

tives. The same ideas apply to time derivatives. Suppose a funtion f is given at positions

x

0

; : : : ; x

K

for �xed time and we want to alulate

�

m

f

�x

m

at x

k

. For this purpose we expand

f in a Taylor series about x

k

whih allows us to express f

k

, f

k�1

, f

k+1

,: : : in terms of f and

its derivatives at x

k

. Next the derivative that needs to be alulated is expressed as a linear

ombination of the funtion values at neighbouring grid points. The required �nite di�erene

expression is then obtained from inserting the Taylor expansions for the f

k

, f

k�1

, f

k+1

; : : :

and omparing the oeÆients on both sides of the equations. The number of grid points that

needs to be inluded in this alulation depends on the degree of the derivative and the order

of auray to be ahieved.

We illustrate these ideas by alulating the seond derivative f

00

k

with seond order auray.

We assume that the funtion f is known at the grid points x

k

, x

k�1

, x

k�2

and x

k�3

. By Taylor

expanding f around x

k

we an relate the funtion values to f and its derivatives at x

k

f

k

= f

k

; (2.63)

f

k�1

= f

k

� f

0

k

dx+

1

2

f

00

k

dx

2

�

1

6

f

000

k

dx

3

+O(dx

4

); (2.64)

f

k�2

= f

k

� f

0

k

2dx+

1

2

f

00

k

4dx

2

�

1

6

f

000

k

8dx

3

+O(dx

4

); (2.65)

f

k�3

= f

k

� f

0

k

3dx+

1

2

f

00

k

9dx

2

�

1

6

f

000

k

27dx

2

+O(dx

4

): (2.66)
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Next we write f

00

k

as a linear ombination of the funtion values

dx

2

� f

00

k

= Af

k

+Bf

k�1

+ Cf

k�2

+Df

k�3

: (2.67)

If we insert Eqs. (2.63)-(2.66) for the funtion values f

k�3

; : : : ; f

k

and ompare the oeÆients

of both sides of the equation, we obtain the system of linear equations

A+B + C +D = 0;

B + 2C + 3D = 0;

B + 4C + 9D = 2;

B + 8C + 27D = 0:

(2.68)

The solution is A = 2, B = �5, C = 4, D = �1 and we an approximate the derivative f

00

k

with

seond order auray by

f

00

k

=

2f

k

� 5f

k�1

+ 4f

k�2

� f

k�3

dx

2

+O(dx

2

): (2.69)

In general, a one sided alulation as used in this example yields less aurate estimates of

the derivative and two sided approximations are to be preferred. In our ase the entred �nite

di�erene expression is given by

f

00

k

=

f

k+1

� 2f

k

+ f

k�1

dx

2

+O(dx

2

): (2.70)

If we substitute expressions orresponding to (2.69) or (2.70) for all derivatives, the di�erential

equation is replaed by a large set of algebrai equations.

2.3.3 The leapfrog sheme

The leapfrog sheme is a seond order in spae and time �nite di�erening sheme in whih

three suessive time-levels are used at eah integration step. If we assume that the di�erential

equation an be written in the form

f

;t

= H(f; f

;x

; f

;xx

; :::; x; t); (2.71)
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k k+1k-1

n+1

n

n-1

t

x

Figure 8: The leapfrog sheme: In the evolution one slie is leapt over.

the right hand side an be evaluated on the n

th

time slie. The time derivative, on the other

hand, is approximated by

�f

�t

=

f

n+1

� f

n�1

2dt

; (2.72)

and the di�erene equation an be expliitly solved for f

n+1

. Beause of the entred �nite

di�erene approximation for f

;t

, three time slies are involved in the alulation. As an example

we onsider the speial ase where H = f

;x

. At the spatial position x

k

the �nite di�erene

equation is then given by

f

n+1

k

= f

n�1

k

+

dt

dx

(f

n

k+1

� f

n

k�1

): (2.73)

The value of f is taken on slie n � 1 and we \leap" aross slie n to alulate f

n+1

. This

property is shematially illustrated in Fig. 8 and has given the sheme its harateristi name.

The need to store the funtion values of two time slies makes this sheme more memory

intensive than 2-level shemes suh as the MCormak sheme disussed in the next setion.

Seond order aurate two-level shemes, on the other hand, involve more ompliated �nite

di�erene expressions and are therefore more CPU-intensive.

A potential problem of the leap-frog sheme is its vulnerability to the so-alled mesh-drifting

e�et, an instability that results from the deoupling of odd and even mesh points. This

instability an often be ured by evolving some of the variables on a separate grid translated

with respet to the original one by half a grid step (staggered leap-frog) or introduing arti�ial

dissipation whih ouples odd and even grid points. In our appliation of this sheme in setion
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3, however, we do not enounter this problem and have no need to use either of the remedies.

We �nally note that in Eq. (2.73) the funtion value on the new slie f

n+1

k

is expressed expliitly

in terms of known funtion values on previous slies. Finite di�erening shemes with this

property are alled expliit shemes. In setion 2.3.6 we will, by ontrast, introdue an impliit

sheme where this is in general not possible for non-linear partial di�erential equations and

iterative methods or linear solvers are used to determine the f

n+1

k

.

2.3.4 The MCormak sheme

The MCormak sheme is another seond order aurate expliit �nite di�erening method.

In ontrast to the leapfrog sheme it is a two-level method, i.e. requires storage of one previous

slie only. However, this omes at the expense of two omputation steps in the alulation of

the new values, a preditor and a orretor step. We illustrate this method by onsidering the

partial di�erential equation

f

;t

= H(f; f

;x

; x; t): (2.74)

In the �rst step preliminary values on the new time slie are alulated aording to

~

f

n+1

k

= f

n

k

+�t �H

n

k;k�1

; (2.75)

where H

n

k;k�1

is the soure term evaluated to seond order auray at x

k�1=2

by using f

n

k�1

and f

n

k

. This preditor step itself is a �rst order aurate sheme, but the terms of �rst order

trunation error are eliminated in the orretor step

f

n+1

k

= f

n

k

+�t �

1

2

�

H

n

k;k�1

+

~

H

n+1

k+1;k

�

; (2.76)

where

~

H

n+1

k+1;k

is the soure term evaluated from the preliminary values

~

f

n+1

k

and

~

f

n+1

k+1

. The

extension to systems with more funtions is obvious.

2.3.5 Relaxation

Relaxation is a method for solving so-alled two point boundary value problems, that is ordinary

di�erential equations (ODEs) where boundary onditions are given at di�erent loations on the

grid. A straightforward integration to obtain the solution is not possible in these ases and one

needs to resort to more sophistiated tehniques. One suh tehnique, of whih we will make
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extensive use in this work is numerial relaxation. In the ase of ordinary di�erential equations

only one independent oordinate is present whih an be visualised in Fig. 7 by suppressing

the time dimension so that we have only one row of grid points. It is straightforward to see

that any ordinary di�erential equation an be written as a �rst order system. Without loss of

generality we will therefore restrit our disussion to this ase. Suppose for example that we

have a system of 4 ODEs for 4 funtions A(x), B(x), C(x) and D(x) given by

G

i

(A;A

;x

; B;B

;x

; C;C

;x

;D;D

;x

) = 0; i = 1 : : : 4: (2.77)

A numerial solution onsists of 4K funtion values A

1

, B

1

, C

1

, D

1

, A

2

, B

2

and so on. It is

onvenient to introdue a vetor f

j

to label these values, i.e. f

1

:= A

1

, f

2

:= B

1

and so on. For

eah pair of grid points k, k � 1 we apply entred �nite di�erening aording to

A =

1

2

(A

k

+A

k�1

); (2.78)

A

;x

=

A

k

�A

k�1

�x

; (2.79)

and likewise for the other funtions. In ombination with Eq. (2.77) this amounts up to 4(K�1)

algebrai equations for the 4K variables f

j

. This set is ompleted by 4 boundary onditions for

A, B, C and D and we arrive at 4K algebrai equations whih we write in the form

F

i

(f

j

) = 0: (2.80)

In general these equations are non-linear and we have to resort to iterative tehniques to obtain

a solution f

j

. For this purpose we assume that f

j

is a solution of (2.80) and f

0

j

is a suÆiently

lose guess. Then 4K-dimensional Taylor expansion yields

0 = F

i

(f

j

) � F

i

(f

0

j

) +

X

j

�F

i

�f

j

�f

j

; (2.81)

where �f

j

= f

j

� f

0

j

. This is simply a system of linear equations whih we an write as

A�f = b; (2.82)
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f
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f

n

k

f

n

k+1

t

n

t

n+1

= t

n

+�t

x

k+1

= x

k

+�xx

k

Figure 9: The numerial stenil used in the Crank Niholson sheme to obtain entred seond

order aurate expressions for f , f

;x

and f

;t

at position (x

k

+�x=2; t

n

+�t=2).

where

A

ij

=

�F

i

�f

j

; (2.83)

b

i

= �F

i

(f

0

j

): (2.84)

Even though the Jaobi matrix A is a 4K by 4K matrix, it is a sparse matrix whih greatly

simpli�es its inversion. If the equations F

i

= 0 are ordered appropriately, A has blok diagonal

struture and an be inverted by standard methods (see for example Press et al. 1989). Start-

ing with an initial guess f

0

j

, we an alulate the orretion �f

j

whih leads to an improved

approximation f

1

j

and the proess is repeated until the norm jj�f

j

jj satis�es some onvergene

riterion. This iteration sheme is the Newton-Raphson method generalized to 4K dimensions

and usually onverges fast.

2.3.6 The Crank-Niholson sheme

The Crank-Niholson sheme is a two-level evolution sheme for partial di�erential equations

and an be onsidered a generalization of the relaxation sheme. Again the system of equations

is rewritten as a �rst order system by introduing auxiliary variables. For onveniene we will

illustrate the sheme for one equation and one funtion f only. The extension to more funtions

is obvious. Consider the PDE

G(f; f

;t

; f

;x

; x; t) = 0 (2.85)

on a grid of the type shown in Fig. 7 with K points on eah slie t = onst. We an use a stenil

of the type shown in Fig. 9 to obtain seond order entred �nite di�erene expressions for the
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funtions and their derivatives aording to

f =

1

4

(f

n+1

k

+ f

n+1

k�1

+ f

n

k

+ f

n

k�1

); (2.86)

f

;x

=

f

n+1

k

� f

n+1

k�1

+ f

n

k

� f

n

k�1

2�x

; (2.87)

f

;t

=

f

n+1

k

+ f

n+1

k�1

� f

n

k

� f

n

k�1

2�t

: (2.88)

Inserting these relations into Eq. (2.85) we obtain K�1 algebrai equations for the K unknown

values f

n+1

k

in terms of the known f

n

k

. The set is ompleted by the boundary ondition for f

and we are in exatly the same situation as in Eq. (2.80) in the relaxation sheme. Note that

eah algebrai equation involves two unknown values f

n+1

k

, f

n+1

k�1

, so it is in general not possible

to obtain expliit expressions similar to Eq. (2.73) in the leapfrog-sheme. Therefore methods

like the Crank-Niholson sheme are alled impliit and a solution is obtained by using iterative

methods. The initial guess for the values on the new slie is usually taken from the previous

slie.

Before we apply these numerial shemes to general relativisti senarios, we disuss some

general properties of numerial evolution shemes.

2.3.7 Consisteny

If we take the di�erene equations and alulate the f

n

k

as a Taylor series about some �xed

grid-point, we will again arrive at a di�erential equation for f . The di�erene between this

di�erential equation and the original one is the trunation error. The numerial sheme is

said to be onsistent if the trunation error vanishes in the limit dx; dt ! 0 (see for example

Le Veque 1992). Assuming that dx and dt di�er by a onstant fator in the limit dx ! 0, the

sheme is of n

th

order auray if the leading term of the trunation error vanishes as dx

n

.

2.3.8 Stability

The onept of stability is onerned with an exponentially inreasing deviation of the numerial

solution from the solution of the underlying di�erential equation. If suh a deviation is present

either due to the initial data or round o� errors, it will quikly swamp the entire numerial

solution and make the ode pratially useless. The stability of a ode an depend on many

properties. Often hanging the grid parameters dx, dt has a substantial e�et on the stability.

In the ase of linear partial di�erential equations one an use the von Neumann stability analysis
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in order to test �nite di�erening shemes for stability. For this purpose we assume that the

numerial grid is uniform, i.e. dx and dt are onstant. The solution of the di�erene equation

an then be expanded as a Fourier series

f

n

(x) =

X

�

^

f

n

(�)e

i�x

; (2.89)

where � is a spatial wave vetor (1-dimensional in our ase). It is suÆient to onsider one

mode

^

f

n

(�)e

i�x

whih an be written as

^

f

n

�

= �(�)

n

e

i�x

; (2.90)

if the oeÆients of the di�erene equations show suÆiently weak variation in spae and time

and an be onsidered nearly onstant. The important aspet is that the amplitude at some

time is obtained from that of the preeding time step by multipliation with a time independent

fator �(�). If j�(�)j > 1 the sheme is unstable. In pratie, Eq. (2.90) is inserted into the

di�erene equations whih then is solved for �. For many appliations, the result is the well

known Courant-Friedrihs-Lewy ondition (CFL-ondition)

�

�

�

�

�

i

� dt

dx

�

�

�

�

� 1; (2.91)

where the �

i

are the slopes of the harateristis of the underlying system of PDEs. An intuitive

interpretation of this result is that the numerial domain of dependeny of the point where f

is to be alulated must ontain the physial one. Indeed this ondition was reognised as a

neessary stability ondition for any numerial sheme by Courant, Friedrihs, and Lewy (1928)

(See Courant et al. 1967 for an English translation). The CFL ondition is therefore ommonly

used in non-linear odes to determine the permissible Courant fator dt=dx. We will illustrate

the use of this riterion in the evolution of non-linear radial osillations of neutron stars in

setion 5.3.5.

2.3.9 Convergene

It is neessary to arefully distinguish between onsisteny, stability and onvergene of a ode.

The onvergene of a numerial method is a stronger requirement than onsisteny or stability.

It is quite obvious, for example that a onsistent method will not be onvergent if it is unstable.

In order to de�ne onvergene, we onsider a solution f of the system of di�erential equations

and a solution F of the orresponding di�erene equations. We note that F is never obtained
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in pratie due to round o� errors. A sheme is said to onverge if

jf

n

k

� F

n

k

j ! 0 as dx; dt! 0: (2.92)

In the ase of linear equations onvergene an be ensured by the Lax Equivalene Theorem

whih states: Given a properly posed linear initial value problem and a �nite di�erene approx-

imation to it that satis�es the onsisteny ondition, the stability is a neessary and suÆient

ondition for onvergene (see for example Rihtmyer and Morton 1967).

In the ase of non-linear equations there is no orresponding theorem but in some ases we will

be able to hek our odes for onvergene by omparing the results with known analyti solu-

tions. If suh analyti solutions are not available, we need to use referene solutions obtained

for high resolutions instead. We will thus be able to ensure the Cauhy onvergene of the

numerial sheme. This is, however, a weaker statement than Eq. (2.92) and does not stritly

guarantee onvergene to the solution of the di�erential equations.
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3 Cauhy harateristi mathing in

ylindrial symmetry

3.1 The idea of Cauhy harateristi mathing

Cauhy harateristi mathing (CCM) is a method that simultaneously makes use of the ben-

e�ial properties of the \3+1" and the harateristi formalism. In setion 2.1 we have seen

that in the \3+1" ase spaetime is deomposed into 3-dimensional spae-like hypersurfaes

threaded by a one parameter family of urves. The dynami variables are the omponents γ
ij

of the 3-metri of the hypersurfaes. A omplete set of initial data onsists of values for γ
ij

and

their time derivatives on some initial hypersurfae. The seond order evolution equations then

determine the 4-metri of the spaetime up to gauge transformations. This type of initial value

problem is known as a Cauhy problem and has been extensively used for the numerial solution

of Einstein's �eld equations. It is however not suitable for the analysis of gravitational radiation

sine it is not lear how to inorporate null in�nity into a �nite numerial grid via onformal

Figure 10: In this onformal diagram Cauhy harateristi mathing is shematially illus-

trated. In the inner region matter is evolved with a \3+1" sheme whereas harateristi oor-

dinates de�ned by the null geodesis are used in the outer vauum region. The two formalisms

are mathed at the interfae at �nite radius.
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ompati�ation. Instead one uses approximative tehniques to extrat information about the

gravitational radiation at �nite radii and imposes outgoing radiation boundary onditions in

order to prevent inoming gravitational waves. Unfortunately attempts to implement these

boundary onditions give rise to spurious reeted numerial waves. Charateristi formalisms

solve this problem in an elegant way. Spaetime is deomposed into a 2-parameter family of

2-dimensional spae-like surfaes threaded by two 1-parameter families of urves. At least one

of these families onsists of null geodesis, the harateristis of the propagation of radiation.

The spaetime an be ompati�ed by standard methods, exat boundary onditions an be

applied at future or past null in�nity and gravitational radiation an be properly analysed. In

regions of strong urvature, however, austis an form and the foliation along null geodesis

breaks down.

A possible remedy for this problem onsists in using both a \3+1" and a harateristi formu-

lation, eah in its preferred region. Normally an astrophysial senario is approximated as a

�nite inner region ontaining all the matter (a neutron star, for example) and the outer vauum

region with an observer loated at future null in�nity. In CCM a \3+1" sheme is used for the

evolution of the interior and a harateristi formulation for the evolution of the exterior region.

At a �nite radius an interfae failitates the transfer of information between these two regions.

The method is illustrated in Fig. 10 where the dark shaded area represents the astrophysial

soure. Gravitational waves emitted from this soure travel along null geodesis whih are given

by straight lines at an angle of 45 degrees in this �gure. In the outer region the null geodesis

are used to de�ne the harateristi oordinate axis.

The feasibility of ombining Cauhy algorithms with harateristi methods in order to evolve

the gravitational �eld was �rst studied by Bishop (1992). The �rst attempts at obtaining nu-

merial evolutions have been arried out in one spatial dimension. The work of the Southamp-

ton CCM-group in ylindrial symmetry will be disussed in detail in the next setion. The

Pittsburgh relativity group studied CCM in spherial symmetry by evolving the Einstein-Klein-

Gordon system (G�omez et al. 1996). They have demonstrated seond order onvergene and

found no indiations of bak reetion or instabilities at the interfae. After the demonstration

of the viability of CCM in one dimension attention shifted towards higher-dimensional prob-

lems. The Southampton relativity group foused their studies on the axisymmetri ase. After

laying the theoretial foundations (d'Inverno and Vikers 1996, d'Inverno and Vikers 1997) a

great deal of work has gone into the development of an axisymmetri CCM ode (see Pollney

2000 for details). This ode has now been ompleted and is urrently being evaluated and

tested. In ontrast the Pittsburgh group has immediately turned their attention towards the
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general 3-dimensional ase. Bishop et al. (1996) and Bishop et al. (1997) have probed the use of

Cauhy-harateristi mathing in three dimensions by evolving non-linear salar waves in a at

spae-time. The appliation of these ideas to 3-dimensional problems in general relativity has

resulted in a module for the ombination of Cauhy and harateristi odes for the evolution

of a binary blak hole (Bishop et al. 1998). A more omprehensive overview of the ongoing

researh using Cauhy-harateristi mathing an be found in Winiour (2001).

3.2 The Southampton CCM-projet

The Southampton CCM-projet is a long term projet devoted to the study of Cauhy-hara-

teristi mathing in senarios of dereasing symmetry assumptions (d'Inverno 2000). The �rst

step was to demonstrate the viability of the approah. That was done by Clarke and d'Inverno

(1994) by evolving the wave equation in at spaetime. Attention then turned towards gravi-

tational waves in ylindrial symmetry. The theoretial foundations were laid by Clarke et al.

(1995) and the resulting ode of Dubal et al. (1995) showed good agreement with analyti

solutions ontaining one gravitational degree of freedom. Furthermore Dubal et al. demon-

strated the superior performane of the CCM-method as ompared with the use of arti�ial

outer boundary onditions in \3+1" shemes. d'Inverno et al. (2000) presented a generalisa-

tion of this ode to also inlude the rotational degree of freedom. They �nd, however, that the

onvergene of the ode drops to �rst order level in later stages of the evolutions. In this work

we will present a new ode that allows us to inlude the rotational degree of freedom in terms

of natural geometrial variables with regular behaviour at null in�nity. This reformulation re-

sulted in improved auray, long term stability and ensures seond order onvergene over long

evolution times. We will demonstrate the improved quality by omparing the numerial results

with analyti solutions possessing both gravitational degrees of freedom.

The Southampton CCM-projet has ontinued meanwhile with the development of the axisym-

metri ode mentioned in the previous setion.

3.3 The original ode

In this setion we will desribe the ylindrially symmetri Cauhy harateristi mathing

ode developed by the Southampton Relativity Group (Clarke et al. 1995, Dubal et al. 1995).

This ode was used to reprodue the analyti solution by Weber and Wheeler (1957), whih

possesses one gravitational degree of freedom, with high auray and seond order onvergene.

d'Inverno et al. (2000) presented an extension of this ode based on the formulation of Clarke
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et al. to also inlude the rotational degree of freedom. Their diÆulties in obtaining a long term

stable seond order onvergent ode motivated the reinvestigation of the problem desribed in

this thesis.

In their derivation of the equations Clarke et al. �nd it neessary to deompose spaetime

aording to the methods of Geroh (1970) in order to eliminate irregularities of the equations

in the harateristi region. The Geroh deomposition plays a ruial role in our reformulation

and will also be used in setion 4 when we numerially simulate osmi strings. Before we turn

our attention to the ylindrially symmetri CCM ode, we will therefore desribe the Geroh

deomposition in more detail.

3.3.1 The Geroh deomposition

A problem generally faed in ylindrial symmetry is that the spaetime is not asymptotially

at due to the in�nite extension in the z-diretion. The deomposition of Geroh (1970) solves

this problem by fatoring out the Killing diretion and reformulating the 4-dimensional problem

in terms of two salar �elds on an asymptotially at 3-dimensional spaetime. Suppose, the

spaetime admits a Killing �eld ξ� whih in the ase of ylindrial symmetry simply is �
z

. Then

we de�ne the norm of the Killing vetor

� = ξ�ξ
�

; (3.1)

and the Geroh twist

τ
�

= �ε
����

ξ�r�ξ�; (3.2)

where ε
����

is the ompletely antisymmetri Levi-Cevita tensor. These �elds are well de�ned

on the 3-dimensional spae S given by z = onst with the resulting metri

h

��

= g

��

�

1

�

ξ
�

ξ
�

: (3.3)

If D

�

denotes the ovariant derivative assoiated with the 3-metri h, one an show that

D

[�

τ
�℄

= ε
����

ξ�R
�

�

ξ�: (3.4)
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In vauum the right hand side vanishes so that τ
�

is url free and an be expressed in terms of

a potential

τ
�

= D

�

�: (3.5)

It is a remarkable fat that the right hand side of Eq. (3.4) will also vanish in some non-vauum

ases. In the disussion of osmi strings in setion 4 we will enounter suh an example.

Geroh has then shown that the Einstein equations for the metri g of the 4-dimensional

spaetime an be written in terms of the two salar �elds � and � and the 3-metri h

R

ab

=

1

2

�

�2

[(D

a

�)(D

b

�)� h

ab

(D

m

�)(D

m

�)℄ +

1

2

�

�1

D

a

D

b

� �

1

4

�

�2

(D

a

�)(D

b

�)

+8�h

a

�

h

b

�

(T

��

�

1

2

g

��

T); (3.6)

D

2

� =

1

2

�

�1

(D

m

�)(D

m

�)� �

�1

(D

m

�)(D

m

�) + 16�(T

��

�

1

2

g

��

T)ξ�ξ� ; (3.7)

D

2

� =

3

2

�

�1

(D

m

�)(D

m

�); (3.8)

where Latin indies run from 0 to 2 and R

ab

is the Rii tensor assoiated with the 3-metri h.

Note that even in the ase of a vanishing energy-momentum tensor T, the salar �elds � and �

present soure terms in the �eld equations (3.6) for the 3-metri h.

In the vauum ase T

��

= 0, Sj�odin et al. (2000) have shown how it is possible to reformulate

the Einstein-Hilbert Lagrangian in terms of �, � and the onformal 3-metri

~

h

ab

= �h

ab

. This

leads diretly to the 3-dimensional energy-momentum tensor

T

ab

=

1

2

�

�2

[

~

D

a

�

~

D

b

� �

1

2

~

h

ab

~

h

d

(

~

D



�)(

~

D

d

�) +

~

D

a

�

~

D

b

� �

1

2

~

h

ab

~

h

d

(

~

D



�)(

~

D

d

�)℄; (3.9)

where

~

D

a

is the ovariant derivative assoiated with the onformal 3-metri

~

h. Sine the Weyl-

urvature vanishes identially in three dimensions, the urvature is ompletely determined by

the Rii tensor R

ab

, i.e. the energy-momentum tensor T

ab

whih in turn is determined by �

and � . Thus the gravitational degrees of freedom of the original 4-dimensional spaetime are

represented by the salar �elds � and � . If matter is present in the 4-dimensional spaetime,

there are extra terms on the right hand side of (3.9).
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3.3.2 The equations of the original ode

We will now turn our attention to the original ylindrially symmetri CCM ode of the

Southampton relativity group. An extensive desription of this ode and the derivation of

the equations an be found in Clarke et al. (1995) and Dubal et al. (1995). In order to illus-

trate the e�ets of our reformulation, we will inlude here a rather detailed desription of their

equations and hoie of variables. They start with the metri in Jordan, Ehlers, Kundt and

Kompaneets (JEKK) form (Jordan et al. 1960, Kompaneets 1958)

ds

2

= e

2(� )

(�dt

2

+ dr

2

) + r

2

e

�2 

d�

2

+ e

2 

(!d�+ dz)

2

; (3.10)

whih desribes a general ylindrially symmetri vauum spaetime. The metri funtions  ,

! and  are funtions of (r; t) only. In terms of the gauge freedom disussed in setion 2.1.2

this hoie implies a vanishing shift vetor and the lapse is determined by the requirement that

g

tt

= �g

rr

. As a onsequene the null geodesis are given by the simple relations t�r = onst. In

the outer harateristi region, the line element is rewritten by transforming to the oordinates

u = t� r; (3.11)

y =

1

p

r

; (3.12)

and the regions are mathed at r = 1 = y. Clarke et al. �nd, however, that the ompati�ed

�eld equations annot be made regular in this way. Therefore they fator out the z-diretion

in the outer region aording to the Geroh deomposition desribed above. This leads to a

reformulation of the problem in terms of the variables

m =

� � 1

y

; (3.13)

w =

�

y

; (3.14)

where � is the Geroh potential and � the norm of the z-Killing vetor. These are related to

the metri funtions  and ! by Eqs. (3.1) and (3.2) whih in this partiular ase beome

� = e

2 

; (3.15)

�

;y

= y

2

e

4 

!

;u

: (3.16)



3 CAUCHY CHARACTERISTIC MATCHING IN CYLINDRICAL SYMMETRY 48

With this hoie of variables one obtains two evolution equations for  and ! in the interior

Cauhy region and a onstraint equation for . Dubal et al. write this set of equations as a

�rst order system

 

;t
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1

r

~

L; (3.17)

!

;t
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L
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; (3.18)
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where � =  �  . The orresponding set of equations in the harateristi region is given by

two evolution equations for m and w and a hypersurfae equation for  whih is again written

as a �rst order system

m

;u

= �M; (3.22)

w
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= �W; (3.23)
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The transformation between the two pairs of variables ( ; !) and (m;w) and their derivatives

is implemented at the interfae at r = 1 = y aording to the relations

~

L =

M

2y

; (3.27)

!

;r

=

W

y�

; (3.28)

m =

1

y

(e

2 

� 1); (3.29)

(yw)

;y

= �

2

r

L

�

z

: (3.30)

The problemati relations are (3.28) and (3.30) whih involve the spatial derivative of ! and w.

The presene of spatial derivatives in ombination with the interpolation tehniques applied at

the interfae make the implementation of these relations a rather subtle issue.

The ode of Dubal et al. formed the starting point for our investigation of the problem. This

ode has been well heked in the non-rotating ase but did not inlude the implementation of

Eqs. (3.28) and (3.30) for the rotational variables ! and w at the interfae. In this work we

therefore started with the addition of these missing modules to the original ode. In order to

desribe our implementation it is neessary to �rst disuss the numerial tehniques, in par-

tiular those underlying the transmission of information from the Cauhy to the harateristi

region and vie versa.

3.3.3 The numerial implementation

We will now disuss the numerial implementation of Eqs. (3.17)-(3.30). The numerial grid

used for the evolution onsists of an inner Cauhy region whih overs the range 0 � r � 1

and the outer harateristi region extending from r = 1 to in�nity whih orresponds to the

range 1 � y � 0. The evolution equations in these regions are disretized in a straightforward

way using the leapfrog sheme desribed in setion 2.3.3 while seond order entered �nite

di�erening is used for the onstraints. If we assume that all funtions are known on the time

slies n, n� 1 and n� 2, a full evolution yle onsists of the following steps.

(1) Evolution of  , !,

~

L and L

�

z

at the interior grid points of the Cauhy region

aording to Eqs. (3.17)-(3.20).

(2) Update of these variables at the origin aording to the inner boundary onditions

 

;r

= !

;r

=

~

L

;r

= L

�

z;r

= 0.
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(3) Evolution of  and ! at the outer boundary of the Cauhy grid (r = 1) aording

to Eqs. (3.17), (3.18).

(4) Extration of  and ! from the interfae at 1 + dr on the Cauhy grid on time

slie n.

(5) Evolution of

~

L, L

�

z

at the outer boundary of the Cauhy grid (r = 1) aording

to Eqs. (3.19), (3.20).

(6) Calulation of � on the Cauhy grid via quadrature aording to Eq. (3.21).

(7) Evolution ofm and w in the harateristi region aording to Eqs. (3.22), (3.23).

(8) Extration of m and w from the interfae at 1+ dy on the harateristi grid on

time slie n+ 1.

(9) Calulation of M , W and  on the harateristi grid via quadrature aording

to Eqs. (3.24)-(3.26).

The ruial steps whih provide the ow of information through the interfae are (4) and (8).

These steps together with the start up proedure required to get the leap-frog sheme running

will now be disussed in more detail. We start with the interfae.

We �rst note that the interfae is �xed at the radial position r = 1 = y. Sine we always have the

freedom to resale the radial oordinate r by a onstant fator, this implies no loss of generality.

From a numerial point of view the need of an interfae arises from the alulation of spatial

derivatives at r = 1 on the Cauhy grid and y = 1 on the harateristi grid. The entred �nite

di�erening used for the leapfrog sheme as illustrated in Eq. (2.73) requires knowledge of the

Cauhy variables at r = 1 + dr and the harateristi variables at y = 1 + dy for this purpose.

In order to obtain these values, they need to be alulated with interpolation tehniques using

Eqs. (3.27)-(3.30). We will desribe this proess in the ase of the diretion \har!Cauhy"

orresponding to step (4). The reverse diretion in step (8) works in omplete analogy. The

situation is graphially illustrated in Fig. 11. The derivatives of a funtion f at r = 1 an be

alulated to seond order auray by entred �nite di�erening

f

;r

j

K

=

f

K+1

� f

K�1

2dr

; (3.31)

f

;rr

j

K

=

f

K+1

� 2f

K

+ f

K�1

dr

2

; (3.32)

if f

K+1

is obtained from interpolation to fourth order auray in the harateristi region. For

this purpose  , !

;r

,

~

L and L

�

z

are alulated in terms of the harateristi variables aording

to Eqs. (3.27)-(3.30) at the 12 points of the harateristi region (inluding 3 points at the
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characteristic regionCauchy region

dt

�y

r

K�1

r

K

r = 1 = y

t; u

du

dr

dy

�r

r

K+1

n� 2

n� 1

n

Figure 11: The interfae in the diretion from the harateristi to the Cauhy region. See the

text for details.

interfae) indiated by �lled irles in Fig. 11. These values an then be used to obtain the

funtion values  

K+1

and !

K+1

at loation r

K+1

with the required auray.

An alternative to this method onsists in using the same interpolation tehnique to alulate

the r-derivatives  

;r

and !

;r

at grid point K + 1 instead of the funtion values  and !. We

an then alulate the r-derivatives at the interfae from

f

;r

j

K

=

f

;r

j

K+1

+ f

;r

j

K�1

2

; (3.33)

f

;rr

j

K

=

f

;r

j

K+1

� f

;r

j

K�1

2dr

: (3.34)

Even though this alternative looks natural for the transformation between ! and w beause

these variables are related via their derivatives aording to Eq. (3.28), it does not lead to any

improvement of the performane of the ode.

The seond point we need to disuss is the so-alled start-up problem. It is an intrinsi diÆulty

of 3-level shemes suh as the leap-frog algorithm that the spei�ation of initial data on one

time slie will not be suÆient to start the numerial engine. Instead di�erent tehniques need

to be used to obtain data on auxiliary time slies. Due to the requirements of the fourth-order

interpolation at the interfae we need information on two additional slies. The data on these
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auxiliary slies are alulated in three steps.

(1) The �rst order Euler sheme (see for example Press et al. 1989) is used to

alulate data at t = t

0

� dt=2.

(2) This auxiliary time slie is then used to determine the variables at t = t

0

� dt

aording to the leapfrog sheme.

(3) In another leapfrog step, this time using the full time step dt, data is alulated

at t

0

� 2dt.

An alternative treatment at the interfae is required for this start-up proedure, beause the

neessary three time-slies are not available at this stage. For this purpose the Cauhy grid

is extended into the harateristi region by 10 grid points. The derivatives of the Cauhy

variables an thus be alulated at r = 1 using entred �nite di�erening and the derivatives of

the harateristi variables follow from hain-rule. The treatment of the outer boundary of the

Cauhy grid is irrelevant for the numerial evolution, sine the spurious signal annot travel

aross the additional 10 grid points during the three evolution steps at the start-up proedure

and these points are not used in the remaining evolution.

3.3.4 Inluding the rotational degree of freedom !

In our �rst attempt to inlude the rotational degree of freedom we have made use of the set

of variables of setion 3.3.2, namely  , ! and � in the inner and m, w and  in the outer

region. For this purpose we have extended the interfae of the original ode to also inlude the

transformations between ! and w as desribed in the previous setion. In order to test the ode

we use the analyti solution from Xanthopoulos (1986) whih we will disuss in more detail in

setion 3.5.2. In Eqs. (3.55)-(3.68) we give analyti expressions for this solution in terms of the

Killing vetor �, the Geroh potential � and the metri funtion . The orresponding results

for the variables  , m and w are obtained straightforwardly from their de�nitions (3.13)-(3.15).

The transformation into values for the funtion ! is more ompliated. The result is given by

Sj�odin et al. (2000)

!(t; r) =

p

a

2

+ 1(X +Q� 2)

Z � Y

2aZ

; (3.35)

where the auxiliary funtions Q, X, Y and Z are de�ned in Eqs. (3.55)-(3.58). We have not

been able, however, to obtain a long term stable evolution in this formulation of the problem.

For 300 grid points in eah region instability set in after less than 1000 time steps and from

the pattern of the noise it is lear that the problems originate at the interfae. In our attempts
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to overome the instability we have varied the obvious parameters suh as the Courant fator

and the number of grid points over a large range, but no improvement has been ahieved. We

have also used the alternative implementation of the interfae aording to Eqs. (3.33), (3.34).

Even though this alternative looks quite natural at least for the transformation between ! and

w whih are related via their derivatives aording to (3.28), we did not ahieve a signi�antly

better performane with this method. Finally we have hanged the start time of the numerial

evolution and, thus, the initial data. The obvious hoie t = 0 is not possible beause some

derivatives of Xanthopoulos' solution are disontinuous at t = 0, but any positive value large

enough to ensure that the start-up proedure does not extend to negative times an be hosen.

Again the ode beame unstable after less than 1000 time steps. We have therefore deided to

restart the investigation of this problem by looking for alternative sets of variables.

3.4 A reformulation of the problem

A striking peuliarity of the formulation desribed above is the drastially di�erent treatment

of the Cauhy and the harateristi region. In view of the numerial subtleties assoiated with

the interfae one may question the wisdom of fatoring out the z-diretion in one region and

work in the framework of the 4-dimensional spaetime in the other. It rather seems natural to

look for as homogeneous a desription of the whole spaetime as possible. In this ontext it is

worth noting that the restrition of the Geroh deomposition to the harateristi region was

a voluntary hoie and not enfored at any stage of the derivation of the equations. We have

therefore deided to fator out the z-diretion in the Cauhy region as well and thus Geroh

deomposed the whole spaetime. This enables us to use the same set of fundamental variables

throughout spaetime and thus obtain almost trivial interfae relations. A loser investigation

of the equations suggests that aside from the metri funtion  the geometri variables � and

� are the natural variables to desribe the ylindrially symmetri spaetime. With this hoie

the equations in the Cauhy region an be written as

�

;tt

=

1

�

(�

2

;t

� �

2

;r

+ �

2

;r

� �

2

;t

) + �

;rr

+

�

;r

r

; (3.36)

�

;tt

=

2

�

(�

;t

�

;t

� �

;r

�

;r

) + �

;rr

+

1

r

�

;r

; (3.37)



;r

=

r

4�

2

(�

2

;r

+ �

2

;t

+ �

2

;r

+ �

2

;t

): (3.38)

In pratie we use �

;t

and �

;t

as auxiliary variables in order to write Eqs. (3.36), (3.37) as a �rst

order system. If we transform to the new set of variables the equations in the harateristi
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region beome

�

;u

= y�M; (3.39)

�

;u

= y�W; (3.40)

M

;y

= �

y

4�

h

y�

;yy

+ �

;y

+

y

�

(�

2

;y

� �

2

;y

)

i

�W

�

;y

�

; (3.41)

W

;y

= �

y

4�

�

y�

;yy

+ �

;y

� 2

y

�

�

;y

�

+M

�

;y

�

; (3.42)



;y

= �

y

8�

2

(�

2

;y

+ �

2

;y

): (3.43)

Finally the non-trivial relations at the interfae are now given by

�

;t

= y�M; (3.44)

�

;t

= y�W: (3.45)

We have developed a ode using the numerial tehniques of setion 3.3.3 based on these evo-

lution equations and interfae relations.

3.5 Testing the ode

In order to test the performane of the new ode, we will hek it against analyti solutions

with one and two gravitational degrees of freedom. Furthermore we will demonstrate its inter-

nal onsisteny with a time dependent onvergene analysis.

We have already mentioned the vauum solution by Weber and Wheeler (1957) that was su-

essfully used by Dubal et al. to test their CCM ode. A solution with both gravitational

degrees of freedom was derived by Xanthopoulos (1986). Both these solutions an be rewritten

in terms of our variables �, � and  and thus ompared with the numerial results.

3.5.1 The Weber-Wheeler wave

The analyti solution by Weber and Wheeler desribes a gravitational pulse of the \+" polar-

ization mode that moves in from past null in�nity, implodes on the axis and emanates away to

future null in�nity. The analyti expressions in terms of � and  have been derived in Sj�odin
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et al. (2000). In the Cauhy region it is onvenient to introdue the auxiliary quantities

X = a

2

+ r

2

� t

2

; (3.46)

Y = X

2

+ 4a

2

t

2

; (3.47)

and the Weber-Wheeler wave an be written as

� = exp

2

4

2b

s

2(X +

p

Y )

Y

3

5

; (3.48)

 =

b

2

2a

2

�

1� 2a

2

r

2

X

2

� 4a

2

t

2

Y

2

�

a

2

+ t

2

� r

2

p

Y

�

; (3.49)

where a and b are onstants representing the width and amplitude of the pulse. The orre-

sponding result in terms of the harateristi oordinates u, y is

~

X = a

2

y

2

� u

2

y

2

� 2u; (3.50)

~

Y =

~

X

2

+ 4a

2

(uy

2

+ 1); (3.51)

� = exp

2

4

2by

s

2(

~

X +

p

~

Y )

~

Y

3

5

; (3.52)
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2
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2

"

1� 2a

2

~

X

2

� 4a

2

(uy

2
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2

~

Y

2

�

a

2

y

2

+ u

2

y

2

+ 2u

p

~

Y

#

: (3.53)

The initial values for � and its time derivative are presribed aording to these equations

whereas  on the initial slie is alulated via quadrature from the onstraint equations (3.38)

and (3.43). In order to plot the solution for 0 � r <1 we introdue the radial variable

w =

8

<

:

r for 0 � r � 1

3�

2

p

r

for r > 1:

(3.54)

In Fig. 12 we show the numerial results for � and  and their deviation from the analyti

values obtained for a = 2 and b = 0:5 using 1200 grid points in eah region and a Courant

fator of 0.45. As in the ase of the original ode from Dubal et al. we �nd that a Courant

fator < 0:5 is required for a stable evolution. The plots show the inoming pulse in � whih

is reeted at the origin and then moves outwards to null in�nity. The relatively large number

of grid points is required to ahieve a high auray at early times in modelling the steep
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Figure 12: The numerial solutions for � and  of the Weber-Wheeler wave for a = 0:5, b = 2

obtained with 1200 grid points in eah region (left panels). In the right panels the orresponding

deviation from the analyti result is ampli�ed by 10

5

and 10

6

, respetively. For presentation

purposes � and  are viewed from di�erent angles.

gradients of the inoming pulse. If the alulation starts at a later time or a smaller parameter

a for the width of the pulse is used, the same auray is obtained with signi�antly fewer grid

points. We also see that longer runs do not reveal any new features as the metri variables

approah their Minkowskian values after t � 5. This solution, however, does not provide a test

for the rotational degree of freedom. For that purpose we need an analyti solution with both

gravitational degrees of freedom.

3.5.2 Xanthopoulos' rotating solution

The next solution we onsider is one due to Xanthopoulos (1986) whih has a onial singularity

on the z-axis and therefore desribes a rotating vauum solution with a osmi string type

singularity. The solution has been rewritten in terms of our variables by Sj�odin et al. (2000).
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Again it is onvenient to introdue auxiliary quantities

Q = r

2

� t

2

+ 1; (3.55)

X =

p

Q

2

+ 4t

2

; (3.56)

Y =

1

2

[(2a

2

+ 1)X +Q℄ + 1� a

p

2(X �Q); (3.57)

Z =

1

2

[(2a

2

+ 1)X +Q℄� 1; (3.58)

where a is a free parameter whih an take on any non-zero value. The solution derived by

Xanthopoulos then beomes

�(t; �) =

Z

Y

; (3.59)

�(t; �) = �

p

2(a

2

+ 1)

p

X +Q

Y

; (3.60)

(t; �) =

1

2

ln

Z

a

2

X

: (3.61)

In the outer region where we use the oordinates (u; y) the result is

~

Q = y

2

� u

2

y

2

� 2u; (3.62)
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1

2

ln

~

Z

a

2

~

X

: (3.68)

In Fig. 13 we show the numerial results and the deviation from the analyti values obtained

for a = 1 and a Courant fator of 0.45. In this solution no steep gradients are present and 300
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Figure 13: The numerial solutions for �, � and  of Xanthopoulos' spaetime for a = 1 obtained

with 300 grid points in eah region (left panels). In the right panels the orresponding deviation

from the analyti result is ampli�ed by 10

5

and 10

6

, respetively. The spatial oordinate w is

de�ned in Eq. (3.54).

grid points in eah region are suÆient to reprodue the analyti values to within a relative

error of about 10

�5

. Again longer runs do not reveal any further features as the metri settles

down into Minkowskian values. We onlude that the ode reprodues analyti solutions with

one or two gravitational degrees of freedom with high auray over the dynamially relevant
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Figure 14: The onvergene fator `

2

[	

300

℄=`

2

[	

600

℄ is plotted as a funtion of time for the

variables �, � and . For our seond order sheme we obtain a onstant onvergene fator of

4 expeted for doubling the grid resolution.

time intervals.

3.5.3 Time dependent onvergene analysis

Even though the auray and long term stability of the ode has been demonstrated in the

previous setions, we still have to make sure that it is also seond order onvergent. In partiular

the start-up proedure desribed in setion 3.3.3 and the use therein of the Euler sheme to

alulate the auxiliary time slie at �dt=2 might raise questions in this respet.

For the onvergene analysis we de�ne the `

2

-norm of the deviation of a numerial solution 	

K

as a funtion of time

�	

K

k

= 	

K

k

�	(x

k

); (3.69)
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[�	

K

℄(t) =

s

P
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�

�	

K

k

(t)

�

2

K

: (3.70)

Here 	

k

is the exat and 	

K

k

the numerial value at grid point k obtained for a total of K

grid points. We have alulated the `

2

norm for the Xanthopoulos solution of the previous
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setion using 300 and 600 grid points in eah region. In Fig. 14 we plot the quotient as a

funtion of time. Corresponding to the inrease of the grid resolution by a fator of 2 we expet

a onvergene fator of 4 for the seond order sheme. In spite of the use of the �rst order

Euler method for the start-up, seond order onvergene is learly maintained throughout the

dynamially relevant evolution.
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4 Numerial evolution of exited osmi

strings

4.1 Introdution

Aording to the standard \big bang" model of osmology, the universe is ontinuously ex-

panding and ooling and was extremely hot and dense in its early stages. The grand uni�ed

theories (GUT) of elementary partile physis predit phase transitions to our as a result of

this ooling proess in the early universe. These result in topologial defets, regions with the

\old symmetry" surrounded by \new symmetry". The topology of the defets depends on the

symmetry groups haraterising the involved �elds before and after the symmetry breaking.

Cosmi strings are a 1-dimensional, \string-like" version of these topologial defets. The type

of strings usually onsidered from the astrophysial point of view has a mass per unit length

� � 10

�6

in natural units (~ = G =  = 1). The orresponding phase transitions are predited

to have ourred at the GUT energy sale 10

15

GeV. Strings with signi�antly higher mass

reated at higher energy sales annot be ruled out, however, and their treatment an no longer

be ahieved in the weak-�eld limit.

Numerial simulations by Vahaspati and Vilenkin (1984) show that osmi strings are reated

in the form of a network of in�nitely long or loop like strings. In this work we will fous on

in�nitely long strings whih are modelled in the framework of ylindrial symmetry.

Cosmi strings have aught the interest of astrophysiists and relativists for several reasons.

Most importantly the suggestion that osmi strings be seeds for galaxy formation by Zel'dovih

(1980) has given rise to intense e�orts to understand the evolution of the resulting density per-

turbations (see e.g. Turok and Brandenburger 1986). Cosmi strings are also thought to be

soures of gravitational radiation (Vilenkin and Shellard 1994). Below we will study the in-

teration of an in�nitely long osmi string with a wave pulse with one gravitational degree of

freedom. Cosmi strings have also been onsidered of astrophysial relevane beause of the

bending of light rays that arises from the onial struture of the resulting spaetime. It has been

shown by Vilenkin (1981) that the geometry around an isolated osmi string is Minkowskian

minus a wedge, the \de�it angle", and onsequently osmi strings may at as gravitational

lenses.

Even though stati osmi strings in ylindrial symmetry have been studied extensively in the

past either in Minkowskian or urved spaetime (see e.g. Laguna-Castillo and Matzner 1987,

Gar�nkle 1985), no solution has been obtained, to our knowledge, for a dynami osmi string
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oupled to gravity via the fully non-linear Einstein equations. Below we will present a numerial

solution of this senario and investigate the behaviour of a osmi string exited by gravitational

radiation. After presenting the mathematial desription of a osmi string in the next setion

we will derive the equations of a dynami osmi string oupled to gravity. In setion 4.4 we

will desribe the numerial treatment of these equations. The simple senario of a stati osmi

string in Minkowski spaetime presents already most of the subtleties involved in solving the

general problem and is therefore suitable for illustrating our numerial methods. Subsequently

we address a stati string in urved spaetime and �nally present the dynami ode. This ode

is extensively tested in setion 4.5 before we investigate the time evolution in setion 4.6.

The results and tehniques presented in this setion an also be found in Sperhake et al. (2000).

We onlude this introdution with some omments on the numerial formulations used in this

setion. We have seen above how the ombination of an interior Cauhy evolution with a har-

ateristi evolution in the exterior region leads to a stable aurate simulation of ylindrially

symmetry vauum spaetimes. In a natural extension of this projet we studied the inlusion of

matter in the form of a ylindrially symmetri osmi string. Suh an extension of the CCM-

ode of the previous setion has been developed, but no long term stable evolutions have been

ahieved with that ode. Consequently we have restarted the investigation. For onveniene

this has been done in a purely harateristi framework and �nally resulted in the long-term

stable, aurate ode desribed below. In the ourse of this work we have isolated the existene

of exponentially diverging solutions and the orresponding diÆulties at the outer boundary as

the soure of the problems. We will desribe how these diÆulties an be naturally ontrolled

with the use of impliit numerial tehniques. The use of suh tehniques, however, is by no

means restrited to harateristi methods and we have no reason to believe that an impliit

Cauhy-harateristi mathing ode would perform less satisfatorily. Suh an impliit CCM

ode has been tested in the simple ase of a ylindrially symmetri vauum spaetime with

vanishing rotation and has lead to an aurate long-term stable evolution of the Weber-Wheeler

wave. From this point of view the hoie of a harateristi formulation for the work desribed

in this setion is merely a onsequene of the hronology in whih progress has been ahieved.

4.2 Mathematial desription of a osmi string

In the following work we will use ylindrial oordinates r, �, z. Here z is the Killing diretion

orresponding to ylindrial symmetry and r, � are standard polar oordinates. In 4-dimensional

spaetime the time oordinate is t, but we will apply a harateristi formalism for the numerial
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solution and therefore also use the retarded time u = t � r. The simplest model of a osmi

string onsists of a salar �eld � oupled to a U(1)-gauge �eld A

�

. The Lagrangian for these

oupled �elds is given by

L

M

= �j(r

�

+ ieA

�

)�j

2

� V (�)�

1

4

F

��

F

��

: (4.1)

Here e is a onstant, whih desribes the oupling between the salar and the vetor �eld. The

self-oupling potential V (�) has the \Mexian-hat" shape predited by the standard model of

elementary partile physis and F

��

is the �eld tensor

F

��

= r

�

A

�

�r

�

A

�

; (4.2)

V (�) = 2�(�

2

� h�i

2

)

2

; (4.3)

where � is the self-oupling onstant of the salar �eld. It turns out to be useful to introdue

the Higgs vauum expetation value of the salar �eld as a parameter � = 2h�i

2

. Generalizing

the notation of Gar�nkle (1985) we write the �elds as

� =

S

p

2

e

i 

; (4.4)

A

�

=

1

e

(P � 1)r

�

�; (4.5)

where P , S and  are funtions of u, r, �. From now on, however, we will make the simplifying

assumption of ylindrial symmetry. Then P and S are funtions of u, r only and  = n�,

where n is the winding number. In this work we will only onsider the ase n = 1, so  = �.

We an alulate the energy momentum tensor T

��

from the Lagrangian aording to

T

��

=

2

p

�g

ÆL

M

Æg

��

; (4.6)

where L

M

=

p

�gL

M

is the Lagrange density. Summarising the variables and parameters, we

have

(1) the amplitude of the salar �eld S(u; r),

(2) the amplitude of the U(1) gauge �eld P (u; r),

(3) the onstant e whih desribes the oupling between the salar and vetor �eld,

(4) the self-oupling onstant � of the salar �eld,
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(5) the vauum expetation value of the salar �eld �.

If we substitute Eqs. (4.4), (4.5) in (4.1) we obtain the Lagrangian and the energy momentum

tensor in terms of these quantities

L

M

= �

1

2

g

��

(r

�

S)(r

�

S)�

1

2

S

2

g

��

(r

�

�+ eA

�

)(r

�

�+ eA

�

)� �(S

2

� �

2

)

2

�

1

4

F

��

F

��

;

(4.7)

T

��

= (r

�

S)(r

�

S) + S

2

(r

�

�+ eA

�

)(r

�

�+ eA

�

) + g

��

L

M

: (4.8)

4.3 The �eld equations

We start again with the line element in Jordan, Ehlers, Kundt and Kompaneets (JEKK) form

(3.10) for a ylindrially symmetri spaetime. This form of the metri, however, is not ompat-

ible with the osmi string energy momentum tensor so we follow Marder (1958) by introduing

an extra variable � into the metri

ds

2

= e

2(� )

(�d

~

t

2

+ d~r

2

) + ~r

2

e

�2 

d�

2

+ e

2( +�)

(!d�+ dz)

2

; (4.9)

where the tilde is used to reserve the names t and r for resaled oordinates below. This hoie

enables us to ompare our numerial solutions with the results of the Cauhy-harateristi

mathing ode desribed in setion 3. We have already noted that this metri has a zero shift

vetor and the lapse is determined by the requirement g

~

t

~

t

= g

~r~r

. The funtion �, however,

introdues the extra gauge freedom of relabelling the radial null surfaes: ~u ! f(~u) and ~v !

g(~v). We may �x this by speifying the initial values for � and either its time derivative in a

\3+1" formalism or its boundary onditions in a harateristi formalism. We will follow the

seond approah and below we will see that the funtion � is uniquely determined in the stati

ase and the boundary onditions follow from regularity assumptions of the metri. The further

requirement that the dynami results redue to the stati ones in the ase of vanishing time

dependene therefore �xes the gauge.

It turns out that we an eliminate one of the free parameters and simplify the equations if we
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introdue resaled quantities aording to

t =

p

��

~

t; (4.10)

r =

p

��~r; (4.11)

X =

S

�

; (4.12)

� =

e

2

�

: (4.13)

Thus � represents the relative strength of the oupling between salar and vetor �eld ompared

to the self-oupling. Furthermore we use the retarded time u = t� r so that the line element

beomes

ds

2

=

e

2(� )

��

2

(�du

2

� 2dudr) + r

2

e

�2 

��

2

d�

2

+ e

2( +�)

(!d�+ dz)

2

: (4.14)

In setion 3.3.1 we have desribed the Geroh deomposition whih an be used to fator out the

Killing diretion �

z

even if the Killing �eld is not hypersurfae-orthogonal. It is a remarkable

fat that the right hand side of equation (3.4) still vanishes for spaetimes with a osmi string

energy-momentum tensor (4.8) (Sj�odin et al. 2000), so that the Geroh twist an be desribed

by a potential aording to Eq. (3.5). The other geometrial variable, the norm of the z-Killing

vetor (3.1) beomes

� = e

2( +�)

; (4.15)

and the 3-dimensional line element (3.3) is

ds

2

=

1

��

2

�

h

e

2(� )

(�du

2

� 2dudr) + r

2

e

2�

d�

2

i

: (4.16)

With the energy momentum tensor given by (4.8) and the 3-dimensional line element (4.16)

we are now in a position to alulate the �eld equations aording to equations (3.6)-(3.8). We
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obtain
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(4.17)
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�
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+ �
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; (4.18)
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0 = 2

;r

+ 2r

;r

�

;r

� r�

;rr

+ r�
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;r

�

r
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2

(�

2

;r

+ �

2
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)� 8��
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"
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+

1

�
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�2�

�

P

2
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#

; (4.20)

where we have introdued the at-spae d'Alembert operator

� = 2

�

2

�u�r

�

�

2

�r

2

�

1

r

�

�

�r

�

�

�u

�

: (4.21)

This set of equations is supplemented by the matter evolution equations obtained either from

onservation of energy-momentum r

�

T

��

= 0 or variation of the Lagrange density L

M

with

respet to the matter �elds P and X. The result is

�P = 2

P

;u

� P

;r

r

� P

;r

�

;r

+ P

;r

�

;r

�

+ P

;r

�

;u

+ P

;u

�

;r

�

P

;r

�

;u

+ P

;u

�

;r

�

� �

e

2(+�)

�

PX

2
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(4.22)

�X = X

;r

�

;r

�X

;u

�

;r

�X

;r

�

;u

� 4�

�1

e

2(+�)

X(X

2

� 1)� e

2

XP

2

r

2

: (4.23)

Note that in equations (4.17)-(4.20) the matter terms exlusively appear with a fator �

2

.

Consequently � desribes the e�et of the string on the spaetime geometry and, thus, represents

the string's mass. There are two further Einstein equations whih an be shown to be a diret

onsequene of (4.17)-(4.23) and their derivatives. These equations have only been used to

provide a hek on the auray of the ode. Finally we have to supplement the equations by

boundary onditions on the axis. For the 4-dimensional metri variables the simplest ondition

is to require the metri to be C

2

on the axis so that we have a well de�ned urvature tensor.
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The resulting boundary onditions are (Sj�odin 2001)

�(t; r) = a

1

(t) +O(r

2

); (4.24)

�(t; r) = O(r

2

); (4.25)

�(t; r) = a

2

(t) +O(r

2

); (4.26)

(t; r) = O(r): (4.27)

The boundary onditions for S and P are (Gar�nkle 1985)

P (t; r) = 1 +O(r

2

); (4.28)

X(t; r) = O(r): (4.29)

The numerial implementation of these boundary onditions as well as regularity requirements

at null in�nity will be disussed in setion 4.4.3.

4.4 Numerial methods

In order to solve the above �eld equations we have developed two independent odes. The

�rst is based on the Cauhy harateristi mathing ode desribed in setion 3. This ode

performs well in the absene of matter and has been used to study several ylindrially sym-

metri vauum solutions (see also Sj�odin et al. 2000). However, this CCM ode performed less

satisfatorily in the evolution of the osmi string. This is due to the existene of unphysial

solutions to the evolution equations (4.17)-(4.23) whih diverge exponentially as r !1. Con-

trolling the time evolution near null in�nity by means of a sponge funtion enabled us to selet

the physial solutions with regular behaviour at I

+

, but the sponge funtion itself introdued

noise whih eventually gave rise to instabilities. We therefore implemented a seond impliit,

purely harateristi, ode whih allows us to diretly ontrol the behaviour of the solutions at

the boundaries and thus suppress diverging solutions. The main problem with the system of

di�erential equations is the irregularity of the equations at both the origin and null in�nity. It

is the impliit nature of the sheme that provides a simple way of implementing the boundary

onditions and thus irumventing all problems with these irregularities. A purely harateristi

formulation has been used for the seond ode for onveniene rather than numerial neessity

and we believe that an impliit CCM sheme would produe similar auray, onvergene and
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long term stability. It is interesting that the irregularity problems are already present in the

alulation of the stati osmi string in Minkowski spaetime. We will, therefore, �rst desribe

the numerial sheme used in the stati Minkowskian ase where the equations are fairly sim-

ple. We then present the modi�ations neessary for the stati and dynami ase oupled to

the gravitational �eld.

4.4.1 The stati osmi string in Minkowski spaetime

In Eqs. (4.17)-(4.23) we set the metri variables to their Minkowskian values and all time deriva-

tives to zero to obtain the equations for the stati osmi string in Minkowski spaetime (f.

Gar�nkle 1985)

r

d

dr

�

r

�1

dP

dr

�

= �X

2

P; (4.30)

r

d

dr

�

r

dX

dr

�

= X

�

P

2

+ 4r

2

(X

2

� 1)

�

: (4.31)

The boundary onditions are (see Gar�nkle 1985)

P (0) = 1; lim

r!1

P (r)= 0;

X(0) = 0; lim

r!1

X(r) = 1: (4.32)

In order to over the whole spaetime with a �nite oordinate range, we divide the omputational

domain into two regions in the same way as in setion 3.3.3. In the inner region (0 � r � 1) we

use the oordinate r, while in the outer region we introdue the ompati�ed radius y de�ned

by equation (3.12) whih overs the range 1 � y � 0. This orresponds to the region 1 � r <1

with in�nity mapped to y = 0. Again we ombine r and y into the single radial variable w

de�ned by (3.54). In terms of the oordinate y Eqs. (4.30), (4.31) take the form

d

dy

�

y

5

dP

dy

�

= 4�

X

2

P

y

; (4.33)

d

dy

�

y

dX

dy

�

= 4X

�

P

2

y

+ 4

(X

2

� 1)

y

5

�

: (4.34)

The number of grid points in eah region may di�er, but eah half-grid is uniform. Thus we use

a total of K := K

1

+K

2

grid points where the points labelled K

1

and K

1

+ 1 both orrespond

to the position r = 1 = y. The points K

1

, K

1

+ 1 form the interfae between the two regions

(see Fig. 15). One point will ontain the variables in terms of r, the other in terms of y. With
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...32k=1

r=0

K

1

+1

K

1

r=1

y=1

K

1
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1
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outer regioninner region
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1

+K

2

y=0

...

Figure 15: The ombined grid of the inner and the outer region. Note that both grid points,

K

1

and K

1

+ 1, orrespond to the position r = 1 , y = 1. These points form the interfae of

the ode and failitate transformation of the variables from the oordinate system using r into

that using y.

the omputational grid overing the whole spaetime, we now fae a two point boundary value

problem. Due to the existene of unphysial solutions diverging at y = 0 we have hosen to solve

the equations with a numerial relaxation sheme as desribed in setion 2.3.5 whih allows us

to diretly ontrol the behaviour of P and X at in�nity. The form of Eqs. (4.30), (4.31) suggests

that in order to write them as a �rst order system we should introdue the auxiliary variables

Q = r

�1

P

;r

and R = rX

;r

. The equations may then be written in the form

P

;r

= rQ; (4.35)

X

;r

=

R

r

; (4.36)

Q
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PX

2

r

; (4.37)

R

;r

= X

�

P

2

r

+ 4r(X

2

� 1)

�

: (4.38)

The orresponding equations in the outer region are given by

P

;y

= �2

Q

y

5

; (4.39)

X

;y

= �2

R

y

; (4.40)

Q

;y

= �2�

X

2

P

y

; (4.41)

R

;y

= �2X

�

P

2

y

+ 4

X

2

� 1

y

5

�

: (4.42)
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Standard seond order entred �nite di�erening aording to Eqs. (2.78), (2.79) results in

4(K � 2) non-linear algebrai equations whih are supplemented by the 4 boundary onditions

(4.32) and 4 interfae relations

P

K

1

+1

= P

K

1

; (4.43)

X

K

1

+1

= X

K

1

; (4.44)

Q

K

1

+1

= Q

K

1

; (4.45)

R

K

1

+1

= R

K

1

: (4.46)

We then start with pieewise linear initial guesses for P and X (and the orresponding deriva-

tives Q and R) and solve the 4K algebrai equations as desribed in setion 2.3.5.

In order to hek the ode for onvergene, we vary the grid resolution K (using K

1

= K

2

points in both regions) from 150 to 2400, halving the grid spaing eah time. Sine we do not

have an analyti solution, the results are ompared against the high-resolution ase (K = 2400).

For doing this we alulate the `

2

norm aording to Eq. (3.70). In this ase the funtion 	

in Eq. (3.70) stands for P , X, Q or R and the norm does not depend on time beause of the

stati nature of the problem. For seond order onvergene we expet the `

2

norm to derease

by a fator of 4 eah time we inrease the grid resolution by a fator of 2. However, we do not

ompare our results against the exat solution but against a high resolution result whih itself

has a �nite trunation error, so that

`

2

[	

K

℄ =

 

X

k

	

K

k

�	

2400

k

!

1=2

: (4.47)

Therefore we do not expet the fator to be exatly 4. Using a grid resolution K the trunation

error is given by

	

K

= 	+O

�

1

K

2

�

; (4.48)

where 	 is the exat and 	

K

the numerial solution. For simpliity we will assume that the

trunation error is either �1=K

2

or +1=K

2

. If we use a referene solution obtained for 4K grid
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Table 1: Convergene test for the osmi string in Minkowski spae-time for � = 1. The norm of

the deviation `

2

[�	

K

℄ is de�ned by Eq. (4.47). As the grid resolution is inreased, the deviation

from the high resolution result dereases quadratially to a good approximation (see text for

details).

P X Q R

`

2

(�	

1200

) 5:77 � 10

�7

2:84 � 10

�7

5:86 � 10

�7

8:89 � 10

�7

`

2

(�	

150

)=`

2

(�	

300

) 4.05 4.05 4.04 4.05

`

2

(�	

300

)=`

2

(�	

600

) 4.20 4.20 4.20 4.20

`

2

(�	

600

)=`

2

(�	

1200

) 5.00 5.00 5.00 5.00

points and ompare solutions 	

K

and 	

2K

the ratio of the orresponding `

2

-norms beomes
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�

�

�
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: (4.49)

Considering the extreme ases, we expet a onvergene fator between 3 and 5

2

3

. The truna-

tion error of the high resolution result will have signi�antly less inuene on the omparison

of lower resolution results and the fators should be loser to 4. Table 1 shows our results for

the osmi string in Minkowski spae-time and learly indiates seond order onvergene. In

Fig. 16 we show the string variables P and X for various values of � as a funtion of w. Due

to the resaling (4.10)-(4.12) the equations for the osmi string in Minkowski spaetime (4.30)

and (4.31) do not expliitly ontain the parameter �, so the shape of the osmi string �elds

Figure 16: The osmi string variables P and X are plotted for � = 10, 1, 0.1, 0.01 (from \left

to right"). The two families are labelled in the plot. As � inreases, both, P and X beome

more onentrated towards the origin. Note that w = 3 orresponds to r !1 [f. Eq. (3.54)℄.
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expressed in terms of the resaled variables is independent of �. Below we will see that this is

no longer true in urved spaetime where �, representing the mass of the string, determines the

strength of its oupling to gravity. Fig. 16 does, however, reveal a signi�ant variation of the

pro�les of the salar and vetor �eld with the oupling ratio �. As the salar-vetor oupling

beomes more dominant with respet to the self oupling of the salar �eld (larger �), both P

and X beome more onentrated towards the origin.

4.4.2 The stati osmi string oupled to gravity

The equations governing a stati osmi string in urved spaetime are obtained from the

general equations (4.17)-(4.23) by setting all time derivatives to zero. If we ombine �rst and

seond spatial derivatives in a single operator as in equations (4.30), (4.31), we an write these

equations as
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After ompleting the ode, we realised that in the ase of vanishing rotation � the �eld equations

(4.50)-(4.55) imply a simple relation between �, � and . An appropriate linear ombination of

these equations and their spatial derivatives an be written as

( + �� ln�)

;rr

+

�

1

r

+ �

;r

�

( + �� ln �)

;r

= 0; (4.56)

whih after some manipulation beomes

( + �� ln �)

;r

= C

e

��

r

: (4.57)
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Here C is a onstant that has to vanish in order to ensure �nite derivatives at the origin. In

the stati ase we adjust the funtions a

1

and a

2

in the boundary onditions (4.24), (4.26) so

that � = 1 and � = 0 at the origin and onsequently

 + �� ln � = 0; (4.58)

for all values of r. Even though � will be zero in the analysis in this setion, we will numerially

solve the original system of equations (4.50)-(4.55) and use (4.58) as a test for the ode.

In order to numerially solve the equations of a osmi string oupled to gravity, we rewrite

them again as a �rst order system. The di�erential operators appearing on the right hand side

suggest that we introdue the auxiliary quantities N = r�

;r

, T = r�

;r

, M = r

2

�

;r

, Q = r

�1

P

;r

and R = rX

;r

. The system an then be written in the form

�

;r

=

N

r

; (4.59)

�

;r

=

T

r

; (4.60)

�

;r

=

M

r

2

; (4.61)

P

;r

= rQ; (4.62)

X

;r

=

R

r

; (4.63)

N
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=
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2

� T

2

r�
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� 16��
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2+2�
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� 1)
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+ 8�

�
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�
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; (4.64)

T
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= 2

TN
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�
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2

; (4.65)

M
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; (4.66)
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;r

= �
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2

+ 4e

2+2�

�

�1

rX(X

2

� 1) + e

2

XP

2

r

: (4.69)
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The orresponding equations in terms of the ompati�ed radial oordinate y are

�

;y

=

N

y

; (4.70)

�

;y

=

T

y

; (4.71)

�

;y

= yM; (4.72)

P

;y

=

Q

y

5

; (4.73)

X

;y

=

R

y

; (4.74)
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; (4.75)

T
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� yTM; (4.76)
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+ 4�e
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= �yRM + 4e
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+ 16e

2+2�

�

�1

X(X

2

� 1)

y

5

: (4.80)

From the numerial point of view, the problem of solving these equations is virtually idential

to that of a stati string in Minkowski spaetime. The only di�erene is the muh higher degree

of omplexity of the equations due to the appearane of �, � , � and  as extra variables. We will

disuss the numerial implementation of the boundary onditions at the origin and at in�nity

in the next setion when we onsider the ase of a dynami osmi string. The boundary

onditions are given by equations (4.104), (4.105). In the stati ase we replae the onditions
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Table 2: Convergene test for the stati osmi string in urved spae-time for � = 1. The

norm of the deviation `

2

[�	

K

℄ is de�ned by Eq. (4.47). As the grid resolution is inreased, the

deviation from the high resolution result dereases quadratially to a good approximation (see

text for details).

� �  P X

`

2

(�	

1200

) 1:28 � 10

�7

2:51 � 10

�6

2:39 � 10

�6

5:95 � 10

�7

4:16 � 10

�7

`

2

(�	

150

)=`

2

(�	

300

) 3.56 3.59 3.58 4.04 3.37

`

2

(�	

300

)=`

2

(�	

600

) 3.76 3.79 3.78 4.19 3.60

`

2

(�	

600

)=`

2

(�	

1200

) 4.58 4.61 4.60 4.98 4.44

for N , T and M in (4.104) by

� = 1;

� = 0;

� = 0;

(4.81)

but otherwise use the same boundary onditions. The solution is then obtained using the relax-

ation method desribed in the previous setion. As our initial guess for the metri variables we

use Minkowskian values, and for the string variables X and P we use the previously alulated

values for a Minkowskian string with the same string parameters. Due to the appearane of

� or its derivatives in all terms of (4.51) the Geroh potential will stay zero in the relaxation

proess and our solution has no rotation.

We have heked the ode for onvergene in the way desribed in setion 4.4.1. We have ho-

sen the unphysially large value � = 0:2 here in order to guarantee onvergene even for strong

oupling between matter and geometry. � is set to 1 as in the Minkowski ase. The results are

given in Table 2. For onveniene we only display the results for the fundamental variables �,

�, , P and X. Sine we do not inorporate rotation, the result for � is, as expeted, exatly 0

and we do not inlude it in Table 2. Again the ode is shown to be seond order onvergent.

In Fig. 17 and 18 we plot the results obtained for N = 2400 grid points. In all these plots the

relative oupling strength is � = 1, but qualitatively similar results are obtained for di�erent

values of �. We have already mentioned that the e�et of the string on the spaetime geometry

is determined by �. Therefore we have ompared the deviation of both the string variables and

the metri from the Minkowskian ase for � = 0.001, 0.01, 0.1 and 0.2. In Fig. 17 we plot the

string variables P and X for the two extreme values and the deviation from the Minkowskian

string resaled by �

2

for all four values. For small � we see that �P=�

2

and �X=�

2

is essentially
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Figure 17: a) In the upper two panels we plot the string variables for � = 0.001 (dotted) and

0.2 (solid) as a funtion of the radial variable w. b) In the lower panels we have plotted the

deviation from the Minkowskian values resaled by �

2

for � = 0.001 (dotted), 0.01 (dashed), 0.1

(long dashed) and 0.2 (solid). Note that the urves for 0.001 and 0.01 almost exatly oinide,

whih indiates the validity of the linear regime. For larger �, however, the deviation shows a

more ompliated behaviour.

independent of �. In this ase the deviation from Minkowskian values an be treated as a small

perturbation and a linear dependene of �P and �X on �

2

is to be expeted. In the range

� = 0:1 : : : 0:2 on the other hand, we learly leave the linear regime and the deviation depends

on � in a muh more ompliated way. These values, however, are 2 orders of magnitude larger

than the value 10

�3

predited in urrent GUT theories (Vilenkin and Shellard 1994). The de-

viation of the metri variables �, � and  is plotted in the �rst three panels of Fig. 18. Again

we see the linear behaviour for small � and the transition to the non-linear regime at � � 0:1.

In the fourth panel of Fig. 18 we hek Eq. (4.58) for � = 0:1. We learly see that  + �+ ln �

is approximately zero. Indeed (4.58) is satis�ed to within � 10

�8

as ompared with the order

of magnitude of the individual terms 10

�1

.

4.4.3 The dynami osmi string

In the dynami ase all variables �, � , �, , P and X are funtions of u; r and we have to solve

the system (4.17)-(4.23) of partial di�erential equations. In order to ontrol the behaviour of
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Figure 18: The deviation of the metri variables �, � and  from Minkowskian values resaled by

�

2

is plotted as a funtion of w for � = 0.001 (dotted), 0.01 (dashed), 0.1 (long dashed) and 0.2

(solid). The dotted and the dashed urves almost exatly oinide indiating the linear regime.

As in the ase of the string variables we �nd a more ompliated dependene for � � 0:1. In

the lower right panel we plot  �, ln � and their sum for � = 0:1 whih vanishes in aordane

with Eq. (4.58) to high auray.

the solution at in�nity, we need a generalisation for PDEs of the relaxation sheme applied to

ordinary di�erential equations. In view of the harateristi feature of the relaxation sheme,

namely the simultaneous alulation of new funtion values at all grid points, this generalisation

leads diretly to impliit evolution shemes as used for hyperboli or paraboli PDEs. Therefore,

the dynami ode is based on the impliit, seond order in spae and time Crank-Niholson

sheme desribed in setion 2.3.6. For this purpose we rewrite the dynami equations (4.17)-

(4.23) as a �rst order system. These equations involve radial derivatives whih may be written

in terms of seond order operators exatly as in the stati ase (4.50)-(4.55). This naturally

leads to the auxiliary quantities introdued in Eqs. (4.59)-(4.63). In terms of these variables the
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equations for the dynami osmi string beome

�
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=

N

r

; (4.82)

�
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; (4.83)

�
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; (4.84)

P
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=rQ; (4.85)
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; (4.86)
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The orresponding �rst order system in the outer region is given by

�
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(4.103)

The derivation of these equations and a number of other alulations in this work have been

arried out with the algebrai omputing pakage GRTensorII (Musgrave, Pollney, and Lake
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1996). In order to solve these equations we must supplement them by appropriate initial and

boundary onditions. We have already mentioned the boundary onditions on the axis (4.24)-

(4.29). In general we �nd that the dynami ode performs better if one imposes boundary

onditions on the radial derivatives rather than the variables themselves. For the variables

�, �, � , P and X we therefore impose the required boundary onditions on the initial data

aording to (4.32) and (4.81). In the subsequent evolution we impose the weaker ondition

that the radial derivatives N , T and R are �nite on the axis. This ensures that the evolution

equations propagate the axial onditions given on the initial data. For the variable � we impose

the ondition that M is zero on the axis whih is equivalent to the rather weak ondition that

r

2

�

r

vanishes there. The inverse power of r in the de�nition of Q makes it unsuitable to speify

the value of this quantity at r = 0 so in this ase we work with the variable diretly and require

that P = 1 on the axis. Finally the variable  is given by a purely radial equation and in this

ase we speify the value on the axis where  vanishes by virtue of Eq. (4.27). Therefore at

r = 0 we require

N = 0;

T = 0;

M = 0;

 = 0;

P = 1;

R = 0:

(4.104)

For the boundary onditions at null in�nity we know that regular solutions of the ylindrial

wave equation have radial derivatives that deay faster than 1=r so that we may take the

variables N , T , and R, whih satisfy a wave type equation, to vanish at y = 0. The asymptotis

of � are slightly di�erent due to the additional power of r in the radial derivative (similar to

the spherially symmetri wave equation) but for a regular solution �

;y

vanishes at null in�nity.

The equation for P does not satisfy a wave type equation due to the inverse power of r but

has asymptoti behaviour given by a modi�ed Bessel funtion. The physially relevant �nite

solution has exponential deay so in this ase one may impose the ondition that Q = 0 at
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y = 0. Hene we require the solution to satisfy the following boundary onditions at y = 0

N = 0;

T = 0;

�

;y

= 0;

Q = 0;

R = 0:

(4.105)

These boundary onditions are suÆient to determine the solution of the �rst order system

(4.82)-(4.103) while suppressing the unphysial solutions whih are singular on the axis or null

in�nity. Note that  is determined by the onstraint equation (4.20), whih is a �rst order

ODE, and thus only needs one boundary ondition.

We �nally note that all variables are related at the interfae in the form f

K

1

+1

= f

K

analogous

to Eqs. (4.43)-(4.46) in the ase of a stati string in Minkowski spaetime.

4.5 Testing the dynami ode

In this setion we will desribe four independent tests of the impliit ode for the dynami

osmi string, namely

(1) reproduing the non-rotating vauum solution of Weber and Wheeler (1957),

(2) reproduing the rotating vauum solution of Xanthopoulos (1986),

(3) using the results for the stati osmi string as initial data and verifying that

the system stays in its stati on�guration,

(4) onvergene analysis for the string hit by a Weber-Wheeler wave.

Two additional tests arise in a natural way from the �eld equations and the numerial sheme.

As desribed above there are two additional �eld equations whih are onsequenes of the

other equations. We have veri�ed that these equations are satis�ed to seond order auray

(� �r

2

). Furthermore the numerial sheme alulates the residuals of the algebrai equations

to be solved, whih have thus been monitored in test runs. They are satis�ed to a muh higher

auray (double preision mahine auray), so the total error is dominated by the trunation

error of the seond order di�erening sheme. Another independent test is the omparison with

the expliit CCM ode whih yields good agreement as long as the latter remains stable. The

four main tests are now desribed in more detail.
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Figure 19: The deviation of the numerial � and  from the Weber-Wheeler solution as a

funtion of u and w obtained for 1920 grid points (K

1

= 320, K

2

= 1600). The wave parameters

are a = 2, b = 0:5. Note that the error is ampli�ed by 10

5

and 10

7

respetively.

4.5.1 The Weber-Wheeler wave

In the �rst test we evolve the analyti solution given by Weber and Wheeler (1957), whih

desribes a gravitational pulse of the \+" polarisation mode. We have given the analyti

expressions in setion 3.5.1 in terms of t, r [Eqs. (3.46)-(3.49)℄ and in terms of u, y [Eqs. (3.50)-

(3.53)℄. The orresponding equations in harateristi oordinates u, r in the inner region are

easily obtained from the oordinate transformation t = u + r. We presribe � as initial data

aording to the analyti expressions obtained for a = 2 and b = 0:5 and set the other free

variables to zero, while  is alulated via quadrature from the onstraint equation (4.20). In

Fig. 19 we show the deviation of the numerial results from the analyti one for K = 1920 grid

points (320 points in the inner, 1600 points in the outer region) and a Courant fator of 0.5 with

respet to the inner region. The onvergene analysis (see below) shows that this number of

points provides suÆient resolution in the outer region while still keeping omputation times at

a tolerable level. All omputations presented in the remainder of setion 4 have been obtained

with these grid parameters, unless stated otherwise. The ode stays stable for muh longer time

intervals than shown in the �gure, but does not reveal any further interesting features as the

analyti solution approahes its Minkowskian values and the error goes to zero.

4.5.2 The rotating solution of Xanthopoulos

Xanthopoulos (1986) has derived an analyti vauum solution for Einstein's �eld equations

in ylindrial symmetry ontaining both the \+" and \�" polarisation mode. Its analyti

form in terms of our metri variables is given by Eqs. (3.55)-(3.68) in setion 3.5.2. Again the
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Figure 20: The deviation of the numerial �, � ,  from Xanthopoulos' analyti solution as a

funtion of u and w obtained for 1920 grid points (K

1

= 320, K

2

= 1600). Note that the error

is ampli�ed by 10

5

and 10

6

respetively.

transformation to oordinates u, r in the inner region results straightforwardly from t = u+ r.

The solution has one free parameter a set to one in this alulation. The error of our numerial

results is displayed in Fig. 20, where we have used the same grid parameters as in the Weber-

Wheeler ase. Again we have run the ode for longer times and found that the error approahes

zero. We onlude that the ode reprodues both analyti vauum solutions with exellent

auray omparable to that of the CCM ode and exhibits long term stability.

4.5.3 Evolution of the stati osmi string

The tests desribed above only involve vauum solutions, so the matter part of the ode and the

interation between matter and geometry has not been tested. An obvious test involving matter

and geometry is to use the result for the stati osmi string in urved spaetime as initial data

and evolve this senario. All variables should, of ourse, remain at their initial values. We have

evolved the stati string data for our standard grid and the parameter set, � = 1 and � = 0:2,

whih orresponds to a strong bak-reation of the string on the metri. The results are shown
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Figure 21: The deviation of the metri and matter variables from the initial data in the ase

of evolving a stati osmi string with � = 1, � = 0:2. For our standard grid with 1920 points,

the on�guration stays stati to an auray of � 10

�5

over a range of more than 30000 time

steps.

in Fig. 21. The system stays in its stati on�guration with high auray over a time interval

whih is signi�antly longer than the dynamially relevant timesale of the vauum solutions

disussed above.
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Figure 22: The onvergene fator `

2

[	

1920

℄=`

2

[	

2880

℄ is plotted as a funtion of u. We expet a

onvergene fator of 2.25 sine the number of grid points is multiplied by 1.5. Even though our

results show weak variability at later times, seond order onvergene is maintained throughout

long runs (more than 30000 time steps with K = 1920).

4.5.4 Convergene analysis

Our investigation of the interation between the osmi string and gravitational waves will fous

on the string being hit by a wave of the Weber-Wheeler type. In order to hek this senario

for onvergene we have run the ode for the parameter set � = 0:2, � = 1, a = 2, b = 0:5

for di�erent grid resolutions, where a and b are again the width and amplitude of the Weber-

Wheeler wave. In our ase it is of partiular interest to investigate the time dependene of the

onvergene to see what resolution we need in order to obtain reliable results for long runs. We

alulate the onvergene rate again aording to equation (3.70). The high resolution referene

solution has been alulated forK = 4320 grid points. In Fig. 22 we show the onvergene fator
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Figure 23: The initial data for �, P and X at u

0

= �20 for the standard parameters � = 1,

� = 0:001, a = 2, b = 0:5. The gravitational wave pulse is loated in a region where the string

�elds P and X have almost fallen o� to their asymptoti values.

`

2

[	

1920

℄=`

2

[	

2880

℄ as a funtion of u for �, �, , P and X. The initial data for � is identially

zero for this senario and stays zero during the evolution. The number of grid points is inreased

by a fator of 1.5 here (instead of the more ommonly used 2) to redue the omputation time.

Only points ommon to all grids have been used in the sum in equation (3.70). For seond

order onvergene we would expet a onvergene fator of 1:5

2

. Although the results in Fig. 22

show weak variations with u, seond order onvergene is learly maintained for long runs.

In eah ase the outer region ontains 5 times as many grid points as the inner region (e.g.

K

1

= 320, K

2

= 1600 for the K = 1920 ase). The reason for this is that in the dynami

evolutions X and espeially P exhibit signi�ant spatial variations out to large radii. Due to

the ompati�ation, the spatial resolution of our grid dereases towards null in�nity and in

order to resolve the spatial variations of the string variables out to suÆiently large radii we

therefore have to introdue a large number of grid points in the outer region. No suh problems

our in the inner region. If signi�antly fewer grid points are used in the outer region for this

analysis, the onvergene properties of the string variables an deteriorate to roughly �rst order

level.

4.6 Time dependene of the string variables

4.6.1 Stati osmi strings exited by gravitational waves

The senario we are going to investigate in this setion is an initially stati osmi string hit

by a gravitational wave of Weber-Wheeler type. For this purpose we use the stati results



4 NUMERICAL EVOLUTION OF EXCITED COSMIC STRINGS 87

Figure 24: The metri and string variables are plotted as funtions of w at u = �20 (dotted),

u = �10 (long dotted), u = 0 (dashed), u = 2 (long dashed) and u = 10 (solid line). For

larity the graphs of P are distributed over two panels. The wave pulse (in �) initially moves

inwards. It exites the string, is reeted at the origin and travels outwards. After u = 10

only P di�ers signi�antly from the stati on�guration as the osillations slowly deay and

propagate towards larger radii (f. Fig. 25).

with two modi�ations as initial data. Firstly the stati metri funtion �

0

is multiplied by

the exat Weber-Wheeler solution to simulate the gravitational wave pulse. Thus we guarantee

that initially the osmi string is indeed in an equilibrium on�guration provided the wave pulse

is loated suÆiently far away from the origin and its interation with the string is negligible.

Ideally the numerial alulation would start with the inoming wave loated at past null in�nity.

In order to approximate this senario, we found it was suÆient to use the large negative initial

time u

0

= �20. The seond modi�ation is to alulate  from the onstraint equation (4.20)
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Figure 25: The osmi string variable P is shown as a funtion of radius and time for � = 0:2

(left) and � = 1 (right) (all other parameters have standard values). Note that we use the radial

variable r out to r = 50 here. The ringing an learly be seen and shows a lower frequeny for

smaller �.

to preserve onsisteny with the Einstein �eld equations. In Fig. 23 the orresponding initial

data for �, P and X are shown for the parameter set � = 0:001, � = 1, a = 2 and b = 0:5. From

now on we will refer to these values as \standard parameters" and only speify parameters if

they take on non-standard values. The time evolution of the \standard on�guration" is shown

in Fig. 24 where we plot �, �, , P and X as funtions of w at times �20, �10, 0, 2 and 10.

While the wave pulse is still far away from the origin, its interation with the osmi string is

negligible (dotted lines). When it reahes the ore region it exites the osmi string and the

salar and vetor �eld start osillating (dashed urves). After being reeted at the origin, the

wave pulse travels along the outgoing harateristis and the metri variables �, � and  quikly

settle down into their stati on�guration whih is lose to Minkowskian values for � = 10

�3

.

The vetor and salar �eld of the osmi string, on the other hand, ontinue ringing albeit

with a di�erent harater. Whereas the osillations of the salar �eld X are dominant in the

range r � 2 and have signi�antly deayed at u = 10 as shown in the �gure, the vetor �eld

osillations propagate to large radii and fall o� very slowly (solid urves). This behaviour is

also illustrated in the right panel of Fig. 25 whih shows a ontour plot of P as a funtion of

(u; r) out to r = 50. We shall see below, that the osillations of P will also deay eventually

and the osmi string will asymptotially settle bak into its equilibrium on�guration.
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4.6.2 Frequeny analysis

We will now quantitatively analyse the osillations of the salar and vetor �eld of the osmi

string. Sine we are working in resaled oordinates, physial time and distane are measured

in units of 1=

p

�� and frequeny in its inverse. To avoid ompliated notation, however, we will

omit the units from now on unless the meaning is unlear. In order to measure frequenies, we

Fourier analyse the time evolution of the salar and vetor �eld for �xed radius r. Fig. 26 shows

P and X for standard parameters as funtions of time at r = 1 together with the orresponding

power spetra. In eah Fourier spetrum we an see three peaks. Those very lose to f = 0

are merely due to the o�set of the data and the gradual hange of the �elds over long times.

We therefore do not attribute these peaks to the osillations of the �elds and will not onsider

them in the ensuing disussion. We have alulated similar power spetra for a large lass of

parameter sets and in most ases found two peaks at non-zero frequenies. In order to interprete

the frequenies, it is onvenient to plot them as funtions of the relative oupling strength �.

The result is shown in Fig. 27. In this �gure the solid lines show the frequeny values alulated

for the salar and vetor �eld from the linearised equations (see Sj�odin and Vikers 2001)

f

X

=

p

2

�

; (4.106)

f

P

=

p

�

2�

: (4.107)

We an thus assoiate the onstant frequeny f = 0:45 with the salar �eld X and the �

dependent frequeny with the vetor �eld P . We will refer to these frequenies as f

X

and f

P

from now on. The �-dependeny of f

P

is also illustrated in Fig. 25 where we show ontour plots

of P obtained for � = 0:2 and � = 1. The osillation frequeny is signi�antly larger for � = 1.

In Fig. 27 we an see that the frequenies assoiated with the salar and vetor �eld beome

similar near � = 8. For this value it an be shown that the masses assoiated with the salar

and vetor �eld beome equal (see for example Sj�odin and Vikers 2001). The frequenies are

diÆult to resolve in these ases and we have only found one peak in the Fourier spetra. The

resulting values are shown as �lled lozenges in the �gure. In this ontext it is worth mentioning

that the auray of the measurements of the frequenies is limited by the resolution of the

Fourier spetra whih again is limited by the time interval overed in the evolution. In Fig. 26

we an see however, that the osillations of both P and X gradually die out in later stages of

the evolutions, so that it beomes inreasingly diÆult to extrat more information about the

frequenies by using larger integration times. The evolutions used for this analysis provide an

auray �f � 0:01 whih orresponds approximately to one bin in the frequeny spetra.
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Figure 26: Upper panels: The variables P and X at r = 1 are plotted as funtions of u for

� = 1, � = 0:001, a = 2 and b = 0:5. Lower panels: The orresponding power spetra show

three peaks eah. That near f = 0 is merely due to a onstant o�set and the variation of

the �elds on long time sales and thus not assoiated with the osillations. From the linear

equations one an infer that the peaks at f = 0:45 an be identi�ed with the osillation of the

salar �eld, the peaks at f = 0:16 with those of the vetor �eld. Note that due to our resaling

of the oordinates, u is measured in units of 1=

p

��.

It is interesting to see that in the non-linear evolution the distintion between the osillations of

the vetor and the salar �eld is not as lear as in the linear ase whih is demonstrated by the

presene of two peaks in the Fourier spetra. We attribute this feature to the interation between

the salar and vetor omponent of the osmi string. Conerning the radial dependene of the

spetra we have in general found that the harateristi mode of X resulted in stronger peaks

at smaller radius, that of P was stronger at larger radii. This variation of the relative strength

of the osillations with radius on�rms the orresponding observation in Fig. 24. In order to

investigate the dependeny of the osillations on �, a, b and the radial position r, we have varied

eah parameter over at least two orders of magnitude while keeping the other parameters at

standard values. We have found the following dependenies:

(1) The frequenies of both X and P do not show any variations with � for � < 0:1.

(Note that � does, however, appear in the units). For larger values of �, the

non-linear interation between string and geometry beomes dominant and we

did not detet a simple relation between frequeny maxima and parameters.
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Figure 27: The frequenies obtained from the Fourier analysis of the osillations of the salar

and vetor �elds are plotted as funtions of �. The urves show the frequenies of the salar and

vetor �eld predited by an analysis of the linearised equations. For 5 � � � 8 the predited

values for P and X are similar and we �nd only one frequeny. These values are plotted as

�lled lozenges.

(2) The variation of the parameters a and b, the width and amplitude of the Weber-

Wheeler pulse, has no measurable e�et on the frequenies of X and P , but only

determined the amplitude of the osillations. A narrow, strong pulse leads to

larger amplitudes.

(3) For small r the osillations in X are stronger, whereas those for P dominate at

large r. The frequeny values, however, do not depend on the radius. For radii

greater than 10 the osillations in X had deayed so strongly that we ould no

longer measure its frequeny.

We have also heked the empirial relation between the oupling onstant � and the frequenies

f

X

and f

P

. For this purpose we have performed a linear regression analysis of the double

logarithmi data of Fig. 27 exluding the ases where only one frequeny is observed. We

obtain power law indies �

X

= 0:00 and �

P

= 0:50, so that

f

X

� onst; (4.108)

f

P

�

p

�; (4.109)
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whih agrees with Eqs. (4.106), (4.107). If we transform this result bak into physial units

using � = e

2

=�, we arrive at the following relations for the physial variables

f

X

�

p

��; (4.110)

f

P

� e�: (4.111)

As shown in Shellard and Vilenkin (1994) up to onstant fators

p

�� and e� are the masses of

the salar and the vetor �eld, m

X

and m

P

, so that X and P have harateristi frequenies

f

X

� m

X

; (4.112)

f

P

� m

P

: (4.113)

Sine the frequenies for X and P seem only to depend upon the respetive masses we have

attempted to on�rm these results by onsidering the osillations of a osmi string in two

further senarios. Firstly sine the frequenies do not depend upon the shape of the Weber-

Wheeler pulse we take as initial data the stati values for the metri variables but exite the

string by adding a Gaussian perturbation to either the X or P stati initial values. The

evolution is then omputed using the fully oupled system. Seondly sine the frequenies

do not seem to depend upon the strength of the oupling to the gravitational �eld we have

ompletely deoupled the gravitational �eld and onsidered the evolution of a osmi string

in Minkowski spaetime. The initial data is taken to be that for a stati string in Minkowski

spaetime with a Gaussian perturbation to either the X or P values. The evolution is then

omputed using the equations for a dynamial string in a Minkowskian bakground [equations

(4.22) and (4.23) with the metri variables set to Minkowskian values℄. In both ases we obtain

the same frequenies, to within an amount �f = 0:01, that we �nd in the original ase of the

fully oupled system exited by a Weber-Wheeler pulse. Furthermore the frequenies did not

depend on the loation or shape of the �eld perturbation nor upon the hoie of X or P as the

perturbed �eld.

4.6.3 The long term behaviour of the dynami string

The time evolution shown in Figs. 24 and 25 indiates that the osillations of the osmi string

exited by gravitational waves gradually deay and metri and string settle down into an equi-

librium state. In order to investigate the long term behaviour in detail we have evolved the

variables for a muh longer time (�20 � u � 410) than in the numerial evolutions disussed
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Figure 28: The upper four plots show the di�erene between the evolved funtions �, �,  and

X and their orresponding stati results. For P a similar 3-dimensional plot is not suitable sine

it fails to resolve the osillations of the vetor �eld. Therefore we plot the `

2

-norm (dashed line)

and the maximum (solid line) of �P as a funtion of time. �, �,  and X quikly settle down in

their equilibrium on�guration to numerial auray. The deay of the osillations of P takes

signi�antly more time but eventually P also approahes its equilibrium state.

above. The unphysially large value of � = 0:1 is hosen for this alulation in order to guar-

antee a strong interation between spaetime geometry and the osmi string. In Fig. 28 we

show the di�erene �f := f

evol

� f

stat

between the time-dependent �, �,  and X and their

orresponding stati results obtained for the same parameters. For the vetor �eld P a similar
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3-dimensional plot would require an extreme resolution to properly display the osillations of

the vetor �eld (f. Fig. 24). For this reason we proeed di�erently and alulate the `

2

-norm

and the maximum of �P for eah slie u = onst. Both funtions are plotted versus time in

Fig. 28. The inoming wave pulse an learly be seen as a strong deviation of � from the stati

funtion. The pulse exites the osmi string and is reeted at the origin at u = 0. The metri

variables and the salar �eld X then quikly reah their equilibrium values. The osillations

in P deay on a signi�antly longer time sale whih is also evident in Figs. 24 and 25 and the

`

2

-norm of �P slowly approahes 0. Signi�antly longer runs than shown here are prohibited

by the required omputation time, but the results indiate that P will also eventually reah its

equilibrium on�guration.

4.7 Disussion

In the previous two setions we have studied numerial problems in ylindrial symmetry with

partiular emphasis on the use of harateristi methods and the ompati�ation of spaetime.

This work has ompleted the 1-dimensional stage of the Southampton Cauhy-harateristi

mathing projet by presenting for the �rst time a long-term stable seond order onvergent

ode for general ylindrially symmetri vauum spaetimes with both the + and � polarisation

mode. In order to obtain long-term stability it was ruial to formulate the problem in a

way that simpli�es the relations at the interfae where information is transferred between the

interior Cauhy and the exterior harateristi region. In this partiular ase we ahieved the

simpli�ation by applying the Geroh deomposition to both regions whih ontrasts with the

less suessful previous attempts where the Killing diretion was fatored out in the exterior

region only. In view of the numerial subtleties involved with the interpolation tehniques

at the interfae the importane of a suitable hoie of variables may not be too surprising.

Nevertheless we stress the signi�ane of this result onerning Cauhy-harateristi mathing

odes in higher dimensions. The struture of the null geodesis will inevitably beome muh

more ompliated if the restrition of ylindrial symmetry is dropped and the physial variables

are allowed to depend on the angular oordinates. Correspondingly the transformation between

variables at the interfae will also be more ompliated. In view of our results it seems important

to arefully hoose the variables desribing the spaetime in both regions and aim for \simple"

transformation laws.

The inlusion of matter in the form of osmi strings resulted in qualitatively new numerial

problems that �nally were solved by the use of speially adapted numerial methods. The

inorporation of null in�nity proved to be important here for the spei�ation of outer boundary
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onditions on the matter variables. It was the existene of unphysial exponentially diverging

solutions of the equations for a osmi string that required a speial numerial treatment. We

were able to suppress the unphysial diverging solutions by solving the equations for a osmi

string with a relaxation sheme in the stati ase and an impliit evolution sheme in the

dynami ase. We have thus been able to develop the �rst fully non-linear simulation of a stati

and a dynami osmi string oupled to gravity whih implements the exat boundary onditions

at both the origin and in�nity. The resulting odes have been used to study the interation

between a osmi string and a gravitational wave pulse. We have found that the gravitational

wave pulse exites the osmi string whih then starts osillating with frequenies proportional

to the partile masses assoiated with the salar and vetor �eld. The same frequenies have

been observed if we exite the osmi string with a Gaussian perturbation to the salar or vetor

�eld.

From a numerial point of view an interesting result of the numerial solution of the equations

for a dynami osmi string onerns the transfer of information at the interfae. We have

illustrated this in Fig. 15 where two grid points K

1

, K

1

+ 1 have been used for the spatial

position r = 1. The grid point K

1

ontains the variables of the interior region at r = 1,

whereas the variables of the exterior region are spei�ed at the same position on grid point

K

1

+ 1. The orresponding implementation of the interfae is remarkably simple as illustrated

by Eqs. (4.43)-(4.46) whih represent the interfae for the stati osmi string in Minkowski

spaetime. The orresponding equations in the dynami ase oupled to gravity are equally

trivial. Even if di�erent variables are used in the interior and exterior region, one is still able

to transform the variables loally at the grid points K

1

and K

1

+1 and there is no need to use

interpolation tehniques as in the ase of the expliit numerial methods used in setion 3. We

attribute the possibility of using this simple implementation of the interfae to the fat that all

funtion values are alulated simultaneously on the new time slie in an impliit sheme, so

that there is no hierarhial order aording to whih the funtion values have to be alulated.

We have probed suh a \loal interfae" in an impliit Cauhy-harateristi mathing ode

for ylindrially symmetri, non-rotating vauum spaetimes and ahieved a long term stable

evolution with an auray omparable to the expliit ode desribed in setion 3. Even though

an interfae based on interpolation performs satisfatorily in ylindrial symmetry this may no

longer be the ase in higher dimensional problems where the interpolation tehniques will be

signi�antly more ompliated. On the other hand we an see no obvious reason why a \loal

interfae" in ombination with an impliit numerial sheme should di�er signi�antly from

that used in the 1-dimensional ase.
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5 Non-linear osillations of spherially

symmetri stars

5.1 Introdution

In this setion we will turn our attention towards the study of ompat stars in the framework

of general relativity. The disovery of stars signi�antly more ompat than the sun goes bak

to observations of the binary star Sirius in the middle of the 19th entury. Sirius is the brightest

star in the sky as viewed from the earth. From an astrophysial point of view, however, the faint

ompanion of the bright main star, Sirius B has provoked muh more interest. The astronomer

Bessel was the �rst to infer the existene of an unseen ompanion of Sirius from a wobble in

the motion of the main star. It took another twenty years before Alvin Clark managed to

optially resolve Sirius B. By the early twentieth entury it beame lear from the analysis

of its eletromagneti spetrum that Sirius B has a rather high surfae temperature of about

25,000K. In view of this result the extraordinarily low luminosity of Sirius B lead to the

onlusion that the star is very small, about the size of the earth. This type of high density star

was onsequently named a white dwarf. It was understood at the time that white dwarfs mark

the �nal stage in the evolution of stars, but it remained a puzzle how suh ompat objets were

able to support themselves against gravitational ontration. The answer was �rst provided by

Eddington and Fowler who suggested that the star is supported by the degenerate eletron

pressure, a quantum e�et arising from the Pauli-exlusion priniple. When Chandrasekhar

worked out the orresponding theory for a relativisti eletron gas he made the remarkable

disovery that the degenerate eletron pressure will never be suÆient to support white dwarfs

above a mass of about 1:4M

�

. In his words: \For a star of small mass the natural white dwarf

stage is an initial step towards omplete extintion. A star of large mass annot pass into the

white dwarf stage and one is left speulating on other possibilities." It did not take long before

suh speulations were direted towards the existene of neutron stars.

The �rst suggestion that stars made up of nuleons may exist ame from Landau in 1932 just

two years after the disovery of the neutron. Two years later Baade and Zwiky proposed

the idea that neutron stars may be the produt of supernova explosions and thus mark the

�nal stage in the evolution of stars of large mass. The �rst theoretial models of neutron

stars were alulated in 1939 by Tolman, Oppenheimer and Volko�. It took another thirty

years, however, before neutron stars were atually disovered observationally. Furthermore

this disovery ame in a ompletely unexpeted way. In 1967 the then Cambridge graduate
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student Joelyne Bell and her supervisor Antony Hewish were looking for sintillations of radio

soures produed by the interstellar medium. On the 28th of November 1967 they disovered

a soure with an exeptionally regular pattern of radio pulses whih at the time even gave rise

to the speulation of an extra-terrestrial, intelligent origin. These speulations were quikly

abandoned, however, when three more \pulsars" were found within the next few weeks. The

extremely short duration of the pulses and the high pulse frequenies lead to the onlusion

that these soures must be signi�antly smaller than white dwarfs. An explanation for this

phenomenon was �nally found when a pulsar was deteted at the entre of the rab nebula.

From historial reords it is known that the rab nebula marks a supernova explosion that was

observed in the year 1054. Pulsars are therefore identi�ed with neutron stars, the remnants of

supernova explosions. In the same way that the degeneray pressure of the eletrons supports

white dwarfs against gravitational ollapse, the internal pressure in neutron stars arises from

the degenerate nuleons. A great deal of work has gone into the observational and theoretial

study of these ompat objets. From these studies it is known that neutron stars have masses

of about 1:4 solar masses and radii of about 10 km. Neutron stars are believed to have a solid

rust in whih the density inreases from about 10

4

g=m

3

to a few times 10

11

g=m

3

. In this

density range the matter is assumed to onsist of a degenerate eletron gas and atomi nulei

that form a rystal-like struture. At larger densities the atomi nulei gradually dissolve and

at about 2 � 10

14

g=m

3

the matter largely onsists of a highly inompressible neutron uid with

small amounts of protons and eletrons. An interesting property of this uid arises from the

thermal temperature whih is ommonly believed to be smaller than 10

8

K. Compared with

the Fermi-temperature of the nuleons of about 3 � 10

11

K this implies that the matter behaves

like a uid at zero temperature and beomes superuid and, in the ase of the protons, super-

ondutive. The struture of matter and the resulting equations of state at higher densities

beome inreasingly unlear and are subjet to ongoing researh. Near the entre of a neutron

star the density is assumed to be of the order of 10

15

g=m

3

and the matter may at least partly

onsist of hyperons, pions or quarks, so-alled strange matter.

The extreme ompatness of neutron stars makes them partiularly interesting from a relativisti

point of view. We have already mentioned the signi�ane of neutron stars in the ontext of the

searh for gravitational waves. In this respet the importane of neutron star osillations arises

from the disovery of seularly unstable osillation modes that inrease in amplitude due to the

spin down of the neutron star while energy is radiated away in the from of gravitational waves.

If the attempts to measure gravitational waves are indeed suessful, a whole new window

for astrophysial observations may be opened and failitate a unique opportunity to diretly
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observe the interior of astrophysial objets suh as neutron stars. In this work, however,

we will not diretly study neutron star osillations in the ontext of gravitational radiation.

Instead we use the simpler ase of spherially symmetri dynami neutron stars in order to

probe a new numerial approah whih enables us to numerially evolve non-linear osillations of

arbitrary amplitude with high auray. While these evolutions will not lead to the generation of

gravitational waves beause of the spherial symmetry, the numerial results, the new tehniques

and the disussion of numerial diÆulties enountered in the ourse of this work may still be

relevant for numerial simulations of more general types of neutron star osillations.

The use of osillations as a diagnosti tool to obtain information about the interior struture of

an objet is an old idea and by no means restrited to the realm of distant stars. For example the

same tehnique has been applied to the earth where the study of arti�ially indued osillations

and, in partiular, earthquakes has lead to invaluable insight into the internal struture of our

planet. In the same way a great deal of knowledge has been obtained about the sun and more

distant stars by investigating their osillations whih reveal themselves in the eletromagneti

spetra of these objets. Whereas Newtonian theory is perfetly adequate for studying \normal"

stars, i.e. stars that gain their energy from ontinuous nulear burning of hydrogen and other

light elements, aurate modelling of ompat objets like neutron stars requires a general

relativisti desription.

The �rst type of neutron star osillations to be studied extensively were linear radial osillations

(see for example Chandrasekhar 1964a, 1964b) whih today represent a well understood problem

that is desribed in the standard literature. The same is not true, however, for nonlinear

radial osillations whih lead to qualitatively new problems. We have already mentioned that

spherially symmetri spaetimes do not admit radiative solutions. Instead the generation of

gravitational waves requires a time varying quadrupole or higher multi-pole (l � 2) moment

of the neutron star inertia. From that point of view, the study of radial osillations is not

immediately interesting. There are, however, several other important aspets assoiated with

radial osillations. In the work mentioned above, Chandrasekhar �rst revealed the existene

of relativisti instability. In the framework of radial osillations this instability manifests itself

in the instability of the fundamental radial osillation mode. If the frequeny of this mode

beomes imaginary, an exponential growth of physial quantities results and the star ollapses

or evaporates. A fully non-linear evolution ode based on spetral methods has been developed

by Gourgoulhon (1991) and has been used to study various aspets of the stability of neutron

stars and their ollapse into blak holes (Gourgoulhon and Haensel 1993, Gourgoulhon et al.

1994). Radial osillations have also been onsidered from the point of view of astrophysial
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observations. The disovery of quasi-periodi radio sub-pulses in the spetra of pulsars and

periodiities in X-ray soures has lead to the suggestion that radial osillations of neutron stars

may give rise to these features (Boriako� 1976, van Horn 1980), whih in turn has stimulated

further researh in this diretion (see for example Mart�� et al. 1988, V�ath and Chanmugam

1992). Furthermore the inuene of radial osillations on the eletromagneti spetrum of

neutron stars and their dependene on the struture of matter at super-nulear densities may

provide valuable information about the equation of state in the high density range (Glass and

Lindblom 1983). The study of radial osillations is frequently arried out in the linear regime,

where all physial quantities have a harmoni time dependene f = f(r)e

i!t

and the radial

pro�les f(r) are determined by an eigenvalue problem. In this work we will present expliit time

evolutions of the physial variables in the fully non-linear ase. These evolutions will serve two

purposes. First we will be able to study deviations from the known linearized behaviour, suh

as mode oupling and shok formation. Seondly the spherially symmetri ase an be used to

investigate numerial diÆulties that are also expeted in the more ompliated time evolutions

in two or three spatial dimensions. A detailed analysis in the omputationally less expensive

1-dimensional ase may lead to the development of new advantageous numerial tehniques or

other types of solutions to these problems. The work of Gourgoulhon (1991) for example has

shown among other results that the use of momentum densities as fundamental variables may

lead to omputation errors in passing from the momentum densities to the veloity �elds whih

an be avoided if veloity variables are used in the �rst plae.

In our disussion we will start with a stati spherially symmetri star whih is governed by

the Tolman-Oppenheimer-Volko� equations (Tolman 1939, Oppenheimer and Volko� 1939). In

setion 5.2 we will investigate these equations and desribe the numerial methods we use to

alulate the resulting neutron star models. In setion 5.3 we will use the stati results in

order to obtain a fully non-linear perturbative formulation of dynami spherially symmetri

stars. As a sublass we will disuss the linearized limit of these equations in setion 5.3.3 and

numerially alulate the orresponding eigenmode solutions. It is interesting to see that the

surfae of the star turns out to be a problemati area even in this omparatively simple ase.

After a more detailed disussion of the general problems one faes at the surfae in an Eulerian

formulation we desribe the numerial implementation of the ode. Even though the ode is

shown to perform well in the linear regime for a large variety of neutron star models in setion

5.3.6, the surfae problem is shown to give rise to spurious results in some speial ases. In order

to irumvent these problems we use a simpli�ed neutron star model in setion 5.3.9 to test

the ode in the non-linear regime and to investigate the non-linear oupling of eigenmodes. We
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onlude this work with the development of a fully non-linear perturbative Lagrangian ode in

setion 5.4. We demonstrate how the diÆulties at the surfae are resolved in suh a formulation

and extensively test this ode in the linear and non-linear regime. We use this ode to address

the question whether non-linear e�ets are present near the surfae of the neutron star models

in the ase of low amplitude osillations.

5.2 Spherially symmetri stati stars

In the fully non-linear perturbative approah to the study of radial osillations we will de-

ompose the time dependent physial quantities into stati bakground ontributions and time

dependent perturbations. The bakground quantities will obey the orresponding stati set of

equations whih will then be used to remove terms of zero order from the fully non-linear evolu-

tion equations in the time dependent ase. In our studies we have two prinipal hoies for the

stati bakground: vauum at spae in whih ase we reover the standard non-perturbative

formulation of the problem and a stati self-gravitating perfet uid in spherial symmetry whih

is desribed by the Tolman-Oppenheimer-Volko� equations. It is the seond ase whih enables

us to obtain highly aurate numerial solutions for any given amplitude of the osillations. We

will therefore �rst disuss in detail the Tolman-Oppenheimer-Volko� (TOV) equations as well

as their numerial solution.

5.2.1 The Tolman Oppenheimer Volko� equations

In the framework of the \3+1" formalism desribed in setion 2.1, we start by hoosing oor-

dinates r, �, � on eah spatial hypersurfae �. � and � are standard angular oordinates and

the radius r is de�ned by the radial gauge ondition, so that the area of a surfae r = onst is

4�r

2

. The 3-dimensional line element is then given by

ds

2

= �

2

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

); (5.1)

where in spherial symmetry � is a funtion of r only. If we label the hypersurfaes � by the

oordinate t we an apply the polar sliing ondition whih ombined with radial gauge an

be shown to imply a vanishing shift vetor in spherial symmetry. The 4-dimensional metri is

then given by

ds

2

= ��

2

dt

2

+ �

2

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

): (5.2)
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Here the lapse funtion � is also a funtion of r. Alternatively this metri an be desribed by

the variables m and � de�ned by

�

2

=

�

1�

2m

r

�

�1

; (5.3)

�

2

= e

2�

: (5.4)

In the Newtonian limit � beomes the gravitational potential and m the gravitating mass.

Our desription of the matter is based on three simplifying assumptions, whih we will disuss

in order.

1) We will desribe the matter as a single omponent perfet uid. This means that the uid

is seen as isotropi by a omoving observer. In partiular no heat ondution, no shear

stresses, anisotropi pressures or visosity must be present. The deviation from the perfet

uid equilibrium due to anisotropi stresses resulting from the solid rust are found to be

< 10

�5

even for rotating stars (Friedman and Ipser 1992). It is, however, not entirely lear

to what extent the treatment of the neutron star matter as a single perfet uid is too

restritive. It was suggested as early as 1959 by Migdal that nuleons might be present in

the form of superuids in the interior of neutron stars. In order to obtain more realisti

desriptions of neutron stars it might therefore be neessary to desribe the matter as

a multiomponent uid. These issues are subjet to ongoing researh (see for example

Andersson and Comer 2001) and their investigation would exeed the sope of this work.

We will therefore fous our disussion on single omponent perfet uids in whih ase we

an write the energy-momentum tensor in the form

T

��

= (�+ P )u

�

u

�

+ Pg

��

; (5.5)

where � is the energy density and P the pressure measured by a omoving observer. In the

stati spherially symmetri ase � and P are funtions of the radius r and the 4-veloity

has a non-vanishing time omponent only. The normalisation ondition u

�

u

�

= �1 then

implies

u

�

=

�

�

�1

; 0; 0; 0

�

: (5.6)
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2) The neutron star matter is assumed to be at zero temperature. This is justi�ed by ompar-

ing the thermal temperature of the stellar interior, whih is assumed to be smaller than

10

8

K in mature neutron stars, with the relevant temperature sale given by the Fermi

temperature of the matter. Even though the thermal temperature is large ompared with

terrestrial standards, it is orders of magnitude below the Fermi temperature of matter at

nulear density (� 3 � 10

11

K), so that the thermal degrees of freedom are frozen out. As

a onsequene the single omponent perfet uid is desribed by a 1-parameter equation

of state whih is ommonly hosen to be of the form P = P (�).

3) The equation of state (EOS) is assumed to be given by a polytropi law

P = K�



; (5.7)

where K and  are onstants. Instead of the polytropi exponent  sometimes the poly-

tropi index n is used whih is de�ned by

 = 1 +

1

n

: (5.8)

The suitability of suh an EOS is ertainly a debatable issue and the determination of

realisti equations of state of matter at super-nulear densities represents an entire branh

of physial researh. Conlusive answers have yet to be obtained, however, and by using

polytropes with di�erent indies n one is able to study the qualitative di�erenes in the

behaviour of neutron stars with equations of state of varying sti�ness. Furthermore poly-

tropes are given in analyti form so that no additional numerial error arises from their

use.

We have got all ingredients now to derive the equations governing the stati spherially sym-

metri neutron star model. Starting with the metri (5.2) and the energy-momentum tensor

given by Eq. (5.5) with the 4-veloity (5.6) the Einstein �eld equations G

��

= 8�T

��

result in

two independent equations

�

;r

�

=

�

2

� 1

2r

+ 4�r�

2

P; (5.9)

�

;r

�

= �

�

2

� 1

2r

+ 4�r�

2

�: (5.10)

All other �eld equations are onsequenes of these two equations, their derivatives and the
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matter equation (5.12). In terms of the alternative variable m(r) de�ned by Eq. (5.3), the

equation for � an be rewritten as

m

;r

= 4�r

2

�: (5.11)

From now on we will therefore refer to m as the \mass" or \mass funtion" of the neutron star.

Conservation of energy and momentum r

�

T

��

= 0 results in a single equation desribing the

hydrostati equilibrium

P

;r

= �

�

;r

�

(�+ P ): (5.12)

The system of ODEs (5.9), (5.10), (5.12) was �rst derived by Tolman (1939) and Oppenheimer

and Volko� (1939) and is thus known as the Tolman-Oppenheimer-Volko� or TOV equations.

Together with an equation of state whih we hoose to be the polytropi law (5.7) they desribe

a self-gravitating perfet uid in spherial symmetry.

We �nally need to speify appropriate boundary onditions for these equations. The ondition

for the radial omponent of the metri is � = 1 at the origin r = 0 in order to avoid a onial

singularity. This is also illustrated by the requirement of a �nite energy density � at the

entre whih aording to Eq. (5.11) implies that m

;r

= O(r

2

) near the entre. Consequently

M = O(r

3

) and Eq. (5.3) leads to � = 1. The lapse funtion � on the other hand appears in the

equations in the form �

;r

=� and is therefore only de�ned up to a onstant fator. Normally this

fator is hosen so that � takes on the value

p

1� 2m=r at the stellar surfae whih mathes

the interior metri (5.2) to an exterior Shwarzshild metri

ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

+ r

2

d�

2

+ r

2

sin

2

�d�

2

; (5.13)

where M = m(R) and R is the radius of the star. Finally the surfae of the star is de�ned

by the vanishing of the pressure P whih for the polytropi equation of state is equivalent to

� = 0. We note that for some equations of state the uid extends to in�nity and the energy

density will vanish nowhere. In this work, however, we will restrit ourselves to equations of

state whih lead to stars of �nite size. We therefore summarise the boundary onditions as

� = 1 (5.14)
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at the origin r = 0 and

� =

r

1�

2m

r

=

1

�

; (5.15)

� = 0 (5.16)

at the surfae r = R, i.e. three boundary onditions for the three �rst order ODEs (5.9), (5.10),

(5.12). At �rst glane this seems to ompletely speify the physial senario. We have to note

one subtlety however: the loation of the stellar surfae, i.e. the extension of the numerial

grid, is not determined at this stage. For any given equation of state we therefore expet a

1-parameter family of solutions parameterised by the radius R. As we will see below we an

alternatively parameterise the family of solutions by the entral density �



of the star. Whih of

these parameters we hoose and therefore have to speify in addition to the boundary onditions

(5.14)-(5.16) depends on the numerial approah we take towards solving the TOV-equations.

There are two main approahes to this problem.

5.2.2 The numerial treatment of the TOV-equations

The problem we have to solve numerially is given by the TOV equations (5.9), (5.10), (5.12), the

boundary onditions (5.14)-(5.16) and the presription of the free parameter. From a numerial

point of view this is a two-point boundary value problem and should be solved aordingly with

shooting or relaxation methods. This is the �rst of the two approahes we mentioned in the

previous setion. Here we will disuss a relaxation algorithm. In this ase we set up a numerial

grid, thus speifying the free parameter in the form of the stellar radius, and �nite di�erene

the equations as desribed in setion 2.3.5. The three boundary onditions then provide the

remaining three algebrai equations and having spei�ed an initial guess the ode relaxes to the

solution of the TOV-equations. The main advantages of this approah are:

(1) all boundary onditions are exatly satis�ed,

(2) a neutron star model with a spei�ed radius is obtained straightforwardly by

appropriately setting up the numerial grid.

This ode su�ers from some drawbaks, however, whih an be summarized as follows:

(1) the spei�ation of initial data is non-trivial and the onvergene of the ode

depends on a \good" initial guess,

(2) obtaining high auray via a higher (> 2

nd

) order �nite di�erening sheme

results in more ompliated oeÆient matries and inversion routines,
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(3) it is not lear how to obtain a neutron star model with a spei�ed entral density,

It is quite remarkable that the seond numerial approah has exatly the opposite properties in

that the advantages and drawbaks are reversed. In this approah the outer boundary onditions

are ignored initially and instead one starts with three boundary onditions at the entre

� = 1; (5.17)

� = 1; (5.18)

� = �



: (5.19)

The TOV-equations an then be integrated outwards straightforwardly until the energy density

beomes negative and the out-most grid point will de�ne the surfae of the star. Even though

the energy density will not vanish exatly at this point but take on a small positive value, the

auray thus obtained is good enough for most pratial purposes. The remaining freedom

to multiply the lapse funtion � with an arbitrary onstant is used to enfore the boundary

ondition (5.15). Alternatively one an �rst integrate Eqs. (5.10), (5.12) for � and P whih

deouple from � and afterwards obtains � from inward integration of Eq. (5.9).

In a sense the two methods omplement eah other and for example we use the quadrature

approah to obtain an initial guess for the relaxation sheme. Throughout this work we will

use both numerial methods and speify in eah ase how the TOV solutions were alulated.

Before we investigate the solutions thus obtained, however, we have to disuss two tehnial

issues, the hoie of physial units and a transformation to a new radial oordinate whih will

provide higher resolution near the surfae of the star. Below we will see that suÆient resolution

in this region an be ruial for an aurate numerial evolution in the time dependent ase.

5.2.3 Physial units

Throughout this work we have worked with natural units, i.e.  = 1 = G. This hoie an be

written in the form

1 s = 2:9979 � 10

10

m; (5.20)

1 g = 7:4237 � 10

�29

m: (5.21)

In astrophysis energy density is ommonly measured in g/m

3

and pressure in dyne/m

2

, where

1 dyne=1 erg/m. However, we prefer to measure all quantities in km or orresponding powers



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 106

thereof. Using Eqs. (5.20) and (5.21) we an alulate that

1 km

�2

= 1:3477 � 10

18

g

m

3

; (5.22)

1 km

�2

= 1:2106 � 10

30

dyne

m

2

= 1:2106 � 10

30

g

m s

2

: (5.23)

The metri variables � and � are dimensionless and it is obvious then from Eqs. (5.3) and (5.10)

that radius r and massm are measured in km. For example a typial entral density for neutron

stars is 10

15

g/m

3

whih in our units beomes 0.000742 km

�2

. We an also ompare our results

for radius and mass with the solar values

M

�

= 1:4766 km; (5.24)

R

�

= 6:960 � 10

5

km: (5.25)

In ontrast to these values typial radii and masses of neutron stars are given by

M

NS

� 2 km; (5.26)

R

NS

� 10 km: (5.27)

It is a well known result that relativisti orretion terms to a Newtonian desription of stars

generally appear in terms of the ratio M=R, so that this quotient desribes the importane of

relativisti e�ets. In view of this result and the quotient M

�

=R

�

= 2:1 �10

�6

it is immediately

obvious why a Newtonian desription of the sun and other \normal" stars is perfetly adequate.

In ontrast we �ndM=R � 0:2 for neutron stars, so that relativisti e�ets will play an important

role in their behaviour and aurate models need to be developed in the framework of general

relativity.

5.2.4 Transformation to a new radial oordinate

We have already mentioned that the surfae of the star is de�ned by the vanishing of the pressure

whih in the ase of a polytropi equation of state is equivalent to a zero energy density. A

dependent quantity frequently introdued in the study of neutron stars is the speed of sound

de�ned by

C

2

=

�P

��

; (5.28)
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whih in the polytropi ase (5.7) beomes

C

2

= K�

�1

: (5.29)

Consequently the speed of sound will also vanish at the surfae if  > 1 as will always be the

ase for a star of �nite mass. In partiular we will show below that the asymptoti behaviour

of the speed of sound near the surfae is given by

C �

p

R� r: (5.30)

Taking into aount the vanishing of the propagation speed of sound waves at r = R we now

onsider the qualitative behaviour of a loalized pulse travelling towards the surfae. As a

result of the dereasing sound speed C the front of the pulse will in general travel more slowly

than its tail and we would expet the pulse to narrow. In partiular the numerial resolution

near the surfae might be inadequate to aurately evolve the pulse in this region and it might

be bene�ial to work with a radial oordinate in terms of whih the propagation speed is by

and large independent of the position within the star. In order to study the impliations of a

loally vanishing propagation speed we onsider the simpler senario of the 1-dimensional wave

equation with variable propagation speed

u

;tt

= (r)

2

u

;rr

; (5.31)

on a physial domain 0 � r � R. Without loss of generality we will set R = 1 for the rest of

this disussion. Eq. (5.30) then suggests to hoose a propagation speed of the form

(r) =

p

1� r: (5.32)

For the numerial implementation we introdue the auxiliary variables F = u

;t

and G = u

;r

and rewrite Eq. (5.31) as a system of two �rst order PDEs

F

;t

= 

2

G

;r

; (5.33)

G

;t

= F

;r

; (5.34)
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and impose the boundary onditions u = 0, F = 0 at both boundaries. The system (5.33),

(5.34) is linear and an be written in vetorial form

v

;t

+Av

;r

= 0; (5.35)

v =

0

�

F

G

1

A

; (5.36)

A =

0

�

0 �

2

�1 0

1

A

: (5.37)

The harateristis of the PDE are then given by

dr

dt

= �

i

; (5.38)

where �

1

= , �

2

= � are the eigenvalues of the matrix A. At the outer boundary the slopes

of the harateristis ollapse beause of the vanishing of the wave speed .

This system has been evolved with the seond order in spae and time MCormak �nite

di�erening sheme desribed in setion 2.3.4 using a grid of 500 points. In Fig. 29 we show

the time evolution of u obtained for initial data in the form of a Gaussian pulse. Snapshots

of u are plotted at t

1

= 0:00, t

2

= 0:48, t

3

= 0:72, t

4

= 1:44, t

5

= 2:52, t

6

= 3:40, t

7

= 4:44,

t

8

= 4:60, t

9

= 5:60, t

10

= 6:56, t

11

= 7:20 and t

12

= 8:00. In order to shed light on the

quality of the numerial evolution we analyse the onvergene properties of the ode. For this

purpose we have performed the same runs using 1000 and 2000 grid points and alulated the

time dependent onvergene fator aording to the method desribed in setion 3.5.3. Again

we use a high resolution referene solution obtained for 2000 grid points in plae of the analyti

solution. The results shown in Fig. 30 demonstrate that the onvergene of the ode drops to

�rst order at about t = 2:5 whih oinides with the snapshot at t

5

when the pulse is reeted

at the outer boundary for the �rst time. This result is on�rmed by high resolution runs in

whih no broadening of the pulse similar to that shown in Fig. 29 is observed after reetions

at either boundary. We onlude that a naive numerial evolution an lead to spurious results

in regions with a vanishing propagation speed and that this problem is due to an insuÆient

spatial resolution.

A solution to this problem is obtained by transforming to a new spatial oordinate y in terms of

whih the slopes of the harateristis do not vary as drastially over the numerial domain and

in partiular do not vanish at the boundary. A simple reipe is to de�ne this new oordinate
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Figure 29: The numerial evolution of an initial Gaussian pulse aording to the wave equation

in terms of the oordinate r as obtained for the varying propagation speed given by Eq. (5.32)

whih vanishes at r = 1. The Snapshots are shown for the times t

1

; : : : ; t

12

.
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Figure 30: The onvergene fator obtained for 500 and 1000 grid points as a funtion of time.

At t � 2:5 the onvergene drops to �rst order.

by

y =

Z

r

0

1

(~r)

d~r; (5.39)
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whih implies

�

�r

=

1



�

�y

; (5.40)

dr =  dy: (5.41)

In the speial ase where the propagation speed is given by Eq. (5.32) the oordinates r and y

are related by

y = 2� 2

p

1� r; (5.42)

r = y �

y

2

4

; (5.43)

so that the interval r 2 [0; 1℄ is mapped to y 2 [0; 2℄. In terms of the new oordinate y the

system (5.33), (5.34) an be rewritten as

F

;t

= G

;y

; (5.44)

G

;t

=

1



F

;y

; (5.45)

and the harateristi urves are given by

dy

dt

= �1: (5.46)

In order to ompare the new sheme with the original approah, we evolve the same initial

data as above using the system (5.44), (5.45) on a y-grid again with 500 grid points and the

same boundary onditions. The result is shown in Fig. 31 where we plot the same snapshots

as in Fig. 29. For omparison purposes the plots show u as a funtion of the oordinate r

but as a result of the omputation on the y-grid, the density of grid points is higher towards

r = 1 in Fig. 31 whereas the grid points are distributed homogeneously in Fig. 29. In ontrast

to the above evolution no broadening of the pulse after reetion at the outer boundary is

observed. The time dependent onvergene analysis shown in Fig. 32 demonstrates seond

order onvergene throughout the run even though small variations in the onvergene fator

are visible when the pulse is reeted at either boundary. We onlude that a transformation

of the type (5.39) provides the neessary resolution in a region of vanishing propagation speed

and leads to satisfatory results at reasonable grid resolutions.

We now have to apply this idea to the ase of a stati, spherially symmetri neutron star. The
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Figure 31: The same evolution as in Fig. 29, but obtained with the new oordinate y whih

results in a higher density of grid points near the outer boundary r = 1.
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Figure 32: The time dependent onvergene fator obtained for the numerial evolution of the

wave equation on a y-grid with 500 and 1000 grid points. Seond order onvergene is learly

maintained throughout the evolution.

role of the wave speed  is now assumed by the speed of sound C de�ned in Eq. (5.28) and we

introdue the new radial oordinate

y =

Z

r

0

1

C(~r)

d~r: (5.47)
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This transformation has also been suessfully used by Ruo� (2000) in the linearized time

evolution of radial osillations for more realisti equations of state. The asymptoti behaviour

of the sound speed in the Tolman-Oppenheimer-Volko� ase given by Eq. (5.30) is idential to

that of the wave speed in the toy problem. Consequently the radial interval r 2 [0; R℄ of the star

will be mapped to a �nite interval y 2 [0; Y ℄. In order to obtain a formulation whih inludes

both possible hoies of the radial oordinate, we introdue the variable x in terms of whih

the TOV equations are written as

r

;x

=

(

1 if x = r

C if x = y,

(5.48)

�

;x

�

= r

;x

�

�

2

� 1

2r

+ 4�r�

2

P

�

; (5.49)

�

;x

�

= r

;x

�

�

�

2

� 1

2r

+ 4�r�

2

�

�

; (5.50)

P

;x

= �

�

;x

�

(�+ P ): (5.51)

In the numerial ode we are thus able to swith between the two alternative modes of alulation

by assigning the derivative r

;x

aording to either possibility of Eq. (5.48). In either ase the

boundary onditions are given by Eqs. (5.14)-(5.16) supplemented with the requirement that r

and x vanish simultaneously at the origin

r = 0 at x = 0: (5.52)

One subtlety onerning the relaxation method of alulating TOV solutions has to be men-

tioned. In this ase we need to speify the radius of the star. If we use the resaled radial

oordinate, however, the surfae value x

s

is not a priori known. In pratie we therefore speify

the free parameter in the form of the entral density and solve the TOV equations via the

quadrature method �rst. This provides us with the outer boundary value of the oordinate x

for the stellar model in question and we an solve the TOV equations in a seond step with the

relaxation method.

5.2.5 Asymptoti properties of the TOV equations

The asymptoti behaviour of the solutions of the TOV equations (5.48)-(5.51) at the surfae

of the star has serious impliations for the simulation of dynami neutron stars with ertain

equations of state in a stritly Eulerian framework. We will therefore disuss the asymptoti
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behaviour �rst and then ompare the results with the numerially obtained solutions. Sine

the introdution of the resaled radial oordinate resulted from numerial requirements only,

we use r

;x

= 1 i.e. the original system (5.9)-(5.12) for the asymptoti analysis. We start with

the behaviour at the origin, where we assume that

(1) the energy density and thus the pressure are �nite and positive,

(2) the lapse funtion � is �nite and positive.

We have already seen that the entral value of the energy density is a free parameter and the

pressure follows from the equation of state. The entral value of the lapse funtion, on the other

hand, is determined by mathing � to an exterior Shwarzshild metri. We also know from

setion 5.2.1 that our assumptions imply � = 1 and m = O(r

3

) at the origin. From Eq. (5.3) we

therefore onlude that � = 1+O(r

2

). Inserting this result into Eq. (5.9) and using the seond

assumption we �nd that �

;r

=� � r and thus � = �



+ O(r

2

). Using this result in Eq. (5.12)

leads to P

;r

� r, i.e. P = P



+ O(r

2

) and the equation of state then shows that the energy

density has the same behaviour. In summary the results near the origin are

�(r) = �



+O(r

2

); (5.53)

�(r) = 1 +O(r

2

); (5.54)

�(r) = �



+O(r

2

); (5.55)

P (r) = K�





+O(r

2

): (5.56)

The orresponding analysis for the surfae is more ompliated and the results will later prove

to be of more signi�ane. For this analysis it is onvenient to work with the radial variable

z := R� r: (5.57)

We start with the following assumptions.

(1) The metri funtion � is �nite at the surfae and also satis�es the inequality

� > 1. This follows from Eq. (5.3) and the requirement that the mass satis�es

the ondition 0 < 2m(R) < R. The �rst inequality follows from Eq. (5.11) for

any non vauum model and the seond implies that the neutron star extends

beyond its Shwarzshild radius.

(2) The lapse � is �nite and positive at the surfae.
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(3) The energy density and the pressure vanish at the surfae and their leading order

terms are given by some positive powers of z.

We write these assumptions as

� = �

s

+O(z

�

1

); (5.58)

� = �

s

+O(z

�

2

); (5.59)

� = �

s

z

�

+O(z

�+�

3

); (5.60)

P = P

s

z

�

+O(z

�+�

4

); (5.61)

where �, � and �

1

; : : : ; �

4

are positive onstants we have yet to determine and �

s

, �

s

, �

s

and

P

s

are non vanishing onstants subjet to the restritions mentioned above. We �rst insert the

expressions for � and P into the equation of state (5.7). Comparison of the leading order terms

then leads to

� = �; (5.62)

�

3

= �

4

; (5.63)

where  is the polytropi exponent. Similarly the leading order in Eq. (5.10) results in

�

1

= 1: (5.64)

We then ombine Eqs. (5.9) and (5.12) to eliminate the lapse funtion and insert (5.58)-(5.61).

The result of omparing the two leading orders is

�+ 1 = �; (5.65)

�

4

= 1: (5.66)

This provides a seond ondition for � and � and with Eq. (5.62) we onlude that

� =

1

1� 

= n; (5.67)

� = n+ 1; (5.68)
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where n is the polytropi index de�ned in (5.8). Finally we use these results in Eq. (5.9) for the

lapse funtion and obtain

�

2

= 1: (5.69)

We summarise the asymptoti behaviour at the surfae:

� = �

s

+O(z); (5.70)

� = �

s

+O(z); (5.71)

� = �

s

z

n

+O(z

n+1

); (5.72)

P = P

s

z

n+1

+O(z

n+2

): (5.73)

As a onsequene we will not be able to Taylor expand � and P about the surfae z = 0

unless a polytropi equation of state with integer index n is hosen. Indeed a more extensive

analysis arried out with the algebrai omputing pakage GRTensor II shows that higher order

terms ontaining the polytropi index n also appear in the expansions of � and � so that these

funtions are subjet to the same limitations regarding Taylor expansion.

The most important result of the asymptoti analysis onerns the behaviour of the energy

density � near the surfae given by Eq. (5.72). In partiular we note that for a polytropi index

n < 1 or exponent  > 2 the gradient of � with respet to the areal radius r will be in�nite at

the surfae. The ase n = 1, i.e.  = 2 is the limiting ase where � has a �nite gradient. This

speial ase also implies that no frational powers appear in the series expansions of �, �, � and

P .  = 2 is onsidered to provide a qualitatively good desription of the average sti�ness of the

equation of state of neutron stars and thus a popular hoie for the polytropi exponent. For

n > 1 or  < 2 the energy density will have a vanishing gradient at the surfae.

It remains to hek the asymptoti behaviour in terms of the resaled radial oordinate y.

From the de�nition of the speed of sound (5.28) and the results above we onlude that near

the surfae

C(z) = O(z

1=2

); (5.74)
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Table 3: The parameters for �ve di�erent neutron star models. We will refer to these as models

1-5 in this work.

model  K �



[km

�2

℄ M [M

�

℄ R [km℄

1 1:75 25 km

1:5

0:00125 1.506 12.593

2 2:00 100 km

2

0:0015 1.130 9.653

3 2:00 150 km

2

0:0015 1.554 10.828

4 2:00 200 km

2

0:0015 1.878 11.646

5 2:30 1800 km

2:6

0:0010 1.756 11.710

whih implies that

��

�y

= C

��

�r

= O(z

n�1=2

): (5.75)

All other funtions have vanishing gradients with respet to y near the surfae. Consequently

the resaled oordinate allows us to alulate neutron star models for polytropi exponents up

to  = 3 without enountering in�nite gradients and the orresponding numerial inauraies.

5.2.6 Solutions of the TOV equations

In view of the results of the asymptoti analysis we have numerially solved the TOV-equations

for neutron star models with di�erent polytropi exponents  < 2,  = 2 and  > 2. The

orresponding models are listed in Table 3 where we have inluded two further models with

 = 2 but di�erent polytropi fator K, whih we will use to also study the variation of the

solutions with K. In the remainder of this work we will refer to these stellar models as models

1-5. The ode we have used for the alulation is based on the quadrature method desribed in

setion 5.2.2 and uses a fourth order Runge-Kutta sheme for the integration (see for example

Press et al. 1989). We note, however, that the results of the relaxation method agree with those

of the quadrature sheme with high preision and the orresponding plots are indistinguishable

from those we show in this setion. For the alulations in this setion we use the resaled

oordinate y and set r

;x

= C in Eq. (5.48). The ode has been heked for onvergene by

alulating models 1-5 for di�erent grid resolutions starting with 250 grid points. The resulting

onvergene fators Q for the variables �, � and � obtained for doubling the grid resolution is

shown in Table 4 for all 5 models. The high resolution referene solution has been alulated

for 2000 grid points in all ases. For the fourth order Runge-Kutta sheme we would expet a

onvergene fator of 16. Even though the results show some variation around this value they

are ompatible with fourth order onvergene.
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Table 4: The onvergene fators obtained for doubling the grid resolution in a fourth or-

der Runge-Kutta sheme for solving the TOV-equations via quadrature. The high resolution

referene solution has been alulated for 2000 grid points.

model Q

�

Q� Q

�

1 14.23 15.55 9.69

2 12.85 13.72 16.23

3 17.98 18.40 18.76

4 17.81 18.14 17.94

5 11.64 16.51 21.13

The numerial results obtained for the 5 stellar models we will now disuss have all been

alulated by using about 600 grid points. In Fig. 33 we plot the metri funtions �, �, the

energy density �, the pressure P , the mass m and the sound speed C as funtions of the areal

radius r for models 1, 3 and 5. We note that the di�erent entral densities of these models have

no impat on the qualitative behaviour of the solutions and have only been hosen to obtain

neutron star models of similar size. The results demonstrate the dependene of the behaviour

of the star near its surfae on the polytropi exponent . Aording to the asymptoti analysis

we expet the gradient of the energy density to be zero for  = 1:75 in model 1, �nite for the

ritial ase  = 2 in model 3 and in�nite for model 5 where  = 2:3. This result is ompatible

with the plots of �(r) in the middle left panel of Fig. 33. The pressure gradient on the other

hand vanishes at the surfaes for any equation of state with positive n aording to Eq. (5.73)

whih agrees with the numerial results in the middle right panel. The speed of sound shows

the opposite behaviour and has an in�nite gradient independent of the polytropi index whih

is in agreement with the asymptoti result given by Eq. (5.74). With respet to the metri we

note that the radial omponent � has a loal maximum, while the lapse � is monotonially

inreasing in the stellar interior. This behaviour beomes lear if we look at the orresponding

equations for � and �. We already know that �

;r

vanishes at the entre. If we di�erentiate

Eq. (5.10) with respet to r only one term on the right hand side is non zero at the entre, so

that

�

;rr

j

r=0

= 4��



; (5.76)

and �

;r

will beome positive as r inreases. At some point in the star, however, the negative

�rst term on the right hand side of Eq. (5.10) will dominate the positive seond term whih goes

to zero at the surfae and �

;r

will beome negative. Sine Eq. (5.10) admits only one positive

solution for � if �

;r

= 0, � will monotonially derease beyond this point. We have already
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Figure 33: The metri funtions �, �, the energy density �, the pressure P , the mass m and

the speed of sound C are plotted as funtions of radius for di�erent polytropi indies  = 1:75

(model 1),  = 2:00 (model 3) and  = 2:3 (model 5).

seen, however, that it annot derease to 1 or below inside the star sine this onits with the

nonzero mass m in Eq. (5.3). Consequently � > 1 inside the star and the right hand side of

Eq. (5.9) will be positive throughout the star whih explains the monotoni behaviour of �.

In order to study the dependene of the solutions on the polytropi fator K we ompare the

numerial results for models 2, 3 and 4 in Fig. 34. In ontrast to the polytropi exponent, a

variation of K does not qualitatively hange the results. A larger fator K leads to a larger

mass and radius of the neutron star model if all other parameters are kept �xed. This behaviour
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Figure 34: The metri funtions �, �, the energy density �, the pressure P , the mass m and

the speed of sound C are plotted as funtions of r for di�erent polytropi fators K = 100 km

2

(model 2), K = 150 km

2

(model 3) and K = 200 km

2

(model 4).

has been observed for various polytropi models and entral densities and an be attributed to

the larger pressure that follows from a larger K aording to Eq. (5.7). The star will thus be

able to support more mass against self gravitation and extend to larger radii.

We onlude the analysis of the TOV equations by studying the 1-parameter families of solutions

orresponding to the �ve stellar models. For this purpose numerous solutions of the TOV

equations with equations of state as given in Table 3 have been alulated for various entral

densities. In Fig. 35 we plot the results in the form of relations between entral density �



, total
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Figure 35: The 1-parameter families of stati spherially symmetri neutron star models orre-

sponding to models 1, 3 and 5 are graphially illustrated by plotting the relations between the

total mass, the entral energy density and the radius of the star. The loations of neutron star

models 1, 3 and 5 are indiated by rosses.

radius R, and total mass M of the star. One obvious result is the maximum of the mass urves

M(R) andM(�



) in the upper panels of the �gure. It is a well known result that these maxima

separate the stable and unstable branhes of the neutron star families for a given equation of

state (see for example Shapiro and Teukolsky 1983). The stable branhes onsist of models with

entral densities below the ritial value i.e. larger radii and the unstable branhes orrespond

to larger entral densities and smaller radii. In this ontext instability means that the frequeny

of the fundamental radial osillation mode of the neutron star beomes imaginary and thus its

amplitude will grow exponentially in time and the neutron star is unstable against arbitrarily

small radial perturbations. The eigenmode spetrum of radial osillations will be disussed in

the next setion when we look at dynami spherially symmetri stars.

Another interesting result is shown in the lower panel of Fig. 35 where we plot the radius as a

funtion of the entral density. The polytropi exponent  = 2 again appears as a ritial value

for whih the radius onverges to a �nite value as the entral density goes to zero. For smaller

exponents the radius diverges in this limit whereas it goes to zero for exponents  > 2. We

also disover this behaviour in the upper right panel where the mass is plotted as a funtion
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of radius. For  < 2 a unique value of M an be assigned to any suÆiently large radius R.

In the ritial ase  = 2 equilibrium models are only found for radii below a maximal value,

but the relation M(R) is still one to one near this maximum. For  > 2 this is no longer the

ase and for radii just below the maximal equilibrium radius we �nd two models with di�erent

mass. No suh qualitatively di�erent behaviour has been found when the polytropi fator K

is varied instead of . It is interesting to ompare the mass-radius relation for  = 2 with the

Newtonian ase, where  = 2 is also a ritial value and leads to the relation R �M

0

= onst

(Shapiro and Teukolsky 1983). The results in Fig. 35 indiate that relativisti e�ets break this

kind of degeneray.

This ompletes our analysis of stati spherially symmetri stars and in the next setion we

turn our attention to the dynami ase. The equations and results of this setion will then be

used to derive a fully non-linear perturbative formulation of radial osillations on a stati TOV

bakground.

5.3 Spherially symmetri dynami stars in Eulerian oordi-

nates

In this setion we will develop an Eulerian formulation of a dynami spherially symmetri neu-

tron star. For ode testing purposes it is interesting to also look at the orresponding senario

in the Cowling approximation, i.e. with the metri frozen at its equilibrium values. We will

then use the results of the previous setion to obtain a fully non-linear perturbative formula-

tion of the problem. In this new approah to studying non-linear neutron star osillations we

eliminate terms of zero order in the perturbations but keep all higher order terms and thus

obtain a formulation of the dynami star whih is equivalent to the original non-perturbative

set of equations. From the non-linear perturbative formulation it is easy to derive the linearized

equations whih we will use to investigate the eigenmode spetrum of radial neutron star osil-

lations. After desribing the numerial methods used to evolve the dynami neutron star in the

non-linear ase we have to disuss the \surfae problem" whih is intrinsi to any Eulerian for-

mulation of non-linear osillations that involve a radial displaement of the stellar surfae. The

numerial methods we have used to irumvent this problem will then be tested by omparing

the numerial results obtained in the linear regime with the analyti solution of the linearized

equations. By using vauum at spae as the bakground, we an emulate a non-perturbative

\standard" approah to the numerial evolution and ompare the results with the perturbative

sheme using the TOV bakground. Even though the perturbative sheme leads to highly a-
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urate results for most stellar models, we have not been able to �nd a perfetly satisfatory

solution to the surfae problem. We have therefore deided to follow a more autious approah

and use a simpli�ed neutron star model to investigate non-linear e�ets in the evolution of

radial osillations. This model has also been used to further test the performane of the ode.

The surfae problem will be re-addressed with a Lagrangian approah in setion 5.4.

5.3.1 The equations in the dynami ase

We start the Eulerian formulation of the dynami ase with the line element in radial gauge

and polar sliing

ds

2

= �

^

�

2

dt

2

+ �̂

2

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

); (5.77)

where

^

� and �̂ are now funtions of t and r and the \hat" has been introdued to distinguish

them from their stati ounterparts. As in the stati ase we desribe the matter as a perfet

uid at zero temperature with a polytropi equation of state. As we have seen in setion 5.2.1

this enables us to write the energy momentum tensor in the form

T

��

= (�̂+

^

P )u

�

u

�

+

^

Pg

��

; (5.78)

where again the \hat" on the funtions �̂,

^

P means that they are funtions of t and r. The time

dependent pressure and energy density are related by the polytropi law

^

P = K�̂



; (5.79)

where the polytropi parameters  andK are the same as in the stati ase. The time dependent

speed of sound is de�ned in analogy to Eq. (5.28) by

^

C

2

=

�

^

P

��̂

: (5.80)

In ontrast to the stati ase the 4-veloity will now have a non-vanishing radial omponent

u

�

= (v; w; 0; 0); (5.81)

where v = v(r; t) and w = w(r; t). We have not denoted these quantities by a \hat" sine we do

not use stati ounterparts in their ase. The normalisation ondition u

�

u

�

= �1 relates these
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funtions by

^

�

2

v

2

= 1 + �̂

2

w

2

: (5.82)

With the line element (5.77) and the energy momentum tensor (5.78) the Einstein �eld equations

G

��

= 8�T

��

result in two independent onstraint equations

^

�

;r

^

�

=

�̂

2

� 1

2r

+ 4�r�̂

2

h

^

P + (�̂+

^

P ) �̂

2

w

2

i

; (5.83)

�̂

;r

�̂

= �

�̂

2

� 1

2r

+ 4�r�̂

2

h

�̂+ (�̂+

^

P )�̂

2

w

2

i

: (5.84)

It is a well known result that there are no gravitational degrees of freedom in spherial symmetry

and we therefore expet to be able to determine the metri funtions on eah time slie without

knowledge of their history. This is ompatible with the result that the �eld equations an be

given in the form of onstraint equations only. The degrees of freedom of the senario are thus

entirely ontained in the matter variables, whose evolution is determined by the equations of

hydrodynamis r

�

T

��

= 0. In our ase we an write these equations as a quasi linear system

of PDEs

�̂

;t

+ ~�

11

�̂

;r

+ ~�

12

w

;r

=

~

b

1

; (5.85)

w

;t

+ ~�

21

�̂

;r

+ ~�

11

w

;r

=

~

b

2

; (5.86)
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where the oeÆients are given by

D = v

�

1�

^

C

2

�̂

2

w

2

1 + �̂

2

w

2

�

; (5.87)

~�

11

=

w(1 �

^

C

2

)

D

; (5.88)

~�

12

=

�̂+

^

P

(1 + �̂

2

w

2

)D

; (5.89)

~�

21

=

^

C

2

(�̂+

^

P )�̂

2

D

; (5.90)

~

b

1

= �

1

D

(�̂+

^

P )

�

w�̂

;r

=�̂+ v�̂

;t

=�̂

1 + �̂

2

w

2

+ 2

w

r

�

; (5.91)

~

b

2

= �

1

D

"

w

2

 

�̂

;r

�̂

+

^

�

;r

^

�

�

2

r

^

C

2

+ 2

v

w

�̂

;t

�̂

!

+

^

�

;r

=

^

�

�̂

2

#

: (5.92)

In pratie we alulate the derivatives of the metri funtions that appear in these oeÆients

from the onstraint equations (5.83), (5.84) and a third �eld equation

�̂

;t

�̂

= �4�r�̂

2

^

�

2

vw(�̂+

^

P ); (5.93)

whih is an automati onsequene of the two onstraints, their derivatives and the matter

equations. We therefore alulate the oeÆients ~�

ij

and b

i

without approximating any deriva-

tives with �nite di�erene expressions.

We have already mentioned in the disussion of the stati ase that a numerially superior

performane is obtained if we transform to a new radial oordinate y de�ned by Eq. (5.47).

We note however that we need to alulate the orresponding stati model �rst to obtain the

stati sound speed C. In the perturbative approah whih we will disuss below that is done

as a matter of ourse. There we will provide a formulation of the perturbative equations that

inludes both hoies for the radial oordinate analogous to Eqs. (5.48)-(5.51). In the Cowling

approximation the set of equations orresponding to (5.85)-(5.92) desribes a dynami, spher-

ially symmetri perfet uid in a �xed gravitational potential. We obtain these equations by

the following modi�ations:

(1) the onstraint equations for the dynami metri funtions (5.83), (5.84) are replaed

by the orresponding TOV equations (5.9), (5.10) whih have to be solved only at the

start of the evolution,



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 125

(2) in the oeÆients ~�

11

, ~�

12

, ~�

21

and

~

b

1

all ourrenes of �̂,

^

�,

^

�

;r

/

^

� and �̂

;r

=�̂ are

replaed with their stati analogues �, �, �

;r

=� and �

;r

=� respetively and �̂

;t

=�̂ is set

to zero,

(3) the oeÆient funtion

~

b

2

is replaed with the slightly modi�ed version

�

b

2

= �

1

D

�

w

2

��

�

;r

�

+

�

;r

�

�

�

1�

^

C

2

�

�

2

r

^

C

2

�

+

�

;r

=�

�

2

�

: (5.94)

These modi�ations are rather simple so that we inorporate both options, the evolution with

time dependent metri and the Cowling approximation in one ode. A user spei�ed initial

parameter determines whih version is to be run. Before we desribe the numerial implemen-

tation, we need to rewrite the equations of this subsetion in a perturbative form.

5.3.2 A fully non-linear perturbative formulation

In this setion we will deompose the time dependent quantities

^

�, �̂ and �̂ into stati bak-

ground ontributions and time dependent perturbations. We will see that the TOV equations

are still present in the dynami equations, for example in the terms �

21

�̂

;r

� b

2

in Eq. (5.86).

It is the elimination of these zero order terms and the ensuing numerial inauraies whih

provides the motivation for our perturbative formulation. We start by deomposing the time

dependent funtions into a stati bakground plus a time dependent perturbation

^

�(t; r) = �(r) + Æ�(t; r); (5.95)

�̂(t; r) = �(r) + Æ�(t; r); (5.96)

�̂(t; r) = �(r) + Æ�(t; r); (5.97)

^

P (t; r) = P (r) + ÆP (t; r): (5.98)

The radial veloity omponent w vanishes in the stati limit and therefore represents a pertur-

bation in itself. The time dependent funtions

^

P ,

^

C and v are dependent variables and thus

onsidered funtions of the fundamental variables

^

�, �̂, �̂ and w aording to Eqs. (5.79), (5.80)

and (5.82). We stress that the perturbations are �nite and that no assumption with regard to

their size has been made.

We start rewriting the dynami equations with the onstraint equation for

^

�. If we insert
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Eqs. (5.95)-(5.97) into (5.83) and multiply with

^

� we obtain

�

;r

+ Æ�

;r

= �

�

2

� 1

2r

+ 4�r��

2

P + 4�r��

2

h

ÆP + (�+ Æ�+

^

P )�̂

2

w

2

i

+ �

2�Æ�+ Æ�

2

2r

+ Æ�

�̂

2

� 1

2r

+ 4�r

�

�(2�Æ�+ Æ�

2

) + Æ��̂

2

�

h

^

P + (�+ Æ�+

^

P )�̂

2

w

2

i

:

(5.99)

The ruial terms are the �rst on the left and the �rst two terms on the right hand side. We know

that these terms will anel eah other identially aording to Eq. (5.9) if a solution of the stati

equations is hosen as a bakground. Numerially, however, this will not be the ase beause

of trunation errors. This residual error will inevitably ontaminate the numerial evolution

of the dynami senario. In other words the numerial auray we will obtain is limited by

the numerial auray of the stati bakground and not by that of the dynami signal we are

interested in. The severeness of this e�et will depend on the relative size of the perturbations

with respet to the bakground. For very large perturbations the numerial ontamination will

be less signi�ant and for very small perturbations we may satisfy ourselves with a linearized

ode. For perturbations of intermediate strength, however, whih are still smaller than the

bakground but are large enough to give rise to non-linear e�ets, the numerial ontamination

will severely a�et the evolution and may give rise to spurious phenomena.

We return to Eq. (5.99) and ontinue the perturbative formulation of the dynami ase. Sine

we know that the zero order terms anel eah other, we an simply subtrat them from the

equation. The perturbative equation for

^

� then beomes

Æ�

;x

r

;x

= �

2�Æ�+ Æ�

2

2r

+ Æ�

�̂

2

� 1

2r

+ 4�r��

2

h

ÆP + (�+ Æ�+

^

P )�̂

2

w

2

i

+ 4�r

�

�(2�Æ�+ Æ�
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) + Æ��̂

2

�

h

^

P + (�+ Æ�+

^

P )�̂

2

w

2

i

;

(5.100)

where we have also implemented the transformation to the generalised radial oordinate x.

Proeeding in the same way we rewrite the onstraint equation for �̂

Æ�

;x

r

;x

= � �

2�Æ�+ Æ�

2

2r

� Æ�

�̂

2

� 1

2r

+ 4�r�

3

h

Æ�+ (�+ Æ�+

^

P )�̂

2

w

2

i

+ 4�r(3�

2

Æ�+ 3�Æ�

2

+ Æ�

3

)

h

�̂+ (�+ Æ�+

^

P )�̂

2

w

2

i

:

(5.101)
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The reformulation of the matter equations (5.85) and (5.86) is partiularly simple due to their

quasi linear nature. We obtain

Æ�

;t

+ �

11

Æ�

;x

+ �

12

w

;x

= b

1

; (5.102)

w

;t

+ �

21

Æ�

;x

+ �

11

w

;x

= b

2

; (5.103)

with the oeÆient funtions

D = v

�

1�

^

C

2

�̂

2

w

2

1 + �̂

2

w

2

�

; (5.104)

�
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w(1�

^
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; (5.107)
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�
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^

�

(Æ�+ ÆP )
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(5.109)

Exept for the oeÆient b

2

where bakground terms have been eliminated by using the TOV-

equations we note the similarity with the oeÆients given in Eqs. (5.87)-(5.92) in the non-

perturbative formulation.

In order to derive the equations in the Cowling approximation we have to proeed in analogy

to the previous setion.

(1) The metri perturbations Æ� and Æ� are set to zero.

(2) All ourrenes of

^

�

;r

=

^

� and �̂

;r

=�̂ are replaed with �

;r

=� and �

;r

=� whih are given

by the TOV equations (5.9), (5.10).

(3) �̂

;t

=�̂ is set to zero.
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(4) The oeÆient b

2

is replaed by
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(5.110)

This ompletes our derivation of the equations for a dynamial spherially symmetri neutron

star. In later setions we will numerially investigate the system of partial di�erential equations

(5.100)-(5.103) with the oeÆient funtions (5.104)-(5.109) and the orresponding system in

the Cowling approximation. Before that, we will turn our attention towards the linearized

equations and the resulting eigenmode spetrum. These results will not only be used as initial

data, but also provide one of the fundamental test beds for the ode.

5.3.3 The linearized equations and the eigenmode spetrum

(a) The equations

In this setion we will disuss the linearized equations for a dynami spherially symmetri

neutron star. For this purpose we will expliitly assume that the bakground is given by a non-

vauum solution of the TOV equations. If we further assume that all perturbations are small

ompared with their bakground values and the radial veloity w is small ompared with the

speed of light, i.e. w � 1, the higher order terms in Eqs. (5.100)-(5.109) beome negligible and

an be omitted from the equations. It is onvenient to follow e.g. Misner, Thorne, and Wheeler

(1973) and introdue the variable � whih measures the displaement of the uid elements. An

observer who is omoving with the uid and is loated at r

0

in the equilibrium ase will �nd

herself at position r

0

+ �(t; r

0

) during the evolution. The displaement vetor � is therefore

related to our variables by

�

;t

= �w: (5.111)

We note that the bakground value of the lapse funtion is used in this equation beause

higher order terms have been negleted. Another variable whih failitates a partiularly simple

formulation of the resulting equations is the resaled displaement � de�ned by

� =

r

2

�

�: (5.112)
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If we insert this de�nition into the linearized form of equation (5.103) and use the linearized

versions of Eqs. (5.100)-(5.102) to eliminate the perturbations Æ�, Æ� and Æ� we obtain the

seond order in time and spae di�erential equation

W�

;tt

=

1

r

;x

�

�

r

;x

�

;x

�

;x

+Q�; (5.113)

where the auxiliary funtions W , � and Q are de�ned by

� = C

2

(�+ P )

��

3

r

2

; (5.114)

W = (�+ P )

�

3
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2

; (5.115)

Q =

��

3
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2
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�

;r
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� 8��

2
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#

: (5.116)

These equations desribe the dynamis of a spherially symmetri neutron star in the linearized

limit. If we insert the ansatz �(t; x) = �(x)f(t) into Eq. (5.113) we �nd that the solution has

harmoni time dependene

�(t; x) = �(x)e

i!t

: (5.117)

and the spatial pro�le is determined by the ordinary di�erential equation

1

r

;x

�

�

r

;x

�

x

�

x

+ (!

2

W +Q)� = 0: (5.118)

For the ensuing disussion it is onvenient to work with the areal radius r and therefore set

r

;x

= 1. The ordinary di�erential equation (5.118) an then be written in the form

L� = �!

2

�; (5.119)

where the di�erential operator L is de�ned by

L =

1

W

�

d

dr

�

�

d

dr

�

�Q

�

: (5.120)

This type of ODE is alled an eigenvalue problem and the partiular struture of the di�er-

ential operator L lassi�es it as a Sturm-Liouville problem if the funtion � satis�es so-alled

homogeneous boundary onditions (see for example Simmons 1991). Due to the asymptoti be-
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haviour of the bakground solutions the funtions �, W and Q will either diverge or vanish at

the boundaries, however, and the problem we are faing is a singular Sturm-Liouville problem.

An important sublass of this type of problems is the self-adjoint eigenvalue problem whih is

de�ned by the requirement that

hLu; vi = hLv; ui; (5.121)

for all solutions u, v. Here the inner produt is de�ned by the weighting funtion W (r)

hf; gi =

Z

b

a

W (r) f(r) g(r) dr; (5.122)

where a and b are the boundaries, i.e. the entre and surfae of the star in our ase. A

short alulation shows that ondition (5.121) is ensured if the solutions satisfy the self-adjoint

boundary ondition

�

�(vu

;r

� uv

;r

)

�

b

a

= 0: (5.123)

Below we shall see that any solution � of the eigenvalue problem (5.118) will be O(r

3

) at

the origin and be �nite at the surfae. In ombination with the asymptoti behaviour of the

TOV solutions determined in setion 5.2.5 we an see that Eq. (5.123) is satis�ed so that the

di�erential equation (5.118) represents a self-adjoined eigenvalue problem. For this type of

equations one an show the following properties (see for example Coddington and Levinson

1955)

(1) There exist an in�nite number of solutions �

1

(r), �

2

(r), �

3

(r); : : : whih are alled

eigenfuntions and the orresponding eigenvalues are real and an be ordered

(!

2

)

1

< (!

2

)

2

< (!

2

)

3

< : : : : (5.124)

We note that in our ase the real eigenvalues are !

2

and the orresponding frequenies

will be imaginary if !

2

< 0.

(2) After appropriate normalisation the eigenfuntions form an orthonormal set, i.e.

h�

i

; �

j

i = Æ

i;j

: (5.125)

(3) The eigenfuntions �

i

form a omplete set, i.e. any funtion f(r) whih satis�es the
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self-adjoint boundary onditions (5.121) an be expanded in a series of eigenmodes

f(r) =

X

i

A

i

�

i

(r); (5.126)

where the eigenmode oeÆients of the funtion f are given by

A

i

= hf; �

i

i: (5.127)

Before we investigate Eq. (5.118) numerially, we onsider the asymptoti behaviour of the

solutions. At the origin the displaement vetors � and � have to vanish beause of the spherial

symmetry. If we therefore assume �(r) � r

�

near the origin where � > 0, insert this ansatz into

Eq. (5.118) and use the asymptoti behaviour of the TOV solution, we obtain the leading order

�(r) � O(r

3

): (5.128)

At the surfae we only require � and � to be �nite but allow for non-zero displaements

�(z) � O(z

0

): (5.129)

It is of partiular interest to onsider the impat of these results on the asymptoti behaviour

of the energy density perturbation Æ� whih is related to the displaement by the linearized

version of Eq. (5.102)

Æ� = �

�

r

2

[(�+ P )�

;r

+ �

;r

�℄ : (5.130)

At the entre the r

3

behaviour of the displaement � results in

Æ� � O(r

0

); (5.131)

so that the ondition we imposed on � also guarantees a �nite energy density perturbation at

the origin. At the surfae, however, the leading term on the right hand side of Eq. (5.130) is

the term involving the derivative of the bakground energy density. This term is responsible

for the asymptoti behaviour of Æ� at the surfae

Æ� � O(z

n�1

): (5.132)
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Consequently the energy density perturbation is zero at the surfae for n > 1, �nite for n = 1

and it diverges for n < 1 i.e.  > 2. Even worse we also obtain the result

Æ�

�

� O(z

�1

) (5.133)

independent of the polytropi index. The energy density perturbation will therefore neessarily

be larger than the bakground � in a �nite interval around the surfae. This is in obvious onit

with the initial assumption Æ�� � we used in the linearisation proess and raises doubts about

the validity of the results. Below we will see, however, that the linearized equations an be

derived without any impliit ontradition from the fully non-linear Lagrangian formulation of

the problem. This is already illustrated by a loser investigation of Eq. (5.130) whih an be

rewritten as

Æ� = ��� ��

;r

: (5.134)

Here �� is the Lagrangian energy density perturbation measured by an observer moving with

the uid and is given by

�� = �

�

r

2

(�+ P )�

;r

: (5.135)

[f. Eq. (5.217)℄. The asymptoti behaviour of �� is perfetly regular �� � x

n

and the diÆul-

ties purely originate from the term ��

;r

on the right hand side of Eq. (5.134). This orretion

term whih failitates the transformation between the Eulerian and Lagrangian perturbations

is based on a Taylor expansion of � whih, as we have already seen above, is not generally per-

missible. For polytropi indies n < 1 the derivative of � does indeed diverge and Eq. (5.134) is

not a valid relation between the Eulerian and Lagrangian quantities. This is the �rst indiation

that a Lagrangian formulation is a somewhat more natural way of desribing radial osillations

of neutron stars. From this point of view it is a remarkable fat that the linearisation of the

Eulerian ase leads to the \orret" equations in spite of the internal inonsisteny of the deriva-

tion. Finally it is worth pointing out that the irregular behaviour of Æ� is not merely down

to a poor hoie of dependent variables. It is ertainly possible to formulate the problem in

Eulerian oordinates in terms of regular variables suh as � or �. We have seen, however, that

suh a regular formulation of the problem still leads to the unphysial result of a diverging total

energy density �+ Æ� if the equations of state has an asymptoti power law behaviour P � �

n

with n < 1. In view of these diÆulties one may ask the question why we have deided to use
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an Eulerian rather than a Lagrangian formulation in the �rst plae. Our main motivation for

studying Eulerian shemes is to probe a method in spherial symmetry whih enables one to

aurately model a wide range of di�erent types of non-linear neutron star osillations. Below

we shall see that the Lagrangian approah is a very powerful tool for the study of dynami

stars in spherial symmetry. However, it is a generi problem of Lagrangian methods that it is

not lear how to generalise them to two or three spatial dimensions, where the paths of uid

elements may interset and give rise to austis. The vast majority of neutron star osillations

on the other hand will only be present if one drops the assumption of spherial symmetry, so

that their numerial simulation requires the use of two or three spatial dimensions. In default

of higher dimensional generalisations of Lagrangian tehniques these simulations are generally

performed in an Eulerian framework.

We will now turn our attention towards the numerial solution of the linearized equations. From

the asymptoti behaviour, we expet, however, that the results we obtain for n < 1 will diverge

at the surfae and thus not represent a physial solution. From a numerial point of view it

turns out to be bene�ial to reformulate Eq. (5.118) in terms of the displaement vetor �. This

is due to the asymptoti behaviour of � at the origin given by Eq. (5.128). Below we will use

the numerially alulated eigenmodes as initial data for the fully non-linear evolutions and for

that purpose the solution for � would have to be onverted into data for w or in the Lagrangian

ode disussed in setion 5.4 for �. The orresponding division by r

2

ombined with the seond

order auray of the numerial eigenmode solutions results in poor auray of these initial

data near the origin. We therefore rewrite Eq. (5.118) in terms of � and introdue the auxiliary

variable A to write the result as a �rst order system

��

;x

�A = 0; (5.136)

A

;x

+ (r

;x

)

2

�

2

r

4

�

r

2

�r

;x

�

;r

A+ (r

;x

)

2

8

<

:

�

r

2

"

�

�

r

2

�

�

;r

#

;r

+ !

2

W +Q

9

=

;

� = 0: (5.137)

We note that the ourrene of r-derivatives in equation (5.136) is purely a onvenient notation.

In pratie all these derivatives are eliminated via the TOV equations. If we use the resaled

radial oordinate, we have r

;x

= C and the r-derivative of r

;x

an be alulated from the relation

C

2

;r

= ( � 1)

P

;r

�

; (5.138)

whih is a onsequene of the equation of state and the de�nition of the sound speed. The

only derivatives in Eqs. (5.136), (5.137) that have to be represented by �nite di�erening are
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the x-derivatives of � and A.

In the Cowling approximation all these results remain unhanged exept for the funtion Q

whih has to be replaed by

~

Q = �

2

(�+ P )

��

�

;r

C

2

�

r

2

�

r

� �

�

�

;r

r

2

�

r

+ ��

�

C

2

�

r

r

2

�

�

r

�

: (5.139)

and the relation between displaement and energy density perturbation whih beomes

Æ� = �(�+ P )

�

r

2

��

�

;r

�

+

�

;r

�

�

� + �

;r

�

�

�

r

2

�

;r

�: (5.140)

It is an interesting fat that in both ases the results are simpler due to the anellation of

terms if gravity is inluded.

(b) The numerial implementation

We have numerially alulated solutions of the eigenvalue problem (5.136), (5.137) using a

relaxation method. For this purpose we introdue an additional di�erential equation for the

eigenvalues

(!

2

)

;x

= 0; (5.141)

whih states that the eigenmode frequeny is onstant throughout the star. The value of ! is

not known at this stage but will result from the relaxation algorithm. In order to solve the

system (5.136), (5.137), (5.141) we need to supply three boundary onditions. At the entre we

require that

�(0) = 0; (5.142)

A(0) = onst 6= 0: (5.143)

The vanishing of the displaement � at the origin is a neessary ondition in spherial symmetry.

The value of A at the origin is allowed to take on any non-zero value beause an eigenfuntion

is only de�ned up to a onstant fator. At the outer boundary we have the ondition

A = 0; (5.144)
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Table 5: The onvergene fators obtained for doubling the grid resolution in the relaxation

ode for alulating the eigenmodes of the neutron star models 1 - 5. Grid resolutions of 500,

1000 and 2000 points have been used.

model fundamental mode 10

th

eigenmode

1 4.75 5.05

2 4.76 4.85

3 4.80 3.97

4 4.75 4.82

5 4.75 4.82

Table 6: Radius, mass and frequenies of the lowest three eigenmodes for three randomly hosen

models of Kokkotas and Ruo� have been realulated with our odes and agree well with their

values.

 K �



R M �

1

�

2

�

3

[10

15

g=m

3

℄ [km℄ [M

�

℄ [kHz℄ [kHz℄ [kHz℄

Kokkotas & Ruo� 2.00 100 km

2

5.000 7.787 1.348 1.129 7.475 11.365

this work 2.00 100 km

2

5.000 7.788 1.348 1.128 7.470 11.355

Kokkotas & Ruo� 2.25 700 km

2:5

4.000 8.199 1.600 1.455 7.610 11.573

this work 2.25 700 km

2:5

4.000 8.200 1.600 1.443 7.594 11.544

Kokkotas & Ruo� 3.00 2 � 10

5

km

4

2.200 9.419 1.988 2.716 8.305 12.516

this work 3.00 2 � 10

5

km

4

2.200 9.419 1.988 2.637 8.215 12.389

whih follows from the de�nition of A and the vanishing of the energy density at the surfae of

the star. An initial guess for ! enables us to alulate the initial funtions � and A by integrat-

ing Eqs. (5.136), (5.137) outwards. The solution inluding the eigenvalue !

2

is then obtained

by relaxation as desribed in setion 2.3.5.

() Testing the ode

For suÆiently low eigenmodes both alternative hoies of the radial oordinate lead to good

agreement between the predited frequenies up to the fourth signi�ant digit. As we will see

below high order eigenmode pro�les show rapid osillations near the surfae of the star whih

may not be well resolved if we work with the areal radius r. The frequenies deviate more

signi�antly in these ases. In the rest of this setion we will therefore work with the resaled

oordinate and set r

;x

= C. The resulting ode has been heked in four independent ways.

First we have omputed the eigenfuntions of the fundamental and the tenth mode for the

neutron star models listed in Table 3 and heked for onvergene using 500, 1000 and 2000
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Table 7: The ritial entral densities orresponding to the neutron star models 1-5 are given to

four signi�ant digits together with the frequeny of the fundamental mode just below and above

the ritial point. Above the ritial density the frequenies beome imaginary as expeted.

model �

;rit

�(�

;rit

� 10

�6

) km

�2

�(�

;rit

+ 10

�6

) km

�2

[km

�2

℄ [kHz℄ [kHz℄

1 0.002179 0.0294 0.0477 i

2 0.004205 0.0578 0.0429 i

3 0.002804 0.0629 0.0350 i

4 0.002103 0.0409 0.0592 i

5 0.002233 0.0591 0.0627 i

grid points. The results shown in Table 5 learly demonstrate seond order onvergene as

expeted for the seond order �nite di�erening sheme applied in the relaxation algorithm.

Next we have randomly hosen three of the stellar models listed in Kokkotas and Ruo� (2001)

and realulated radius, mass of the neutron stars as well as the frequenies of the lowest three

eigenmodes. The results are ompared in Table 6 and show good agreement.

For the third test we reall the 1-parameter families of neutron stars shown in Fig. 35. We

have already mentioned that the maxima in the mass vs. entral density plots separate the

stable and unstable branhes of neutron star models and that the frequeny of the fundamental

eigenmode beomes zero at the ritial point and imaginary on the unstable branh. We have

therefore determined the ritial entral densities for the �ve neutron star models of Table 3 and

alulated the frequeny of the fundamental modes just below and above the ritial densities.

The numerial results are shown in Table 7 and on�rm this piture. The frequenies of the

fundamental mode are very small but real for entral densities just below the ritial value and

beome imaginary for larger densities.

A further test for the eigenmode frequenies arises from a relation between the period of the

fundamental mode T

1

of a neutron star model and the deviation of the radius R from the ritial

radius R



that has been suggested by Harrison et al. (1965) [see their Eq. (155)℄

(R�R



) � T

2

1

= onst: (5.145)

In Table 8 we show the results obtained for neutron star models idential to model 1 and 3

with entral densities as indiated. Even though a deviation from Eq. (5.145) up to 20% is

observed for both models, this is rather small if one onsiders the variation of the frequeny !

1

over several orders of magnitude.
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Table 8: Equation (5.145) is heked for neutron star models 1 and 3 for various entral densities.

model 1 model 3

�



!

1

(R�R

rit

)=!

2

1

�



!

1

(R�R

rit

)=!

2

1

[km

�2

℄ [km

�1

℄ [km

3

℄ [km

�2

℄ [km

�1

℄ [km

3

℄

0.0021785 0.000187 187.96 0.0028035 0.000172 97.55

0.0021780 0.000616 192.72 0.0028030 0.000773 85.21

0.0021775 0.000850 192.34 0.0028025 0.001080 84.89

0.0021750 0.001563 192.59 0.0028020 0.001317 84.77

0.0021700 0.002424 193.00 0.0028000 0.002002 84.87

0.0020000 0.010939 207.93 0.0027000 0.010838 86.97

0.0015000 0.020261 236.69 0.0020000 0.029622 106.64

0.0011775 0.023606 235.61 0.0015000 0.036427 128.95

(d) The eigenmode solutions

We will now turn our attention to the eigenmode pro�les of the physial variables. We have

already noted that the eigenvalue problem has an enumerable in�nite set of solutions whih

an be ordered with respet to their eigenvalues. This order is also reeted in the spatial

pro�les of the orresponding eigenfuntions. We have numerially alulated the �rst four

eigenmodes in terms of the displaement vetor � for model 3 with polytropi exponent  = 2.

The veloity w, the resaled displaement � and the energy density perturbation Æ� then follow

from Eqs. (5.111) where we use harmoni time dependene, (5.112) and (5.130). The results

are shown in Fig. 36, where we have also inluded the solution for � orresponding to the tenth

eigenmode. Sine the eigenmode solutions are determined up to a onstant fator only, we

have resaled them to about unit amplitude. For all variables we see that the number of nodes

is given by the order of the mode and the number of loal maxima or minima is given by the

order minus one. This behaviour remains valid for higher modes and is harateristi of the

eigenmode solutions. In order to illustrate the signi�ane of the transformation to the resaled

radius y we have plotted � as a funtion of r as well. In the upper panels of Fig. 36 we an see

that the osillations in the spatial pro�le of the eigenmodes beome more onentrated towards

larger radii r the higher the order of the mode. In terms of the resaled radius y, however,

the osillations are evenly distributed over the entire interval. This behaviour is reminisent

of the narrowing of the wave pulse we observed in setion 5.2.4 and illustrates why a superior

numerial performane is obtained when using the oordinate y, espeially when higher order

modes are present in the evolution.

The orresponding eigenmodes obtained for the other stellar models look qualitatively similar

in all variables exept for the energy density perturbation Æ�. We have already noted that the
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Figure 36: The displaement � as a funtion of the areal radius r and the resaled radius y as

well as the veloity w and the energy density Æ� as a funtion of y are shown for the �rst four

eigenmodes of model 3. For � we have also plotted mode 10 to illustrate the onentration of

osillations towards larger r.
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Figure 37: The energy density perturbation Æ� obtained for the �rst four eigenmodes of stellar

model 1 (left panel) and 5 (right panel) is plotted as a funtion of y.

asymptoti behaviour of Æ� depends on the polytropi exponent . This is on�rmed by the

numerial solutions shown in Fig. 37 where we plot the pro�les of the energy density perturbation

obtained for the stellar models 1 and 5 with polytropi exponents  = 1:75 and 2:3 respetively.

For model 1 the energy density perturbation goes to zero at the surfae, although with a non-

zero gradient. In omparison the gradient of the bakground density of the same model vanishes

in Fig. 33 and the quotient Æ�=� an indeed be shown to diverge in agreement with Eq. (5.133).
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Figure 38: The energy density pro�le of an osillating neutron star is shematially plotted at

three di�erent stages of one osillation. Initially the stellar radius is at its equilibrium value,

at the later time t

1

the star has expanded and at t

2

it has shrunk below its initial radius. The

vertial line indiates the extension of the numerial grid.

For the larger polytropi index 2.3 the perturbation Æ� itself diverges at the surfae as expeted

from Eq. (5.132).

The orresponding results obtained in the Cowling approximation are very similar to those

shown above. The only notable di�erene is the frequeny of the fundamental mode whih does

not derease towards zero as the entral density approahes the ritial value but instead remains

real and positive. This result is to be expeted sine a uid will not beome gravitationally

unstable if the gravitational �eld is kept �xed.

The eigenmode solutions obtained in this setion will be used extensively as initial data in the

non-linear evolutions. We have seen, however, that the stellar surfae represents a problemati

area even in the linearized ase. The diÆulties are more pronouned in the non-linear ase

and need to be investigated in more detail before we an study the fully non-linear numerial

evolutions.

5.3.4 The surfae problem

When we formulated the desription of non-linear radial osillations of neutron stars in se-

tion 5.3.1 we onsiously omitted the issue of boundary onditions. The diÆulties involved in

speifying outer boundary onditions in an Eulerian ode are so omplex that we dediate a

whole subsetion to this topi. We have already mentioned that the surfae is de�ned by the

ondition

^

P = 0 whih is equivalent to �̂ = 0 for a polytropi equation of state. With respet

to the �xed numerial grid, however, the surfae of the star is moving and we annot apply this
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ondition at the outer grid boundary. This is a further indiation that one may have to emulate

a Lagrangian treatment of the surfae in order to aurately model neutron star osillations

involving radial displaements of the surfae. The situation is graphially illustrated in Fig. 38

where the total energy density pro�le is shematially plotted as a funtion of radius. At time

t

0

an equilibrium star (solid urve) is perturbed with a veloity �eld that auses the star to

expand. The initial on�guration also determines the extension of the numerial grid indiated

by the vertial line. At a later time t

1

the star has expanded (long dashed urve). The outer

part of the star has therefore moved out of the numerial grid (dotted part of the urve) and

the orresponding information would be lost in a non-linear numerial evolution. At time t

2

the

star has shrunk and is ompletely ontained inside the numerial grid. Outside of the star the

energy density will be zero. In general, therefore, the energy density pro�le or its derivatives

will have a disontinuity at the stellar surfae. Worse from a numerial point of view is the

region between the stellar surfae and the outer grid boundary. Even though the energy density

will be zero at these points theoretially, numerially this will not exatly be the ase. At

some of these points the total energy density will have small negative values due to numerial

noise, unless the values are manipulated in some form. A negative energy density, however,

means that the pressure an no longer be alulated from the equation of state whih normally

terminates the evolution. There are several possibilities for dealing with these diÆulties. We

will disuss four methods and implement two of them in the ourse of this work.

1.) The �rst method onsists in embedding the star in an atmosphere of low density. In

this method the numerial grid extends well beyond the size of the neutron star and no

information is lost at any stage of the evolution. The boundary onditions are then applied

to the atmosphere whereas the star will always be on�ned to the interior numerial grid

and the surfae of the star is entirely desribed by the interior numerial evolution, for

example by shok apturing methods. It is a non-trivial question, however, to what extent

the atmosphere and the numerial treatment of the surfae disontinuities will a�et the

evolution of the neutron star. For this reason it seems plausible to use an atmosphere of

low density. A low density, however, will in general be aompanied by a small speed of

sound and we have already seen in the disussion of the wave equation in setion 5.2.4 that

suh regions require a areful numerial treatment. An insuÆient resolution may result

in spurious phenomena. In terms of a resaled radius suh as the oordinate y de�ned in

Eq. (5.47) we have been able to obtain a suÆient resolution, but a large number of grid

points would be required to simulate an atmosphere of signi�ant spatial extension.
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An interesting variation of this method onsists in viewing the surfae of the star as

an interfae to an exterior vauum region and expliitly traking the movement of the

interfae. Sophistiated tehniques suh as level set methods and fast marhing methods

have been developed for these purposes (see for example Sethian 1999) and may provide

an answer to the surfae problem in Eulerian formulations. One may even go a step

further and reall the strikingly similar onept of Cauhy-harateristi mathing and,

thus, onsider a ombination of these ideas. It is, however, well beyond the sope of this

work to investigate these methods in more detail and we will therefore fous on simpler

tehniques.

2.) The seond method is a modi�ed version of the atmosphere approah disussed above.

Instead of using an external atmosphere, we modify the equation of state of the neu-

tron star at low densities and thus view the outer layers of the neutron star itself as an

atmosphere. For that purpose we use an equation of state given by

P = K �



if � > �

t

; (5.146)

P = a

1

�+ a

2

�

2

+ a

3

�

3

+ a

4

�

4

if � � �

t

; (5.147)

where a

2

, a

3

and a

4

are oeÆients determined by the ontinuity of P and its �rst two

derivatives with respet to �. The oeÆient a

1

and the transition density �

t

are free

parameters that are spei�ed by the user. A onsequene of this de�nition is that P � �

at low densities and the behaviour will be similar to that of a  = 1 polytrope in this

region, i.e. extend beyond the surfae of the original purely polytropi model. The low

density part of the neutron star an thus be viewed as an atmosphere smoothly attahed

to a polytropi neutron star trunated at �

t

. Whenever the energy density falls below a

threshold value �

min

during the evolution, it is set to this threshold value. The parameter

�

min

also needs to be spei�ed by the user. This requirement avoids the ourrene of

negative total energy densities, but introdues ad ho disontinuities in the Æ� pro�le. We

take are of these disontinuities by introduing arti�ial visosity of the modi�ed von

Neumann-Rihtmyer form (see for example Fox 1962)

q =

8

<

:

b�y

2

�̂w

2

;y

if w

;y

< 0

0 if w

;y

� 0;

(5.148)

where b is the visosity parameter. In many ases b = 2 leads to satisfatory results. This
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visosity term is added to the pressure perturbation ÆP wherever it ours in the equa-

tions. With areful hoies of the free parameters a

1

, �

t

, �

min

and b we have obtained

long term stable evolutions of loalised wave pulses. The partiular values we have to

hoose for a stable evolution, espeially the density values �

t

and �

min

, do however de-

pend sensitively on the initial data. Furthermore the manipulation of the energy density

perturbation Æ� in ases of a negative total energy density leads to a ontamination of the

evolution of eigenmodes in the low density range. The resulting disturbanes then travel

into the stellar interior within a few osillation periods. In view of these diÆulties we

have deided to use a di�erent treatment of the stellar surfae.

3.) A fully satisfatory solution to the surfae problem in one spatial dimension an be ob-

tained with a Lagrangian formulation either of the surfae or the whole star. In the �rst

ase this an be implemented by resaling to a new radial oordinate

s :=

r

R(t)

; (5.149)

where R is the time dependent total radius of the star. This transformation leads to a few

extra terms in the equations in the radial gauge, but is more ompliated to implement in

terms of the resaled oordinate y. For this reason and beause of the wider range of ap-

pliations we have hosen instead to reformulate the non-linear radial osillations entirely

within a Lagrangian framework. Combined with the singularity avoiding properties of the

polar sliing ondition the resulting ode an not only be used for the simulation of radial

osillations but also allows high resolution studies of spherially symmetri gravitational

ollapse. This ode and the orresponding testing will be disussed in detail in setion

5.4.

Even though Lagrangian methods represent a formidable tool for 1-dimensional problems,

we have already mentioned that there is no straightforward generalisation to two or three

spatial dimensions, where the paths of uid elements may interset and give rise to aus-

tis.

4.) The method we will be using in the remainder of this setion an be onsidered the

inverse of the atmospheri treatments disussed above. Instead of adding matter in the

form of an atmosphere the outer layers of the star are removed. In this ontext it is

worth remembering that the solution of the TOV equations via quadrature does not go
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all the way out to � = 0 and a fully non-linear perturbative ode working with suh a

bakground intrinsially desribes a trunated neutron star. The perentage of mass that

we will remove from the star will be very small in most ases (� 1%). We will see below

that the resulting ode behaves well in the linearized limit in most ases.

5.3.5 The numerial implementation in Eulerian oordinates

In setion 5.3.2 we have derived the equations for a fully non-linear perturbative formulation of a

dynami spherially symmetri star in terms of the generalised oordinate x. In the remainder

of the Eulerian disussion we will restrit ourselves to the resaled version and set r

;x

= C

and x = y. In order to numerially solve these equations, we also have to speify appropriate

boundary onditions. We start with the origin and reall that the displaement � of a uid

element at the entre of a spherially symmetri star vanishes. As a onsequene the radial

veloity will also vanish at the origin. As far as the energy energy density is onerned, we note

that �̂ is a omponent of a rank 2 tensor and therefore the spatial derivative �̂

;y

will vanish in

spherial symmetry. The same is true for the bakground density � and therefore we obtain the

inner boundary ondition Æ�

;y

= 0. Finally we require the vanishing of Æ� to avoid a onial

singularity.

At the outer boundary we math the lapse funtion to an exterior Shwarzshild metri as in the

stati ase whih results in the ondition

^

� � �̂ = 1. As far as the matter variables are onerned,

the situation is a bit more ompliated. For the veloity we use the regularity ondition w

;y

= 0.

In view of the de�nition of the radial oordinate y this is equivalent to demanding that the

veloity has a �nite gradient with respet to r at the surfae. This ondition is satis�ed by

the eigenmode solutions obtained in setion 5.3.3. In Fig. 36 we an see that the gradient w

;y

vanishes for all three polytropi exponents  = 1:75, 2:00 and 2:3. In ontrast to the veloity

gradient the derivative of the energy density perturbation Æ�

;y

will in general not vanish at the

surfae. If we onsider the stellar models listed in Table 3 it an be shown that Æ�

;y

will only

vanish in the ase  = 2 whih is also illustrated in Figs. 36 and 37. In summary the boundary

onditions are

Æ�

;y

= 0; (5.150)

w = 0; (5.151)

Æ� = 0: (5.152)
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at the origin and

w

;y

= 0; (5.153)

^

� � �̂ = 1 (5.154)

at the surfae.

In this ontext it is worth mentioning a subtlety onerning seond order �nite di�erening

shemes used for evolution equations suh as (5.102), (5.103). In general this system of equations

has one ingoing and one outgoing harateristi at eah boundary and physial information has

to be spei�ed in the form of one ondition for either w or Æ� at either boundary. The entred

�nite di�erening sheme (or variation thereof) used in seond order tehniques, however, annot

be applied at the grid boundaries and the variables must be evolved in an alternative way. The

physial boundary onditions do not neessarily provide enough information for this. In our

ase, for example, we have two variables Æ�, w that need to be updated at two grid points

respetively whih requires four onditions, but only two onditions are required to provide

information for the harateristis entering the numerial grid. The remaining boundary values

not determined by these two onditions have to be obtained in alternative ways, for example by

extrapolation or the use of one sided derivatives in the evolution equations. We have obtained

optimal performane in the evolution of Æ� and w by using onditions (5.150) and (5.151)

at the entre and (5.153) at the surfae. The outer boundary value of Æ� is then obtained

by extrapolation on eah new time slie. It is worth pointing out that this problem is not

apparent in the impliit �nite di�erene methods applied to the osmi string in setion 4 or

the Lagrangian ode in setion 5.4.

Before we shematially outline the omputational steps involved in the time evolution we need

to disuss one �nal numerial issue, the CFL stability ondition. We have mentioned in setion

2.3.8 that the stability riterion of Courant, Friedrihs and Lewy requires the physial domain

of dependene to be inluded in the numerial domain of dependene. A standard method

to ensure that this riterion is met in a hydrodynamial evolution is based on alulating the

slopes of the harateristis at eah point on the numerial grid. In our ase we onsider the

system of evolution equations (5.102), (5.103). The quasi-linear nature of this system enables

us to alulate the harateristis from

dy

i

dt

= �

i

; (5.155)
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where �

i

are the eigenvalues of the oeÆient matrix and are de�ned by the equation

2

4

0

�

�

11

�

12

�

21

�

11

1

A

� � � 1

3

5

0

�

Æ�

w

1

A

= 0: (5.156)

The solution for the oeÆient funtions (5.105)-(5.107) is given by

� =

1

r

;x

D

 

w(1 �

^

C

2

)�

^

C

�̂

^

�v

!

: (5.157)

If the harateristis are straight lines, the Courant-Friedrihs-Lewy ondition is satis�ed if the

time step dt obeys the inequality

dt �

dy

max j�

i

j

: (5.158)

We therefore alulate the eigenvalue �elds �

1

, �

2

on eah time slie and determine the value of

max j�

i

j. Even though the harateristis will in general not be straight lines, the deviation is

small on time sales of dt and we allow for this e�et by multiplying the resulting time step by

a fator of 0.9. With that hoie and about 500 grid points we have obtained stable evolutions

over several 100000 time steps whih orresponds to more than 0:1 s of proper time as measured

by an observer at in�nity.

We have got all ingredients now to summarise the individual steps involved in the fully non-

linear numerial evolution.

(1) A stati bakground model is alulated aording to the TOV equations (5.48)-

(5.51), where we set r

;x

= C. For this purpose the polytropi exponent , the

polytropi fator K, the entral density �



and the surfae density �

s

need to

be spei�ed by the user. A non-zero surfae density will result in a trunated

neutron star model. The results are given in the form of data �les ontaining

the bakground variables �, �, � and r as funtions of y.

(2) If initial data is required in the form of eigenmode pro�les, the eigenmode solu-

tions an be alulated aording to the method desribed in setion 5.3.3. The

order of the eigenmode is determined by the initial guess for the frequeny whih

needs to be spei�ed. The amplitude of the eigenmode is a free parameter in the

evolution ode.

(3) There are several alternative hoies for the initial data. Among these are lo-

alised perturbations of Gaussian shape and linear ombinations of di�erent
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eigenmodes.

(4) With the initial veloity w and energy density Æ� spei�ed, the metri perturba-

tions follow from the onstraint equations (5.100) and (5.101). These equations

are numerially integrated with a fourth order Runge-Kutta sheme.

(5) The initial data is evolved aording to the seond order in spae and time

MCormak sheme desribed in setion 2.3.4. One evolution yle onsists of

the following steps.

a) Calulation of the Courant fator,

b) preditor step for Æ� and w,

) appliation of the inner boundary onditions for Æ� and w,

d) integration of the onstraint equations to obtain preliminary values for Æ�

and Æ� on the new time slie,

e) orretor step for Æ� and w,

f) appliation of boundary onditions for Æ� and w,

g) integration of the onstraint equation on the new slie to obtain the �nal

values of Æ� and Æ�.

5.3.6 The performane of the ode in the linear regime

We will now investigate the performane of the ode in the linear regime, where we know the

exat solution with high auray. If initial data is provided in the form of an eigenmode pro�le

w

i

(y) and zero Æ�, we know that the time dependent solution in the linear regime is given by

Æ�(t; y) = �Æ�

i

(y) sin!

i

t; (5.159)

w(t; y) = w

i

(y) os!

i

t: (5.160)

For �nite amplitudes this solution is not exat, but for suÆiently small amplitudes the deviation

of the exat solution from (5.159), (5.160) is negligible ompared with the trunation error of

the numerial sheme. We have therefore alulated the fundamental mode for stellar model 3

of Table 3 using 1600 grid points and a trunation density �

s

= 1:0 � 10

�7

km

�2

. This density

orresponds to the removal of about 3 � 10

�8

of the neutron star mass whih is one order of

magnitude smaller than the auray of the numerially alulated total mass. The amplitude

of the eigenmode orresponds to an osillation of the stellar radius of about 10 m, i.e. a relative

displaement of about 10

�5

. In Fig. 39 we show the time evolution of Æ� and w together with

the deviation from the analyti solution (5.159), (5.160). The numerial evolution reprodues



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 147

Figure 39: The left panels show the time evolution of Æ� and w obtained for neutron star model

3 with  = 2:00. The initial perturbation is given in the form of the fundamental mode in the

veloity �eld w. The right panels show the deviation from the exat solution of the linearized

equations.

the expeted harmoni time dependene with high auray. Beause of its low frequeny the

fundamental mode is partiularly suitable for this graphial illustration. The ode reprodues

the sinusoidal evolution of higher modes with omparable auray, but the large number of

osillations is not well resolved in plots similar to Fig. 39. For the same reason we have shown

the earlier stages of the evolution up to t = 600 km only in the �gure. The whole run lasts more

than ten times longer and shows no signi�ant loss of auray. It is worth mentioning that the

auraies obtained here are limited not only by the evolution ode but also by the results for

the stati bakground, the eigenmode pro�les and, most importantly, the eigenmode frequenies

used in the alulation of the analyti solution. The same long term stability and high auray

has been observed in similar evolutions for a variety of di�erent neutron star models with

polytropi indies  � 2. Below we will see, however, that the ode does not perform equally

satisfatorily if we use a larger trunation density in ombination with a marginally stable

neutron star model with a entral density just below the ritial value.
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Figure 40: The power spetra of the time evolution of the entral density for neutron star

models 1 and 3. The vertial bars indiate the frequenies predited by the linear analysis.

For neutron star models suÆiently far away from the stability limit, we an also hek the

performane of the ode in the linear regime by omparing the frequeny spetrum of the

time evolution with the values predited by the eigenmode alulations of setion 5.3.3. For

this purpose initial veloity �elds have been alulated for models 1 and 3 by adding the �rst

ten eigenmode pro�les whereas the initial density perturbation is set to zero. The ombined

amplitude of the perturbations is similar to that used above for determining the deviation

from harmoni time dependene. In Fig. 40 we show the Fourier spetra for the orresponding

time evolutions of the entral density perturbation Æ�(t; 0). The frequenies predited by the

eigenmode analysis are indiated by vertial bars and show good agreement with the peaks in

the Fourier spetra.

Next we ompare the performane of the perturbative approah with that of a \standard"

non-perturbative method. We have already mentioned that we an simulate a non-perturbative

approah by using vauum at spae for the bakground variables. In this ase we only use the

TOV-model to determine the numerial grid as well as the areal radius r and the sound speed C

as funtions of y. The bakground variables, however, are spei�ed as � = 1, � = 1 and � = 0. If

we insert these values into the perturbative equations (5.100)-(5.109) they will beome idential

to the non-perturbative system (5.83)-(5.92) (after transformation to the radial oordinate y)

with

^

�, �̂, �̂ and

^

P replaed by 1 + Æ�, 1 + Æ�, Æ� and ÆP . The ourrene of the onstant 1 in

the metri variables has no impliations on the numerial performane. We have thus evolved

initial data in the form of a fundamental eigenmode pro�le in the veloity �eld w for neutron

star model 3. First we have used the TOV-bakground and a resolution of 600 grid points. We

have then repeated the evolution with a at spae bakground using 600 and 1200 grid points

in order to hek the dependene of the non-perturbative results on the spatial resolution. It is

important to note that the same ode and the same evolution algorithm has been used in both
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Figure 41: The entral density perturbation orresponding to the fundamental osillation mode

of model 3 as obtained with a perturbative method for 600 grid points (dotted urve) and

a non-perturbative method for 600 (solid) and 1200 grid points (dashed urve). See text for

details.

ases. The amplitude of the perturbation orresponds to an osillation of the surfae of several

metres. For this amplitude we still expet the evolution to be dominated by the harmoni time

dependene, although the results of setion 5.3.9 below indiate the presene of weak non-linear

e�ets. The numerial results are shown in Fig. 41, where the entral density perturbation is

plotted as a funtion of time. We learly see that the perturbative evolution results in the

expeted sinusoidal time dependene. In the non-perturbative ase the entral density shows

similar osillations but simultaneously the mean value dereases signi�antly. In longer runs

this derease is revealed to be exponential and thus indiates a starting evaporation of the star.

Neutron star model 3, however, is loated on the stable branh as we an learly see in Fig. 35

and no ollapse or evaporation is expeted. Indeed the higher resolution run indiates that

the non-perturbative sheme onverges to the harmoni solution. In order to understand this

behaviour of the non-perturbative sheme we reall the presene of bakground terms in the

evolution equation for w

;t

. If we onsider the oeÆients

~

b

2

and ~�

21

given by Eqs. (5.90), (5.92),

we an see that the evolution equation (5.86) ontains the bakground in the form

e(y) :=

1

�

2

D

�

�

;r

�

+

C

2

�

;r

(�+ P )

�

: (5.161)

We know that this term vanishes by virtue of the TOV equation (5.12) and it has been removed

from the equations in the perturbative formulation. In the non-perturbative ase, however, it

will manifest itself in the form of a residual numerial error. This error is shown in Fig. 42
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Figure 42: The soure terms of the evolution equation for w (5.103) at the �rst omputational

step are shown for the perturbative (solid urve) and the non-perturbative sheme (dashed

urve). The dotted urve shows the numerial error of the bakground terms and demonstrates

the signi�ane of the spurious soure terms.

for the �rst step in the evolution with 600 grid points together with the entire soure terms

of w

;t

as given by Eq. (5.86) in the non-perturbative and Eq. (5.103) in the perturbative ase.

Beause of the osine time dependene of the veloity the soure terms should nearly vanish at

t = 0. It an be seen, however, that the soure terms are dominated by the residual numerial

error in the non-perturbative sheme whih is partiularly large at the entre and the surfae.

On the time sale of one osillation period, about 150 km, the spurious aeleration of up to

10

�4

km

�1

will have a signi�ant impat on the osillation of several metres of the star. A

loser investigation of the veloity �eld reveals that the integral e�et of the residual error is an

inrease in the veloity �eld near the surfae. We attribute the gradual evaporation of the star

to this disturbane in the veloity �eld whih gradually radiates matter o� the numerial grid.

Considering that the same ode has been used for the omparison just desribed, it is neessary

to hek the perturbative sheme for similar spurious e�ets. After all the main advantage of

the perturbative sheme lies in higher auray whih may postpone the onset of a spurious

ollapse or evaporation but not neessarily avoid it. We have already mentioned, however, that

no signi�ant deviation from the harmoni time dependene has been observed in the ase of

model 3 and initial data in the form of eigenmodes over very long times. In order to avoid even

longer integration times and the assoiated omputational osts, we have hosen an alternative

way of testing the ode for this behaviour. We use a stellar model idential to model 3 but with

a entral density of �



= 0:002802 km

�2

whih is just below the ritial value given in Table 7.
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Figure 43: The entral density resulting from the evolution of the fundamental eigenmode of

a neutron star orresponding to model 3 with a entral density just below the ritial value

is plotted for a trunation density of 5 � 10

�6

km

�2

(dashed urve) and 2:5 � 10

�8

km

�2

(solid

urve).

The initial data onsist of the fundamental veloity mode with an amplitude orresponding to

a surfae displaement of about 10 m and we use a numerial grid with 600 grid points. In the

�rst alulation we have imposed a trunation density of Æ�

s

= 5 � 10

�6

km

�2

and in a seond

run the intrinsi value of the TOV ode Æ�

s

= 2:5 � 10

�8

km

�2

is used. In Fig. 43 we show the

resulting entral density perturbation as a funtion of time. For the small trunation density

we obtain the expeted sinusoidal time dependene whereas the larger value signi�antly a�ets

the evolution, even though only a fration of 10

�5

of the stellar mass has been negleted in

this ase. This result demonstrates the limitations of the ode in its urrent form. For larger

trunation densities it does not neessarily guarantee mass onservation whih we attribute to

the boundary ondition (5.153) whih is stritly valid only if the numerial grid extends to

� = 0. For suÆiently small trunation densities the resulting numerial error is negligible

and has no signi�ant e�et on the evolution. For larger trunation densities, however, it an

result in spurious phenomena similar to those observed in the non-perturbative ase. This is

partiularly problemati sine the investigation of non-linear e�ets will require perturbations

of larger amplitudes and onsequently larger trunation densities are neessary in order to avoid

total negative energy densities. From here on we will therefore proeed in two di�erent ways.

In the remainder of setion 5.3 we will investigate a simpli�ed neutron star model for whih the

ode ensures mass onservation for arbitrary amplitudes and negative energy densities are still

avoided. This model will neessarily provide a less realisti desription of a neutron star, but
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the general struture of the eigenmodes remains the same and it is not unrealisti to expet that

non-linear e�ets suh as mode oupling will be qualitatively similar in more realisti models.

Considering the sensitivity of the numerial evolutions to the treatment of the surfae, it is,

however, desirable to develop a formulation of the dynami neutron star whih unambiguously

provides a orret treatment of the surfae. This will be done in setion 5.4 where we develop

a fully non-linear perturbative Lagrangian ode.

5.3.7 A simpli�ed neutron star model

In the previous setion we have seen that a suÆiently large trunation density in ombination

with the boundary ondition (5.153) may result in a ontinuous loss or gain of mass. In order

to avoid total negative energy densities, however, we have to use suÆiently large trunation

densities when we study non-linear e�ets in the time evolution of large amplitude perturba-

tions. We have therefore deided to ensure mass onservation by using the alternative boundary

ondition

w = 0 (5.162)

at the surfae instead of Eq. (5.153). This means that the surfae of the star remains at a

�xed position in spae and only uid elements in the interior of the star are displaed during

the evolution. It is the �xed loation of the surfae whih avoids the main problems we have

enountered with the Eulerian formulation so far. The model we use for the following analysis

has the same equation of state as model 3 of Table 3 and a entral density �



= 1:224�10

�3

km

�2

whih implies a radius R = 11:34 km and a total mass M = 2:18 km. The trunation density

is �xed at �

s

= 2:0 � 10

�4

km

�2

whih means that the simpli�ed model ontains 90% of the

mass of the original star and extends to 84% of the original radius. Apart from hanging

the trunation density in the alulation of the TOV-bakground and implementing the new

boundary ondition in the evolution ode only one further modi�ation in the numerial setup

desribed in setion 5.3.5 is required. The outer boundary ondition (5.144) in the alulation

of the eigenmodes is replaed by

�(R) = 0: (5.163)

The resulting eigenmodes an be ordered in the same way as desribed in setion 5.3.3 and the

evolution of eigenmodes in the linear regime again results in harmoni time dependene as in

the original ase with the frequenies predited by the eigenmode alulation. The �rst four
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Figure 44: The pro�les of the lowest four eigenmodes in Æ� and w for the simpli�ed neutron

star model.

eigenmode pro�les of Æ� and w for the model mentioned above are shown in Fig. 44. The plots

show that the number of loal maxima and minima of the pro�les still orresponds to the order

of the mode.

5.3.8 Testing the ode with the new model

The only modi�ation of the ode that needed to be implemented for the new model is the

outer boundary ondition (5.162). The performane of the ode in the linear regime is thus

well established by the results of setion 5.3.6 and we merely have to demonstrate that no

spurious results are obtained for larger trunation densities. This is the only ase where we

will depart from the model parameters listed in the previous setion and use a entral density

�



= 0:002802 km

�2

instead. We thus reover the parameters of the model whih lead to a

spurious evaporation of the star in Fig. 43. For this model we have again evolved initial data

in the form of the fundamental mode of the veloity with an amplitude of 10 m using 600 grid

points. In Fig. 45 we show the resulting entral density Æ�



together with the deviation from the
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Figure 45: The evolution of the entral density for initial data in the form a fundamental

eigenmode in the veloity �eld for model 3 with a entral density �



= 0:002802 km

�2

.
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Figure 46: The onvergene fator obtained for evolving the seond eigenmode with an ampli-

tude of 70 m is shown for the variables Æ�, w, Æ� and Æ�.

harmoni solution of the linearized ase. For presentation purposes we only show the evolution

up to t = 6000 km. The harmoni time dependene is reprodued with reasonable auray

as the deviation inreases linearly up to about 1%. In general we have found the eigenmode

frequeny the quantity most vulnerable to numerial error as an be seen for example by varying

the resolution. Beause of this observation and the osillatory harater of the deviation in the

�gure we attribute the error mainly to the limited auray of the frequeny rather than the

numerial error of the time evolution itself. The inreasing phase shift between the numerial

and the analyti solution arising from the limited auray of the frequeny will result in a

linear inrease of the deviation as observed in Fig. 45. In spite of the small deviation this

alulation is in sharp ontrast with that shown in Fig. 43, where a muh smaller trunation

density resulted in an exponential deay of the entral density. We onlude that using a large

trunation density in ombination with the boundary ondition (5.162) the ode performs well

in the linearized regime.

We now return to the model parameters of the previous setion and use �



= 0:001224 km

�2

.
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In order to test the ode for onvergene in the non-linear regime we have evolved the seond

eigenmode with an amplitude orresponding to a maximal displaement of uid elements of

70 m. The alulation has been arried out with 400, 800 and 1600 grid points and the resulting

onvergene fators are shown in Fig. 46. In spite of variations around the expeted value 4,

the results for all variables are ompatible with seond order onvergene.

For the next test we will use the ode in the Cowling approximation, sine the stati metri

provides a straightforward reipe to alulate onserved quantities. We have seen in setion

5.3.2 that only minor modi�ations are required to swith between the Cowling approximation

and a dynami metri. The onservation properties with a �xed metri will therefore represent

a good test for the matter evolution in the general ase. The �rst step in the derivation of a

onserved quantity is to �nd a time-like Killing �eld. The existene of suh a vetor �eld follows

from the stati nature of the metri in the Cowling approximation. The Killing vetor an be

found by looking at the Killing equation

r

�

X

�

+r

�

X

�

= 0: (5.164)

The resulting 10 di�erential equations an be solved rather easily and de�ne the solution up to

a onstant fator. We hoose this fator so that the Killing �eld an be written as

X

�

=

�

�

2

; 0; 0; 0

�

: (5.165)

The onserved quantity then follows from ontration of the Killing �eld with the energy mo-

mentum tensor

J

�

= T

��

X

�

: (5.166)

By virtue of onservation of energy momentum this vetor satis�es the ondition

r

�

J

�

= 0: (5.167)

With the metri (5.2) and the energy momentum tensor (5.78) this equation an be written in

onservative form

�

t

�

��r

2

J

t

�

+ �

r

�

��r

2

J

r

�

= 0; (5.168)
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Figure 47: The numerial evolution of the funtion E obtained in the Cowling approximation.

The quantity is onserved with an auray better than 10

�4

.

where the t and r omponents of J are given by

J

t

= (1 + �

2

w

2

)�̂+ �

2

w

2

^

P ; (5.169)

J

r

=

w

v

(1 + �

2

w

2

)(�̂+

^

P ): (5.170)

If we onsider a general onservation law in one dimension

u

;t

+ F (u)

;r

= 0; (5.171)

we obtain after integration over t and r

Z

R

0

[u(T; r)� u(0; r)℄dr +

Z

T

0

[F (t; R)� F (t; 0)℄dr = 0: (5.172)

In our ase the ux funtion is given by F = ��r

2

J

r

and vanishes at r = 0 and r = R beause

the veloity w vanishes at both boundaries. Consequently

E =

Z

R

0

��r

2

J

t

dr (5.173)

is a onserved quantity.

In order to test the onservation properties of the ode we have evolved the same initial data as
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in the onvergene analysis with the metri �xed at the bakground values. In Fig. 47 we show

E as a funtion of time as alulated with 800 grid points. The quantity is onserved with a

relative auray better than 10

�4

. Even higher auray is obtained for smaller amplitudes of

the initial data. We have thus demonstrated that the ode performs well in the linear as well

as the non-linear regime. The appliability of the ode to a wide range of amplitudes will be

ruial when we study non-linear e�ets in the evolution of eigenmodes in the next subsetion.

5.3.9 Non-linear mode oupling

(a) Measuring the eigenmode oeÆients

We will now use the simpli�ed neutron star model desribed in setion 5.3.7 to study the oupling

of eigenmodes in non-linear evolutions of radial osillations. In order to measure the presene of

the individual eigenmodes in the evolution we reall the Sturm-Liouville problem (5.118) whih

determines the eigenmode solutions in terms of the resaled displaement vetor �. In setion

5.3.3 we have seen that the solutions �

i

form a omplete orthonormal system with respet to

the inner produt de�ned in Eq. (5.122). This property enables us to quantify the ontributions

of the di�erent eigenmodes in the evolution at any given time. We need to alulate the

displaement �(t; r) of a fully non-linear evolution from the fundamental variables Æ� and w.

For this purpose we eliminate � from Eqs. (5.111) and (5.112) and obtain

�

;t

= r

2

w: (5.174)

The initial values of � follow from the initial data whih we provide in the form of an eigenmode

in the veloity �eld w and zero energy density perturbation Æ�. We an see from Eq. (5.130)

that the initial displaement � vanishes as a onsequene. At any time t we an then expand

the non-linear displaement �(t; r) in terms of the eigenmodes

�(t; r) =

X

i

A

i

(t)�

i

(r); (5.175)

where the time dependent oeÆients are given by the inner produt

A

i

(t) = h�(t; r); �

i

(r)i: (5.176)
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Figure 48: The sum of the �rst ten R

i

has been alulated for evolving the seond eigenmode

with an amplitude of 70 m.

In pratie we prefer to alulate the eigenmode oeÆients from the time derivative of this

equation

�A

i

�t

= h�

;t

; �

i

i; (5.177)

where we have dropped the t and r dependene for onveniene. If we substitute Eq. (5.174)

for �

;t

we obtain the �nal result

�A

i

�t

= hr

2

w; �

i

i: (5.178)

We an thus alulate the time derivative of the oeÆients and use the initial values to obtain

the oeÆients at any given time t. In our ase all oeÆients are zero initially beause of the

vanishing of �. The integral appearing in the de�nition of the inner produt is alulated with

the fourth order Simpson method (see for example Press et al. 1989).

It is also interesting to onsider the relative oeÆients de�ned by

R

i

(t) =

h�; �

i

i

h�; �i

; (5.179)

whenever � is a non-zero funtion. If we multiply this equation by A

i

and sum over i, we an
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Table 9: The inner produt h�

i

; �

j

i between the �ve lowest eigenmodes.

�

1

�

2

�

3

�

4

�

5

�

1

1.0 �2:1 � 10

�6

�6:3 � 10

�6

�1:2 � 10

�6

�2:6 � 10

�6

�

2

�2:1 � 10

�6

1.0 �8:0 � 10

�6

�1:5 � 10

�5

�6:3 � 10

�6

�

3

�6:3 � 10

�6

�8:0 � 10

�6

1.0 �1:8 � 10

�5

�2:7 � 10

�5

�

4

�1:2 � 10

�6

�1:5 � 10

�5

�1:8 � 10

�5

1.0 �3:2 � 10

�5

�

5

�2:6 � 10

�6

�6:3 � 10

�6

�2:7 � 10

�5

�3:2 � 10

�5

1.0

use Eq. (5.175) to obtain the relation

X

i

R

i

= 1; (5.180)

whih an be used to hek the ompleteness of the numerially alulated eigenmodes. For

this purpose we have evolved the seond eigenmode with a large amplitude orresponding to

a maximum displaement of 70 m and alulated the sum of the �rst ten weighted oeÆients

R

i

using 600 grid points. The result is shown in Fig. 48 and demonstrates that Eq. (5.180) is

satis�ed to within less than one per ent. This does not only on�rm the ompleteness of the

system of eigenmodes, but also indiates that the energy essentially remains within the lowest

ten eigenmodes. In order to hek the orthonormality we have alulated the inner produts of

the eigenmodes. The results for the lowest �ve eigenmodes are shown in Table 9 and demon-

strate that the orthonormality ondition (5.125) is satis�ed with high auray.

(b) Non-linear oupling between eigenmodes

In order to study the oupling of modes due to non-linear e�ets we have provided initial data

in the form of one veloity eigenmode. The order of the eigenmode j and the amplitude of

the initial data K

j

are free parameters that determine the physial setup. We will speify the

amplitude of the initial perturbation by the maximum value of the eigenmode pro�le of the

displaement vetor � orresponding to the initial veloity perturbation. This is a measure for

the maximum displaement a uid element of the interior of the star will undergo. During the

evolution we alulate the eigenmode oeÆients A

i

(t) with 1 � i � 10 or 15 aording to the

method desribed above. Due to the osillatory harater of the modes, the oeÆients will

also osillate during the evolution. This is shown in Fig. 49 where we plot the oeÆients A

2

(t)

and A

4

(t) for evolving the seond eigenmode. A large amplitude orresponding to a maximum

displaement of 70 m has been used for this alulation and we an learly see the transfer

of energy between the seond and the fourth mode. It is interesting to see that the energy
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Figure 49: The oeÆients A

2

(t) and A

4

(t) obtained for initial data in the form of the seond

eigenmode with an amplitude of 70m.

transferred to the fourth mode does not remain there but instead is periodially passed bak

and forth between the two modes. We observe a qualitatively similar behaviour for the other

eigenmodes, although these are exited less eÆiently. If we want to investigate this oupling

between eigenmodes more systematially, we need to quantify the degree to whih a partiular

mode has been exited in an evolution. For this purpose we will use the maximum value of

the orresponding oeÆient obtained during that evolution. We will refer to these maxima

by A

i

as opposed to A

i

(t) used for the time dependent oeÆients. We have thus evolved

the eigenmodes i = 1, 2 and 3, referred to as ase 1, 2 and 3 from now on, with amplitudes

ranging between 1 m and 100 m. At some stage in the range between about 50m and 100m

we observed the onset of shok formation. The auray of the eigenmode oeÆients resulting

from these evolutions is not lear. In this disussion we have therefore only used amplitudes for

whih no disontinuities are observed. For the numerial runs we have used 3200 grid points

and an integration time of 1500 km. Test runs over signi�antly longer times did not lead to

signi�antly di�erent results for the A

i

whih is ompatible with the periodi exhange of en-

ergy shown in Fig. 49. The high grid resolution on the other hand enables us to measure small

eigenmode oeÆients with good auray.

Case 1:

We start our analysis with ase 1, where the fundamental mode is exited initially. In Fig. 50

we plot the oeÆients A

i

as a funtion of the initial amplitude K

1

for the �rst ten eigenmodes.

We �nd that the oeÆient A

1

inreases linearly with the amplitude K

1

as expeted. A loser

investigation of the higher eigenmode oeÆients, however, reveals the presene of two distint

regimes.

(1) In a weakly non-linear regime for amplitudes up to about 10 m all oeÆients
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Figure 50: The eigenmode oeÆients for the �rst ten eigenmodes are shown as a funtion of

the amplitude K

1

for initial data in the form of the fundamental veloity mode.

A

2

; : : : A

10

inrease quadratially with the amplitude K

1

. Deviations from this

quadrati power law at very small amplitudes are due to the limited numerial

auray in alulating the oeÆients.

(2) At larger amplitudes all eigenmode oeÆients exept for A

2

show a transition

to power laws with larger exponent whih marks a moderately non-linear regime.
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Figure 51: The exitation of eigenmodes has been �tted with quadrati power laws in the range

between K

1

= 1 m and 10 m.

We have illustrated this behaviour in Fig. 51 where the eigenmode oeÆients have been ap-

proximated with quadrati power laws

A

i

= 

i

�K

2

1

: (5.181)

The oupling oeÆients 

i

whih represent the oupling strength in the weakly non-linear

regime have been obtained from least square �ts of quadrati power laws to the eigenmode
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Figure 52: The eigenmode oeÆients A

2

, A

3

and A

4

are �tted with linear ombinations of

power laws aording to Eqs. (5.183)-(5.185).

oeÆients in amplitude ranges between 0:1 m and 10 m. It is interesting to investigate the

dependene of the oupling oeÆients on the order of the eigenmodes. This is shown in the

upper left panel of Fig. 53, where we plot 

i

over the order i � 1. The solid line in this �gure

shows a power law �t for these oupling oeÆients given by



i

= 3:2 � 10

�7

� (i� 1)

�3

: (5.182)

This result is ompatible with the expetation that 

i

! 0 as i!1. Otherwise an in�nite num-

ber of modes would eah be exited with a �nite amount of energy. In the moderately non-linear

regime the eigenmode oeÆients A

3

; : : : ; A

10

show a higher order growth with the amplitude

K

1

. For the most eÆiently exited modes 2, 3 and 4 we have been able to approximate the

eigenmode oeÆients with the following ombinations of power laws

A

2

= 3:6 � 10

�7

�K

2

1

; (5.183)

A

3

= 3:4 � 10

�8

�K

2

1

+ 9:7 � 10

�10

�K

3

1

; (5.184)

A

4

= 1:0 � 10

�8

�K

2

1

+ 1:2 � 10

�11

�K

4

1

: (5.185)

Here the higher order power laws have been obtained from �tting the eigenmode oeÆients

after subtrating the quadrati ontributions. The resulting �ts are shown in Fig. 52. The
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Figure 53: The oupling oeÆients 

i

de�ned in Eq. 5.181 are plotted as a funtion of the mode

number i� 1 for ase 1 in the upper left panel. In the upper right and lower panel we plot the

orresponding oeÆients for ase 2 and 3 as a funtion of the mode number i � 3 and i � 5

respetively. In all ases the oeÆients an be approximated with inverse ubi power laws as

indiated by the solid lines.

higher order ontributions for the higher eigenmodes is rather weak so that it is diÆult to

obtain aurate measurements of the orresponding power law exponents. It is thus not lear

whether the regular pattern suggested by Eqs. (5.183)-(5.185) remains valid for higher modes.

The steepening of the urves in the moderately non-linear regime, however, an be learly seen

in Fig. 51.

Case 2:

We will now address the question to what extent these results remain valid if we initially exite

higher modes. For this purpose we have repeated the numerial analysis by providing initial

data in the form of the seond veloity mode. The resulting eigenmode oeÆients are shown

as a funtion of the amplitude K

2

in Fig. 54. The presene of the two distint regimes is again

learly demonstrated by the �gures and a loser investigation on�rms the quadrati growth
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Figure 54: The eigenmode oeÆients for the �rst ten eigenmodes are shown for initial data in

the form of the seond veloity mode.

of the eigenmode oeÆients in the weakly non-linear regime. This is demonstrated in Fig. 55

where the orresponding quadrati power law �ts are shown for the eigenmodes. We also observe

a similar dependene of the quadrati oupling oeÆients 

i

on the mode number. In ase 1

we observed a power law relation given by Eq. (5.182) between the oeÆients 

i

and the mode

number i � 1. In ase 2 we an also approximate the oeÆients 

i

reasonably well with an

inverse ubi power law if we use the number i� 3 instead whih is demonstrated in the right

panel of Fig. 53. The lower order modes 1 and 3 do not �t into this pattern and we shall
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Figure 55: The exitation of eigenmodes in ase 2 has been �tted with quadrati power laws in

the range between K

1

= 0:1 m and 10 m.

readdress their behaviour in the quadrati regime below when we disuss ase 3.

Apart from these similarities there are some interesting di�erenes between ase 1 and ase 2:

(1) The transition from the weakly to the moderately non-linear regime ours at smaller

amplitudes than in ase 1. This is partiularly pronouned in the ase of mode 6 (see

Fig. 55).

(2) The regular pattern observed in ase 1 in the moderately non-linear regime for the strongly

exited modes 2, 3 and 4, whih is expressed in Eqs. (5.183)-(5.185), is now being observed
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Figure 56: In the upper panel we show the higher order power law ontributions of Eqs. (5.186)-

(5.189) whih �t the even eigenmode oeÆients rather well in the moderately non-linear regime.

The lower panel shows the resulting �ts obtained from the sum of the quadrati and the higher

order power laws aording to the same equations.

for the eigenmodes of even order 2n. We obtain exellent �ts for the data if we model the

even eigenmode oeÆients with the following linear ombinations of power laws.

A

4

= 1:9 � 10

�6

�K

2

1

; (5.186)

A

6

= 2:5 � 10

�8

�K

2

1

+ 8:7 � 10

�9

�K

3

1

; (5.187)
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Table 10: The quadrati oupling oeÆients 

i

for the lower modes in ase 3.

i 

i

1 2:0 � 10

�7

2 1:2 � 10

�7

4 6:7 � 10

�8

5 3:0 � 10

�8

A

8

= 4:9 � 10

�9

�K

2

1

+ 6:2 � 10

�11

�K

4

1

; (5.188)

A

10

= 1:8 � 10

�9

�K

2

1

+ 4:9 � 10

�13

�K

5

1

: (5.189)

In Fig. 56 we show the urves resulting from the higher order power laws as well as

those orresponding to the linear ombinations. For the odd modes the higher order

ontributions are rather small so that we annot aurately measure the orresponding

power law indies. The steepening of the urves and thus the onset of the moderately

non-linear regime, however, is learly visible.

(3) Whereas the quadrati oupling oeÆients 

i

shown in the right panel of Fig. 53 show a

ontinuous derease with the order of the mode starting with mode 4, a lear preferene

of the seond mode to ouple to modes of even order 2n is observed in the moderately

non-linear regime. This is indiated by the rather eÆient oupling to mode 4 and the

signi�antly steeper inrease of the eigenmode oeÆients A

6

, A

8

and A

10

for larger

amplitudes K

2

in Fig. 55.

(4) A small attening of the even eigenmode oeÆients at large amplitudes in Fig. 56 may

indiate the onset of saturation e�ets. A possible mehanism for saturation is the forma-

tion of disontinuities. As we have already mentioned we have hosen an amplitude range

in whih no shok formation is observed. At the high end of our amplitude range, it may

be possible, however, that similar dissipative e�ets due to the strong non-linearity start

having an e�et on the oupling of eigenmodes.

Case 3:

Next we onsider ase 3 where we perturb the star with the third veloity mode. The fun-

damental observations we have made in the previous two ases are on�rmed by the results

in this ase. In the weakly non-linear regime all eigenmode oeÆients (exept for A

3

) grow

quadratially with the amplitude K

3

. The orresponding quadrati oupling oeÆients an
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Figure 57: The eigenmode oeÆient A

3

, A

6

,: : : ,A

15

are shown for ase 3 together with the

resulting �ts aording to Eqs. (5.190)-(5.193).

one more be approximated with a power law with exponent �3. We �nd, however, that the

relevant mode number is now i� 5. This behaviour is graphially illustrated in the lower panel

of Fig. 53 where the oupling oeÆients are shown together with the power law approximation.

The results of this �gure suggest the following regular pattern: For initial data in the form of

eigenmode j the quadrati oupling oeÆients starting with mode 2j are well approximated

by an inverse ubi power law of a relative mode number i + 1 � 2j whih is 1 for mode 2j, 2

for mode 2j + 1 and so on.

We still have to analyse the quadrati oupling oeÆients of the modes below 2j. In ase 1 and

2 we did not have enough data to derive any results for these modes. For ase 3 we have listed

the orresponding oeÆients 

i

in Table 10. The oeÆients 

i

are approximately redued by a

fator of 2 eah time the mode number is inreased whih may indiate an exponential derease

of the quadrati oupling oeÆients for the low order modes. This is only a vague onlusion

from a small data set, however, and needs to be on�rmed by studies of higher eigenmodes.

In the moderately non-linear regime we have seen for ase 2 a preferred oupling to modes with

an even order 2n. In analogy we �nd that the third eigenmode ouples more eÆiently to modes

of order 3n for larger amplitudes. Again we an approximate the results with good auray
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with ombinations of two power laws analogous to Eqs. (5.186)-(5.189)

A

6

= 1:2 � 10

�6

�K

2

3

; (5.190)

A

9

= 0:9 � 10

�8

�K

2

3

+ 6:5 � 10

�9

�K

3

3

; (5.191)

A

12

= 2:2 � 10

�9

�K

2

3

+ 4:6 � 10

�11

�K

4

3

; (5.192)

A

15

= 7:8 � 10

�10

�K

2

3

+ 4:5 � 10

�13

�K

5

3

: (5.193)

We reognise the same pattern of inreasing integer power law indies in the higher order terms

that we have already found in ase 1 and 2. These results are graphially illustrated in Fig. 57.

Again the higher order ontributions in the other eigenmodes is learly present but too weak

to failitate an aurate measurement of the exponents.

We onlude the study of non-linear mode oupling with a summary of the key results.

(1) We learly observe two distint regimes in the non-linear oupling of eigenmodes. In the

weekly non-linear regime, normally up to amplitudes of several metres, all eigenmode

oeÆients grow quadratially with the amplitude K

j

. In the moderately non-linear

regime we observe a steeper inrease of the oeÆients A

i

.

(2) In the quadrati regime the oupling oeÆients 

i

generally derease with inreasing

order of the eigenmodes. If the initial perturbation is given in the form of mode j, we an

model the behaviour of the quadrati oupling oeÆients with an inverse ubi power

law of the mode number starting with mode 2j. The oupling to lower modes does not

obey the same pattern, but we also observe a derease of the 

i

with inreasing mode

number for these modes. This derease may have exponential harater.

(3) In the moderately non-linear regime an initially present mode j shows a preferene to

ouple to modes of order n � j where n � 2 is an integer number. In these ases we an

aurately model the dependene of the eigenmode oeÆients on the amplitude K

j

with

the sum of a quadrati and a higher order power law with exponent n: A

i

= 

i

�K

2

j

+d

i

�K

n

j

for i = n � j.

(4) In some ases we observe a attening of the eigenmode oeÆients at amplitudes of about

50m whih may indiate the onset of saturation.
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5.3.10 Disussion of the non-linear mode-oupling

In the previous setion we have studied the oupling of eigenmodes due to non-linear e�ets by

evolving a single eigenmode with varying amplitude. Conerning the transfer of energy to other

modes we have found two distint regimes, a weakly non-linear regime where the exitation

of modes grows quadratially with the initial amplitude and a moderately non-linear regime,

where this inrease an be reasonably well desribed by power laws of higher order.

In the analyti study of non-linear mode oupling one normally views the eigenmode oeÆients

as harmoni osillators and the non-linear interation between eigenmodes is represented in the

form of driving terms whih are quadrati or of higher order in the amplitudes (see for example

Van Hoolst 1996)

d

2

A

i

dt

2

+ !

2

i

A

i

= 

jk

i

A

j

A

k

+ d

jkl

i

A

j

A

k

A

l

+ : : : ; (5.194)

where the 

jk

i

, d

jkl

i

; : : : are the quadrati, ubi and higher order oupling oeÆients and

summation over j; k; l is assumed. In our analysis the initial data onsists in one isolated

eigenmode j, so that the right hand side an be approximated by 

i

A

2

j

+ d

i

A

3

j

+ : : : In analyti

studies this series expansion is normally trunated at seond or third order. In view of our

results the omission of higher order terms seems to be justi�ed in the weakly non-linear regime,

where our fully non-linear simulations on�rm that quadrati terms in the initial amplitude

dominate the oupling between eigenmodes. This is no longer true, however, in the moderately

non-linear regime, where higher order terms are more important. In partiular the regular

pattern suggested for example by Eqs. (5.186)-(5.189) indiates that the exitation of higher

order modes is dominated by inreasingly higher order powers of the initial amplitude. It is not

lear how this behaviour an be modelled in the framework of a �nite series expansion of the

type (5.194). It rather seems that the use of fully non-linear methods suh as the numerial

tehnique desribed in this work is neessary in order to obtain a omprehensive desription

of the oupling between eigenmodes in the moderately non-linear regime. In terms of the

maximum displaement of uid elements in the star this orresponds to initial amplitudes as

low as a ouple of metres.

We have also observed that given an initial mode j the oupling to modes n � j is partiularly

eÆient in the moderately non-linear regime. We interprete this as a resonane e�et, whih

we illustrate in the simple ase of a fored osillator

d

2

A

i

dt

2

+ !

2

i

A

i

= F sin
t; (5.195)
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where 
 is the frequeny and F the amplitude of the external fore. The partiular integral of

this ordinary di�erential equation is

A

i

(t) =

F

!

2

i

� 


2

sin
t; (5.196)

whih implies resonane if !

i

= 
. If we assume that resonane ours for any integer multiple

of the frequeny 
 in the general non-linear ase, we an shematially write the eigenmode

oeÆients in the form

A

i

(t) =

X

n

F

n

!

2

i

� (n
)

2

; (5.197)

where the F

n

may depend on the frequenies. The analyti study of non-linear mode oupling

up to ubi order leads to eigenmode oeÆients whih resemble this pattern [see for example

Eqs. (18), (19) of Van Hoolst 1996℄. In our ase the external fore is provided by the non-linear

oupling to the initial mode j, so that 
 = !

j

. We therefore obtain resonane in Eq. (5.197)

if !

i

= n!

j

. As an be seen for example in Fig. 40, the eigenfrequenies of radial neutron

star osillations are fairly equally spaed in the frequeny domain with the exeption of the

fundamental mode and we an reasonably well approximate !

i

� (i!

j

)=j for i; j � 2. The

ondition for resonane then beomes

i = n � j; (5.198)

whih is exatly the relation we have observed in setion 5.3.9.

From the relativisti point of view the non-linear oupling of eigenmodes in the weak and mod-

erately non-linear regime is of partiular interest in the disussion of unstable modes of rotating

neutron stars. The underlying priniple of these unstable osillation modes is the inrease in

amplitude of the osillation due to the emission of gravitational waves. The inreased amplitude

in turn gives rise to stronger gravitational radiation and so on. The onservation of energy is

ensured in this ase by the spin-down of the neutron star and the resulting derease of rota-

tional energy whih sets a natural upper limit on this run-away e�et. The physial mehanism

whih failitates this remarkable instability is known as the CFS-instability (Chandrasekhar

1970, Friedman and Shutz 1978). In order for a neutron star osillation mode to be subjet

to the CFS-instability two onditions must be satis�ed: (1) the mode must be retrograde with

respet to the star but prograde with respet to a distant inertial observer and (2) the energy

loss in the rotating frame due to dissipative e�ets must be smaller than the amount of energy
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gained from the gravitationally driven instability. The partiular importane of the so-alled

r-modes in this respet arises from the fat that the dominating l = m = 2 r-mode satis�es

the �rst CFS-ondition for arbitrarily small values of the angular frequeny of the neutron star

(Andersson 1998). One of the most important questions raised in onnetion with the r-modes

onerns the eÆieny with whih energy is dissipated for example due to visosity or non-linear

e�ets.

Considering the gradual inrease in the osillation amplitude, it is important to understand

how the instability of the mode is a�eted in the weakly non-linear regime. To our knowledge

the numerial studies presented in this work provide the �rst fully non-linear time evolutions

of neutron star osillations with high auray for amplitudes going all the way down to the

weakly non-linear regime. Our results may therefore pave some of the way towards under-

standing non-linear e�ets in a wider lass of neutron star osillations. In partiular we have

managed to quantify the transfer of energy from low into higher eigenmodes. The piture that

emerges from these evolutions is that only a rather small fration of energy is shifted away from

the low eigenmodes. In partiular the results shown in Fig. 49 indiate that the energy shifted

towards higher eigenmodes does not aumulate in time but is rather transferred bak and

forth between the initially present and the higher mode. Correspondingly we do not observe

an eÆient asade of energy into higher modes. It is not lear, however, to what extent this

piture will hange if the energy residing in the higher order modes is gradually dissipated. In

the ontext of r-modes it is expeted that the energy in higher order modes is dissipated on a

muh shorter timesale than that of the dominating l = m = 2 mode. The numerial tehniques

and the ode developed in this work may failitate a orresponding study in the framework of

radial osillations by introduing an arti�ial damping of higher order modes and an external

fore whih drives the fundamental mode. One may then look for steady state situations arising

from this model, where the amount of energy transfered to higher modes and thus dissipated

equals that gained from the external driving mehanism.

From a numerial point of view we emphasise the new perturbative approah whih enabled

us to obtain highly aurate fully non-linear evolutions over a large range of amplitudes. This

tehnique an be applied for any physial problem where there exists a non-trivial stati limit.

The dynami evolution an always be onsidered a �nite perturbation of the stati ase and a

orresponding perturbative formulation will provide a numerial auray that is determined by

the amplitude of the perturbation rather than the stati bakground. We expet this method

to be partiularly e�etive in higher dimensional evolutions where the grid resolution is rather

limited by omputational osts and the ensuing residual error arising from bakground terms
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in a non-perturbative formulation will be more signi�ant.
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5.4 Radial osillations in a Lagrangian formulation

In the previous setion we have seen that an Eulerian desription of radial osillations enoun-

ters diÆulties at the stellar surfae for several reasons. For ertain equations of state the

eigenmode pro�les predited by the linearized theory result in a diverging energy density per-

turbation. A purely numerial problem arises from the movement of the stellar surfae with

respet to the numerial grid. Highly sophistiated tehniques may be required to adequately

desribe the surfae of a neutron star in Eulerian oordinates and it is not lear to what extent

these will lead to a fully satisfatory performane in the linear regime where the exat solution

is known to high auray and failitates a quantitative test for the ode. It is interesting to

see that these problems vanish immediately one the problem is desribed in a formalism where

the oordinates follow the movement of the uid elements. Even though it is not obvious how

to generalise a Lagrangian approah to senarios in two or three spatial dimensions, it still

seems to be the natural hoie for the 1-dimensional ase. Lagrangian odes have often been

based on the formulation of May and White (1966) and (1967) who following Misner and Sharp

(1964) use a vanishing shift vetor and de�ne the radial oordinate in terms of the interior rest

mass. In order to failitate a simple omparison with the Eulerian ode disussed in setion

5.3, however, it will be onvenient for us to use as similar a gauge hoie to the Eulerian ase

as possible. For this purpose we will follow Shinder et al. (1988) and use a Lagrangian gauge

in ombination with the polar sliing ondition whih is also implemented in the Eulerian ode

(f. setion 5.3.1). As a partiularly useful onsequene the singularity avoiding properties of

this ondition in ombination with the Lagrangian gauge make this ode highly suitable for

studying spherially symmetri gravitational ollapse. We will not exhaustively study this type

of senarios in this work, but will use the analyti solution by Oppenheimer and Snyder (1939)

whih desribes the ollapse of a homogeneous dust sphere for testing the ode.

5.4.1 The equations in the Lagrangian formulation

The derivation of the Lagrangian equations for a dynami spherially symmetri neutron star

was largely inspired by the work of Shinder et al. (1988). We will, however, slightly deviate

from their approah and work with a di�erent set of variables and equations.

We start by onsidering the line element of a spherially symmetri spae time in polar sliing

and Lagrangian gauge. As a result of the polar sliing ondition, we are able to hoose the same

time oordinate t as in the Eulerian ase. The radial oordinate x will label the uid elements

and generally di�er from the areal radius r whih is intrinsially not omoving with the matter.
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Finally we hoose standard angular oordinates � and � as above. Below we will see that the

polar sliing ondition implies a non-vanishing shift vetor so that the line element beomes

ds

2

=

 

�

^

�

2

+

^

��

2

r̂

2

;x

!

dt

2

+ 2�dt dx+

r̂

2

;x

^

�

dx

2

+ r̂

2

(d�

2

+ sin

2

�d�

2

): (5.199)

It turns out to be onvenient for our disussion if we introdue the variables

w =

r̂

;t

^

�

; (5.200)




2

=

^

�� w

2

; (5.201)

m̂ =

r̂

2

(1�

^

�); (5.202)

where the veloity is idential to that used in the Eulerian ase. As before we use the \hat" to

distinguish between the time dependent variables and their ounterparts in the stati ase. We

note that we need to distinguish between the time dependent areal radius r̂ and the stati value

r, sine the areal radius orresponding to the position of a uid element is a dependent variable

and will generally vary with time. In the Eulerian ase the areal radius was a oordinate and

therefore intrinsially independent of time. If we ompare the Lagrangian line element (5.199)

with the Eulerian one given by Eq. (5.77) we therefore have to use the time dependent r̂ in the

latter line element instead of r. The oordinate transformation relating the two line elements

is desribed by

r̂ = r̂(t; x): (5.203)

The transformation law for the metri omponents orresponding to the transformation from

oordinates x

�

= (t; x; �; �) to x

0

�

= (t; r; �; �) is given by

g

0

��

=

�x

�

�x

0

�

�x

�

�x

0

�

g

��

; (5.204)

and leads to the two non-trivial equations

� = r̂

;x

r̂

;t

�̂

2

; (5.205)

^

� =

1

�̂

2

: (5.206)
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As a onsequene the shift vetor � is related to the omponents of the Lagrangian metri by

� =

^

�

w r̂

;x

^

�

: (5.207)

In terms of the extrinsi urvature de�ned in Eq. (2.19) this relation an be written as K

�

�

=

K

�

�

= 0 and we have reovered the polar sliing ondition. The non-vanishing shift vetor

(5.207) is the prie we have to pay for keeping the polar sliing ondition in the Lagrangian

gauge.

As far as the matter is onerned, we use again a single omponent perfet uid and thus the

energy momentum tensor given by Eq. (5.78). Sine the uid elements do not move with respet

to the radial oordinate x, the 4-veloity has zero spatial omponents and is determined by the

normalisation u

�

u

�

= �1

u

�

=

 

p

^

�

^

�


; 0; 0; 0

!

: (5.208)

The resulting �eld equations G

��

= 8�T

��

an be written as
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; (5.210)

m̂
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= �4�r̂

2

^

�w

^

P : (5.211)

Similarly the onservation of energy and momentumr

�

T

�

�

= 0 leads to two evolution equations

for the matter variables
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and the system is losed by the polytropi equation of state (5.79). It is worth pointing out

that the appearane of the time derivative in the �eld equation (5.211) does not ontradit

the absene of gravitational degrees of freedom in spherial symmetry. This equation an be

shown to be a onsequene of the onstraints (5.209), (5.210) and the matter equations (5.212),

(5.213). In this sense the degrees of freedom still reside in the matter variables and the metri is
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determined at eah time irrespetive of its history. In pratie, however, we will use the rather

simple equation (5.211) to evolve the variable m̂ instead of evolving �̂ via the matter equation

(5.212).

If we onsider the stati limit of the system of equations (5.209)-(5.213) we expet to reover the

Tolman-Oppenheimer-Volko� equations (5.48)-(5.51). That this is indeed the ase an be seen

if we set all time derivatives inluding the veloity w to zero and assume that x is idential to

the oordinate x we used in the stati ase. The seond ondition an always be satis�ed sine

the uid elements are not moving and an be labelled by the areal radius of their position or

the resaled oordinate y de�ned in Eq. (5.47). Then Eq. (5.210) diretly redues to Eq. (5.11)

or the transformed version thereof expressed in terms of the oordinate y. From Eq. (5.206)

we onlude that � = 1=�

2

and the onstraint (5.209) beomes idential to (5.49). Finally the

matter equation (5.213) redues to Eq. (5.51) and the evolution equations (5.211) and (5.212)

vanish identially.

5.4.2 The linearized evolution equations

We have seen that the stati limit of the evolution equations (5.209)-(5.212) is given by the

TOV equations. We an therefore linearise the dynami equations around this bakground and

ompare the results with the Eulerian ase desribed in setion 5.3.3. In order to distinguish

between Eulerian and Lagrangian perturbations we will use a apital � in the Lagrangian ase.

The only exeption is the radial displaement whih is idential in both formulations so that

we keep the variable name �.

We start the linearisation with the de�nition of the radial veloity w (5.200). In terms of the

radial displaement this equation beomes

w =

�

;t

�

: (5.214)

We note that the bakground value of the lapse � appears in the denominator instead of the

time dependent

^

�. In the same way we will neglet higher order terms in the other equations.

If we substitute this expression for w in the evolution equation (5.211) for m and integrate over

time, we obtain

�m = �4�r

2

P�: (5.215)

The onstant of integration vanishes beause a zero displaement � of the uid elements implies

�m = 0. We an use this expression for �m in the de�nition (5.202) to obtain the result for



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 179

the auxiliary variable

^

�

�� = 8�rP� +

�

r

(1� �): (5.216)

The energy density perturbation then follows from substituting Eqs. (5.214)-(5.216) in the evo-

lution equation (5.212) and integrating over time. With the onstant of integration vanishing

as before the result is

�� =

(�+ P )

r

;x

�

�r

2

�

�

;x

: (5.217)

From the de�nition of the speed of sound we an alulate the pressure perturbation

�P = C

2

��: (5.218)

If we substitute the results (5.214)-(5.218) in the evolution equation (5.213) we get exatly the

seond order di�erential equation (5.113) of the Eulerian ase with the oeÆient funtions

(5.114)-(5.116). No substitution for �� is neessary here, beause all terms ontaining ��

drop out by virtue of the TOV bakground equations. Writing the displaement as a produt

�(x)f(t) we obtain again harmoni time dependene and �nally arrive at the ordinary di�erential

equation (5.118) so that we an use the whole mahinery developed in setion 5.3.3 to alulate

the eigenmodes. It is interesting, however, to ontrast Eq. (5.217) for the Lagrangian �� with

the Eulerian analogue Eq. (5.130). We have seen in setion 5.3.3 that the extra term in the

Eulerian relation leads to the problemati asymptoti behaviour of Æ� at the surfae. No suh

problem ours in the Lagrangian ase whih thus provides a self-onsistent way of deriving the

linearized equations.

5.4.3 The equations for the numerial implementation

The Lagrangian evolution of a dynami neutron star in spherial symmetry is desribed by

the system of equations (5.200), (5.209)-(5.211), (5.213), where the auxiliary variables

^

� and


 are de�ned by Eqs. (5.201) and (5.202). This hoie of variables and equations, however,

did not lead to an entirely satisfatory performane of the ode. This beame most obvious

in the simulation of the Oppenheimer-Snyder dust ollapse where the energy density showed

an inreasing deviation from the analyti solution near the entre of the star. When the dust

sphere had ollapsed lose to its Shwarzshild radius, the deviation was larger than 10%. In

order to understand this inauray, we onsider Eq. (5.210) whih relates the energy density to
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the mass. If we solve this equation for �̂ we see that the mass appears in the form m̂

;x

=r̂

2

, whih

will be of the order O(1) near the origin. The seond order auray of the �nite di�erening

sheme we have used, however, implies that the variable m̂ is known with a loal error O(�x

3

)

only and onsequently the numerial derivative m̂

;x

has an error O(�x

2

). Near the origin the

radius r̂ is of the same order of magnitude as �x and the error of m̂

;x

=r̂

2

and thus the energy

density �̂ is large. This problem is a onsequene of the r̂

3

behaviour of the mass m̂ near the

origin ombined with the strong variation of the variables in the dust ollapse and persists in a

perturbative formulation. In the numerial evolution we therefore use the variable

^

N =

m̂

r̂

2

; (5.219)

instead of the mass m̂. The Lagrangian equations (5.200), (5.209)-(5.211), (5.213) then beome

^

�


2

^

�

;x

� r̂

;x

^

�

h




2

^

N + 4�r̂(w

2

�̂+

^

�

^

P )

i

= 0; (5.220)

r̂


2

^

N

;x

+ 2


2

r̂

;x

^

N � 4�r̂r̂

;x

(

^

��̂+ w

2

^

P ) = 0; (5.221)

r̂

^

N

;t

+ 2

^

�w

�

^

N + 2�r̂

^

P

�

= 0; (5.222)

r̂

;t

�

^

�w = 0; (5.223)

^

�


4

^

P

;x

+ r̂

;x

w


2

^

P

;t

+ r̂

;x

(�̂+

^

P )

h

^

�w

;t

+

^

�(

^

�� 2w

2

)(

^

N + 4�r̂

^

P )

i

; (5.224)

where

^

� is now de�ned by

^

� = 1� 2

^

Nr̂: (5.225)

In the stati limit these equations redue to the TOV equations

��

;x

� r

;x

�(N + 4�rP ); (5.226)

rN

;x

+ r

;x

(2N � 4�r�) = 0; (5.227)

�P

;x

+ r

;x

(�+ P )(N + 4�rP ) = 0; (5.228)

� = 1� 2Nr: (5.229)
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In order to derive a fully non-linear perturbative formulation, we deompose the time dependent

quantities into stati bakground ontributions and time dependent perturbations

r̂(t; x) = r(x) + �(t; x); (5.230)

^

�(t; x) = �(x) + ��(t; x); (5.231)

^

N(t; x) = N(x) + �N(t; x); (5.232)

^

�(t; x) = �(x) + ��(t; x); (5.233)

�̂(t; x) = �(x) + ��(t; x): (5.234)

With these de�nitions the fully non-linear perturbative version of Eqs. (5.220)-(5.224) beomes

^

�

2

��

;x

+��(2� +��)�

;x

� (�

;x

�� + r̂

;x

��� + r̂

;x

^

���)(N + 4�rP )

+ w

2

h

�

^

�

^

�

;x

+ r̂

;x

^

�(

^

N � 4�r̂�̂)

i

� r̂

;x

^

�

^

� [�N + 4�(�P + r̂�P )℄ = 0;

(5.235)

� w

2

(r̂

^

N

;x

+ 2r̂

;x

^

N + 4�r̂r̂

;x

^

P ) + ��(r̂

^

N

;x

+ 2r̂

;x

^

N � 4�r̂r̂

;x

�̂)

+ � [�N

;x

+ r̂�N

;x

+ 2�

;x

N + 2r̂

;x

�N � 4�(��r

;x

+ r̂�

;x

�+ r̂r̂

;x

��)℄ = 0;

(5.236)

r̂

^

N

;t

+ 2

^

�w(

^

N + 2�r̂

^

P ) = 0; (5.237)

�

;t

�

^

�w = 0; (5.238)

^

�(�2

^

�w

2

+ w

4

)

^

P

;x

+ r̂

;x

w


2

^

P

;t

+ (�̂+

^

P )r̂

;x

h

^

�w

;t

� 2

^

�w

2

(

^

N + 4�r̂

^

P )

i

+ (��� +

^

���)

h

^

�

^

P

;x

+ (�̂+

^

P )r̂

;x

(

^

N + 4�r̂

^

P )

i

+ ��

n

��P

;x

+

^

��P

;x

+

h

(��+�P )r

;x

+ (�̂+

^

P )�

;x

i

(N + 4�rP ) + (�̂+

^

P )r̂

;x

(�N + 4��P + 4�r̂�P )

o

= 0:

(5.239)

This is the �nal system of equations used in the numerial implementation.
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5.4.4 Initial data and boundary onditions

In order to numerially evolve the system of partial di�erential equations (5.235)-(5.239) we

have to speify initial data and boundary onditions. We will start with the initial data.

In the Eulerian ase we have determined the physial setup by providing initial data for the

matter variables �̂ and w. This gave us energy density and veloity at eah radial position

r̂. In order to provide the same information in the Lagrangian ase it is not suÆient to give

initial data in the form of �̂(x) and w(x) beause the meaning of the spatial oordinate x is

not determined at this stage. Indeed it an easily be seen that the system of equations (5.220)-

(5.224) is invariant under any transformation x ! �x(x) whih orresponds to a relabelling of

the uid elements. Consequently we also need to establish a relation between the Lagrangian

oordinate x and the areal radius r̂ on the initial slie. The initial data for r̂(x) serve this

purpose. Alternatively this additional requirement beomes obvious if we onsider the struture

of the system (5.220)-(5.224). These equations ontain the time derivatives of r̂, w,

^

N and

^

P .

In addition to the lapse funtion

^

� only one of these quantities is determined by the onstraint

equations (5.220), (5.221). The remaining three variables follow from the time evolution and

thus require the spei�ation of initial data. In the perturbative formulation the bakground

funtions r(x), �(x), N(x) and �(x) follow from the solution of the TOV equations and we

presribe initial data for the perturbations �, w and ��. The values of �N and �� are then

alulated from the onstraint equations (5.235) and (5.236). For this purpose we use an impliit

seond order sheme based on the �nite di�erening given for these equations in appendix A.

The spei�ation of boundary onditions, in partiular at the stellar surfae, turned out to be

the most problemati part in the Eulerian formulation of the dynami star. In ontrast the

boundary onditions are well de�ned in the Lagrangian ase. At the entre we demand

� = 0; (5.240)

w = 0; (5.241)

�N = 0: (5.242)

The �rst two onditions guarantee that the entre of the star does not move whih immediately

follows from the spherial symmetry and the third ondition avoids the appearane of a onial
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Figure 58: The stenils used for the �nite di�erening of Eqs. (5.235)-(5.239).

singularity. At the surfae we require

�� = 0; (5.243)

^

�

2

= 1� 2

^

Nr̂; (5.244)

whih follows from the de�nition of the surfae and the mathing to an exterior Shwarzshild

metri. If K is the number of grid points used, the �nite di�erening of the evolution equations

(5.235)-(5.239) results in 5K � 5 algebrai relations between the 5K funtion values. The

boundary onditions (5.240)-(5.244) provide the remaining 5 relations to determine the evolution

and no additional treatment of boundary values is required.

5.4.5 The �nite di�erening of the equations

We numerially solve the system of partial di�erential equations (5.235)-(5.239) by using an

impliit seond order in spae and time �nite di�erening sheme. The partiular hoie of

stenils has been guided by the presene of derivatives in the individual di�erential equations.

This is illustrated in Fig. 58 where the grid points k and k + 1 are shown for the time levels n

and n+1. The �lled irles indiate grid points that have been used for the �nite di�erening,

the rosses those points whih have not been used. The onstraint equations (5.235) and (5.236)

ontain spatial derivatives only. It is therefore suitable to use two neighbouring grid points on

the new time slie n + 1. In ontrast Eqs. (5.237) and (5.238) ontain time derivatives only

and we use two grid points at spatial position k + 1 on neighbouring time slies for the �nite

di�erening. Both kinds of derivatives are present in Eq. (5.239) and we need to use all four

grid points as a onsequene. Fig. 58 also illustrates an extra option that has been inluded

in the �nite di�erening. In the ase of the Oppenheimer-Snyder dust ollapse it turns out

to be neessary to interpret the values of the energy density �

n

k

, ��

n

k

as ell averages and

orrespondingly use a staggered grid for these variables. This is indiated by the empty irles

in Fig. 58. In the �nite di�erening equations we will therefore introdue a parameter � whih
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allows us to swith between a staggered and the \normal" grid for � and ��. The staggering,

however, is only needed for the dust ollapse and will not be used when we simulate neutron

stars.

The resulting �nite di�erene equations are listed in appendix A together with the additional

relations we use to alulate auxiliary funtions and derivatives of the bakground variables.

The parameter � will be zero in all ases exept for the simulation of the Oppenheimer-Snyder

dust ollapse, where we will use the staggered grid for the energy density and set � = 1. Before

we turn our attention towards solving this system of algebrai equations, we need to omment

on some of its properties.

(1) If we use the staggered grid to alulate the energy density, the outer boundary

ondition (A.35) is only a formal ondition beause ��

K

deouples from the

remaining 5K�1 variables. In the analysis of the dust ollapse we will therefore

use the interior values ��

k

for k = 1; : : : ;K � 1 only.

(2) We also note that the �nite di�erene expression (A.25) for ��

;x

is only a �rst

order aurate approximation if the staggered grid is used for the energy density.

This does not a�et the auray of the numerial sheme, however, sine this

derivative appears in the form of the pressure gradient �P

;x

only in Eq. (5.239).

The only senario where we use the staggering is the dust ollapse, where the

pressure and thus its gradient vanish identially.

(3) Finally we note that the �nite di�erening sheme used here slightly di�ers from

that used for the evolution of osmi strings in setion 4.4.3. The sheme used

here was partly inspired by the work of Shinder et al. (1988) and partly re-

sulted from attempts to eliminate numerial noise that we enountered during

the development of the ode. It turned out, however, that this noise originated

from the numerial inauray assoiated with the r̂

3

behaviour of the variable

m̂ we disussed above. We have no reason therefore to question the appliability

of the Crank-Niholson sheme desribed in setion 2.3.6.

In order to solve the system of 5K non-linear algebrai relations we use the Newton-Raphson

method desribed in setion 2.3.5. The initial guess is given by the values on the previous time

slie and onvergene is typially ahieved after three iterations.

5.4.6 Testing the ode

In order to hek the performane of the ode we subjet it to three independent tests. As

in the Eulerian ase, we will ompare the numerial results with the approximative analyti
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solution obtained from the linearized equations of a dynami spherially symmetri neutron star.

Seondly we will test the onvergene properties of the ode in the non-linear regime. Finally

we alulate the deviation of the numerial results from the analyti solution by Oppenheimer

and Snyder (1939) whih desribes the ollapse of a homogeneous dust sphere.

We start by testing the performane of the ode in the linear regime. In the Eulerian analysis

we have seen that the eigenmodes for stellar models with polytropi indies  > 2 lead to a

diverging energy density perturbation at the surfae and thus ould not be used for a time

evolution. We have seen, however, that this divergene results from a oordinate singularity

at the stellar surfae and the Lagrangian energy density perturbation is well behaved for any

polytropi index. It is tempting therefore to use a stellar model with a large polytropi index

to test the performane of the Lagrangian ode in the linear regime. We hoose a model

with polytropi exponent  = 3:0, polytropi fator K = 2 � 10

5

km

�2

and entral density

�



= 2:2 � 10

15

g=m

3

. This is the third model of Table 6 where we ompared our results of the

eigenmode frequenies with those of Kokkotas and Ruo� (2001).

In general we have ahieved better performane with the Lagrangian ode if the outer boundary

ondition � = 0 is satis�ed exatly. In the remainder of the Lagrangian disussion we will

therefore use the relaxation method desribed in setion 5.2.2 to alulate the TOV bakground.

Unless spei�ed otherwise we will use the resaled oordinate y for this alulation and the time

evolution and thus set r

;x

= C.

The next step onsists in alulating the eigenmode pro�les for the variables �, w and ��. These

results enable us to speify initial data and alulate the analyti solutions. In this ase the

initial perturbation of the star onsists in a displaement � of the uid elements orresponding

to the fundamental mode with a surfae amplitude of about 5 m. The initial veloity is set

to zero and the energy density orresponding to this eigenmode follows from Eq. (5.217). The

remaining initial variables are alulated from the onstraint equations (5.235), (5.236). The

resulting data on the initial slie are then evolved in time aording to the method desribed in

the previous setion. The analyti solution for the fundamental variables �, w, �� is given by

�(t; x) = �

1

(x) os!t; (5.245)

w(t; x) = �w

1

(x) sin!t; (5.246)

�� = ��

1

(x) os!t; (5.247)
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Figure 59: The left panels show the time evolution of ��, � and w obtained for 1600 grid points.

The initial perturbation is given as the fundamental mode in the displaement vetor �. The

right panels show the deviation from the exat solution of the linearized equations.

where ! is the frequeny derived from the eigenmode alulation. In Fig. 59 we show the nu-

merial results obtained for 1600 grid points together with their deviation from the harmoni

solutions. These results show that the ode reprodues the analyti solution with a relative a-

uray of about 10

�4

. For presentation purposes the time evolution is shown up to t = 500 km

only. No signi�ant loss of auray has been observed for longer evolutions.

We have also ompared the frequeny spetrum resulting from time evolutions with the orre-

sponding preditions by the eigenmode alulation. For this purpose we have used the same

stellar model as in the previous test as well as model 1 of Table 3 whih has a polytropi index

 = 1:75. In both ases the initial perturbation is given by the sum of the �rst ten eigenmodes
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Figure 60: Frequeny spetra obtained for stellar models with polytropi indies  = 1:75 (left)

and 3.0 (right). The initial data onsists of a displaement � given by the sum of the �rst 10

eigenmodes. The vertial bars indiate the frequenies predited by the eigenmode alulations.

in the displaement �. The ombined amplitude is about 10 m in both ases, so that the

deviation from the linear approximation should again be very small. In Fig. 60 we show the

Fourier spetra of the entral energy density perturbation ��(t; 0) obtained for time evolutions

over 1500 km using 600 grid points. The vertial bars indiate the frequenies predited for the

�rst 10 eigenmodes and oinide well with the peaks in the power spetra.

In order to test the performane of the ode in the non-linear regime we have performed a

onvergene analysis for an initial displaement with the pro�le of the seond eigenmode and

an amplitude of about 50 m for the stellar model with  = 3 and K = 2:0 � 10

5

km

�2

. In this

amplitude range non-linear e�ets are present, but shok formation is not yet expeted for ini-

tial data with suÆiently weak spatial variation. We have evolved these initial data using 400,

800 and 1600 grid points and have alulated the time dependent onvergene fator aording

to the method desribed in setion 3.5.3. Sine the exat solution is not known, we use the

referene solution for 1600 grid points in its plae. The result obtained for the variables �, w,

�N , �� and �� is shown in Fig. 61 and demonstrates seond order onvergene throughout

the evolution.

Finally we have tested the ode with the analyti solution by Oppenheimer and Snyder (1939)

whih desribes the ollapse of a homogeneous spherially symmetri dust loud. Petrih et al.

(1986) have expressed this analyti solution in polar sliing ombined with radial or isotropi

gauge. Even though we are using a Lagrangian gauge ondition here, we an use their results

for a omparison with our numerial simulation.

In their alulation of the analyti solution Petrih et al. use a Lagrangian oordinate � and

a time parameter � whih varies from �� to 0 as the dust sphere ollapses from initial radius

to r̂ = 0. On a given time slie t = onst, where t is the time oordinate de�ned by the polar
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Figure 61: The onvergene fator for �, w, �N , �� and �� obtained for 400 and 800 grid

points. The referene solution has been alulated for 1600 grid points.

sliing ondition, � is given as a funtion of � by

os

�

2

= os

�

s

2

r

os�

s

os�

; (5.248)

where �

s

and �

s

are the values of � and � at the surfae of the dust loud. If we label the initial

slie by �

s

= ��, this equation implies that � = �� everywhere on the initial slie. At any

given time t the areal radius is then shown to be related to the oordinate � by

r̂ = 2M

sin�

sin

3

�

s

�

1� os

2

�

s

2

�

os�

s

os�

�

; (5.249)
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where M is the Shwarzshild mass of the dust loud. If we onsider the speial ase of this

equation at the surfae and on the initial slie we an alulate �

s

from

sin

2

�

s

=

2M

R

; (5.250)

where R is the initial radius of the dust sphere. For reasons that will be given below we will

identify the radial oordinate x with the areal radius of the initial loation of the uid elements.

We an therefore set �

s

= �� and r̂ = x in Eq. (5.249) and use the result to alulate �(x)

on the initial slie. Sine both oordinates are omoving with the uid elements, this relation

between � and x remains valid at any time t. In order to alulate �(x) at a given time t we

still need to �nd the value �

s

. This is done by inverting the relation

t =M

os�

s

sin

3

�

s

n

(�

s

� sin �

s

) + 2 sin

2

�

s

h

�

s

� 2 tan�

s

tanh

�1

�

tan�

s

ot

�

s

2

�io

; (5.251)

for whih we use a Newton-Raphson method. One �

s

has been alulated, we an use Eq. (5.248)

to alulate �(x) on that time slie. The physial variables r̂, �̂,

^

� and

^

� then follow from

Eq. (5.249) and further relations by Petrih et al. whih we write in the form

�̂ = 6

a

0

a

3

1

8�M

2

; (5.252)
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where �



is the entral value of the lapse funtion and a

0

and a are given by

a

0

=

1

sin

3

�

s

; (5.255)

a = a

0

(1� os �): (5.256)

In pratie we speify the initial energy density and radius of the dust sphere and set the veloity

to zero. The funtions

^

N and

^

� are then alulated from the onstraint equations and the total

mass of the sphere follows from the de�nition (5.219).

From the numerial point of view the dust ollapse is a speial ase in several aspets whih

restrits our hoie of the available options of the ode.
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Figure 62: The numerial simulation of the Oppenheimer-Snyder dust ollapse for a dust sphere

of 10 km radius and initial density 2 �10

�4

km

�2

. The left panels show the numerial results for

the radius r̂ and the energy density �̂, the right panels the deviation from the analyti solution.

(1) By de�nition the pressure vanishes in the dust sphere. As a result there is no

stati on�guration analogous to the stati neutron star governed by the TOV

equations. We therefore need to use vauum at spae as the bakground and

run the ode in the non-perturbative mode.

(2) The vanishing of the pressure also implies that the speed of sound is zero through-

out the dust sphere so that it annot be used to resale the radial oordinate

aording to Eq. (5.47). The radial oordinate x is therefore de�ned by the areal

radius of the initial positions of the uid elements and we use the ondition

r

;x

= 1 in the ode.

(3) The surfae of a neutron star with a polytropi equation of state is de�ned by the

vanishing of the energy density �̂ whih provided the outer boundary ondition

in the numerial evolution. For the dust sphere this relation is not valid any

more and the energy density is �nite at the outer boundary. The exat value,
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Figure 63: Same as Fig. 62 for the metri variables

^

� and

^

�.

however, is not known, so that we annot use it to derive an alternative boundary

ondition. The boundary ondition

^

P = 0 is trivially satis�ed in the ase of a

dust sphere and does not provide any extra information either. If we onsider

the struture of equations (5.220)-(5.224), however, we an see that all spatial

derivatives of the energy density appear in the form of pressure gradients. These

terms are identially zero in this ase and disappear from the equations. We an

therefore use the staggered grid for the energy density and thus eliminate the

need of a boundary ondition for �̂. For this purpose we set the parameter � to

1 in the evolution of the dust sphere.

In Figs. 62 and 63 we show the results obtained for a dust sphere with initial density �̂

0

=

2 � 10

�4

km

�2

and radius R

0

= 10 km whih orresponds to a total mass of M = 0:838 km. A

grid resolution of 800 points has been used for this alulation. The results demonstrate the

good auray with whih the ode reprodues the analyti solution. Near the surfae of the

dust sphere, however, the numerial error inreases signi�antly as the sphere approahes its

Shwarzshild radius. We attribute this behaviour to the steep gradient of the lapse funtion
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near the surfae that arises in the late stages of the evolution.

This simulation also illustrates the singularity avoiding properties of the polar sliing ondition.

As the dust sphere ollapses towards its Shwarzshild radius, the lapse funtion dereases

towards zero and the evolution is pratially frozen. This e�et, the so alled ollapse of the

lapse, is responsible for the apparent slow down of the ollapse of the radial funtion r that an

be seen in the upper left panel of Fig. 62. It is this property that makes polar sliing a popular

hoie for the numerial analysis of 1-dimensional gravitational ollapse.

5.5 Do shoks form at the surfae for low amplitude osilla-

tions?

We will now address a question that impliitly arose in the disussion of the linearized equations

in the Eulerian formulation. We have seen in Eq. (5.133) that the linearized equations predit

a diverging ratio Æ�=� at the surfae. For polytropi indies  > 2 we know that the divergene

of Æ� is a result of the Taylor expansion used to relate the Eulerian energy density perturbation

to the Lagrangian one in Eq. (5.130) and thus a non-physial result. For polytropi exponents

 � 2, however, Eq. (5.130) represents a valid relation to �rst order in the perturbations, so

that the Eulerian density perturbation will indeed be large ompared with the bakground value

near the surfae. This behaviour raises the question whether non-linear e�ets will a�et the

evolution near the surfae and give rise to the formation of disontinuities. From a di�erent

point of view one may onsider the speed of sound whih vanishes at the surfae for a polytropi

exponent  > 1 and the partile speed w whih is �nite beause of the movement of the stellar

surfae. Consequently the veloity of the uid elements will exeed the speed of sound and one

may again ask whether this leads to shok formation. We will investigate this by using the

exat treatment of the surfae provided by the Lagrangian ode.

For this purpose we onsider the neutron star model 3 of Table 3 and provide initial data in

the form of a displaement � orresponding to a single eigenmode. For reasonably low order

eigenmodes and amplitudes up to several metres we have not observed any signi�ant deviation

from the expeted harmoni time dependene. For eigenmodes of very high order, however, this

piture hanges. We illustrate this in the ase of an initial displaement of the uid elements

orresponding to a high order eigenmode (about 50) and an amplitude of about 1m at the

surfae. The high resolution of 3200 grid points has been used for this alulation to adequately

resolve the high order mode. We stress that this evolution is only possible beause of the high

resolution near the surfae provided by the resaled variable y. In Fig. 64 we show snapshots
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Figure 64: The numerial evolution of the energy density perturbation �� as a funtion of y

obtained for an initial displaement orresponding to about the 50th eigenmode with amplitude

1m. Snapshots are shown at times t

1

: : : ; t

8

.

of the time evolution of the energy density perturbation at times t

1

= 0:0, t

2

= 0:5, t

3

= 1:0,

t

4

= 1:5, t

5

= 2:0, t

6

= 2:5, t

7

= 3:0 and t

8

= 3:1 km. We note that only the small radial range

28 km � y � 31:7 km is shown in the �gure. In terms of the areal radius this orresponds to

a range of about 120m below the surfae. We an see that for this small amplitude a steep

gradient forms near the surfae after about t = 3:1 km whih orresponds to less than two

osillation periods of the eigenmode. This indiates the formation of a disontinuity. At later

times than shown here the ode fails to onverge whih we attribute to the numerial noise

aused by the shok formation and the extreme sensitivity of the ode near the surfae of the

star. In order to demonstrate that this result is not merely due to numerial inauraies, we

have evolved the same initial data with the smaller amplitude of 1 m. In Fig. 65 we show the

same snap shots for this evolution as in Fig. 64. In this ase we obtain harmoni time dependene

as expeted in the linear limit. By using eigenmodes with even higher order we have observed

shok formation at the surfae for smaller amplitudes. In view of the results for low order

modes where no signi�ant non-linear e�ets are observed for similar amplitudes, we onlude

that the magnitude of non-linear e�ets is not only determined by the size of the perturbations

relative to the bakground variables, but also by the length sale on whih the perturbations
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Figure 65: The same as Fig. 64 but for an amplitude of 1 m.

vary signi�antly. We �nally note that the surfae of a neutron star is too ompliated to be

aurately desribed by the polytropi equation of state used for these evolutions. It is not lear

whether disontinuities will form in the same way for more realisti desriptions of neutron stars.

Nevertheless our results demonstrate that the surfae requires a areful numerial treatment.
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6 Conlusions

In this work we have presented the appliation of di�erent numerial tehniques to solve Ein-

stein's �eld equations. We have laid the foundation for our disussion by desribing in detail

the ADM \3+1" and the harateristi Bondi-Sahs formulation of the �eld equations together

with various aspets of numerial analysis.

In the framework of \3+1" formulations of the Einstein �eld equations the restrition to a �-

nite grid in numerial omputations results in diÆulties onerning the spei�ation of outer

boundary onditions and the interpretation of gravitational waves. These problems are nat-

urally resolved in a harateristi formulation, but the foliation of spaetime based on the

harateristi surfaes may break down in regions of strong urvature due to the formation of

austis. The ombination of the two shemes in the framework of Cauhy-harateristi math-

ing enables one to make use of the advantages of both methods while avoiding the respetive

drawbaks. In this work we have ompleted the ylindrially symmetri stage of the Southamp-

ton Cauhy-harateristi mathing projet by providing a new long term stable CCM ode

inluding both gravitational degrees of freedom. A Geroh deomposition of the 4-dimensional

spaetime allows us to reformulate the problem in terms of the norm of the axial Killing ve-

tor � and the Geroh potential � on an asymptotially at 3-dimensional quotient spaetime.

These geometrial �elds desribe the gravitational degrees of freedom in simple terms and ap-

pear to be a natural hoie of variables for the desription of a ylindrially symmetri vauum

spaetime. The onformal ompati�ation of the resulting 3-dimensional spaetime allows us

to impose exat boundary onditions at null in�nity. In ontrast to the previous work we have

also applied the Geroh deomposition to the interior Cauhy region and thus been able to use

the same variables throughout the numerial grid. This leads to a substantial simpli�ation of

the interfae and the evolution equations and failitates a long term stable evolution with both

gravitational degrees of freedom present. The e�etiveness of the ode has been demonstrated

by reproduing the analyti Weber-Wheeler solution and the vauum spaetime with two de-

grees of freedom due to Xanthopoulos. The ode has been shown to be seond order onvergent

over the dynamially relevant time intervals. Our results demonstrate the importane of a

\good" hoie of variables in order to obtain a stable, aurate ode even in the 1-dimensional

ase. For higher dimensional problems the struture of the null-geodesis will be muh more

ompliated beause of the angular dependene. As a onsequene the transformation between

the Cauhy and the harateristi variables at the interfae will also be more ompliated and

thus more vulnerable to instabilities. In view of our results it seems preferable to searh for
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natural variables, suh as the Geroh variables in the ylindrially symmetri ase, to desribe

the two regions rather than follow the \brute fore" alulations whih arise for example from

a diret appliation of the ADM-formulation in the Cauhy region.

Next we have derived a harateristi formulation of the equations governing a dynami osmi

string in ylindrial symmetry. A feature of the osmi string equations is that they admit

exponentially diverging unphysial solutions. By using the Geroh deomposition it is again

possible to reformulate the problem in terms of �elds whih desribe the string on an asymptot-

ially at 2+1-dimensional spaetime and the two auxiliary �elds � and � . As well as avoiding

the need to introdue arti�ial outgoing radiation boundary onditions the inlusion of null

in�nity as part of the numerial grid has the advantage that we an enfore outer boundary

onditions for the string variables whih rule out the unphysial solutions. As speial ases

of the dynami equations we also obtain the equations for a stati osmi string in urved or

Minkowski spaetime. These sets of equations have been solved by using a relaxation sheme

in the stati ases and an impliit method for the dynami senario.

A onvergene analysis for all odes demonstrates lear seond order onvergene. The dynami

ode has also been shown to reprodue the results of the two exat vauum solutions by Weber

& Wheeler and Xanthopoulos. Finally the dynami ode reprodues the results for the stati

osmi string in that initial data orresponding to a stati solution do not hange signi�antly

when evolved in time. For both the exat vauum solutions and the stati initial data the ode

shows exellent long term stability.

After demonstrating the reliability of the ode we have used it to analyse the interation between

an initially stati osmi string and a Weber-Wheeler type pulse of gravitational radiation. We

have found that the gravitational wave exites the string and auses the string variables X

and P to osillate. In terms of unphysial resaled variables we �nd that the frequenies of

the osillations are essentially independent of the strength of the oupling between string and

gravity desribed by � and of the width and amplitude of the Weber-Wheeler pulse. We have

also found that the frequeny of X is independent of the relative oupling onstant � while

that of P is proportional to

p

�. When this result is translated bak into the physial units

we �nd that the frequeny of the salar �eld is proportional to the mass of the salar �eld and

the frequeny of the vetor �eld is proportional to the mass of the vetor �eld as predited by

the linearized theory. This result is on�rmed by investigating two further senarios. Firstly

we onsider the evolution of stati initial data for the string oupled to the gravitational �eld,

but with a Gaussian perturbation to one of the string variables, and seondly we onsider the
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same senario but in a Minkowskian bakground with the gravitational �eld deoupled. In both

ases we obtain the same relationship between the frequenies and the mass.

An interesting numerial result arising from the use of an impliit numerial sheme onerns

the struture of the interfae between the interior and the ompati�ed outer region. In ontrast

to the rather ompliated interpolation tehniques that were neessary to transform between

the Cauhy and harateristi variables in the expliit vauum CCM-ode, we have been able to

\loalise" the interfae in the impliit sheme by using two grid points for the spatial position

r = 1, one ontaining the variables of the inner region, one ontaining those used in the outer

region. The interfae then merely onsists in relating these variables and their derivatives by

using their de�nitions and applying the hain-rule. In our ase the resulting relations were

trivial and ould easily be inorporated into the main evolution algorithm. We attribute this

substantial simpli�ation to the simultaneous alulation in impliit shemes of all funtion

values on the new time-slie. In expliit shemes, on the other hand the alulation of the new

funtion values is normally subjet to a ertain hierarhial order.

In the �nal part of this work we have presented a new numerial approah whih enables us

to evolve radial osillations of neutron stars over a large amplitude range with high auray.

In radial gauge and polar sliing the dynami star is desribed by two onstraint equations

for the metri and a quasi-linear system of two evolution equations for the matter variables.

The ruial step in our approah is to deompose the dynami variables into stati bakground

ontributions whih are determined by the Tolman-Oppenheimer-Volko� equations and time

dependent perturbations. We have used this deomposition to rewrite the system of equations

in a perturbative form. We do, however, keep all terms of higher order in the perturbations

and thus obtain a formulation equivalent to the original set of equations. The motivation for

our approah is given by the fat that bakground terms (terms of zero order) are in general

present in the dynami equations. These terms anel eah other analytially by virtue of the

bakground equations. Numerially, however, this is generally satis�ed up to a residual numeri-

al error only whih will onstitute a spurious soure term in the evolution of the perturbations

and ontaminate the numerial results. In order to avoid this e�et, we use the bakground

equations to remove all zero order terms from the perturbative equations. We thus ensure that

the numerial auray is determined by the perturbations instead of the stati bakground.

We have ompared the resulting perturbative ode with a \standard" non-perturbative method

by evolving the fundamental eigenmode of a dynamially stable neutron star using an amplitude

of several metres. Whereas the perturbative sheme reprodues the expeted harmoni osil-
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lations with high auray, the non-perturbative sheme leads to an exponential deay of the

entral energy density perturbation after a few osillations whih we attribute to the numerial

ontamination aused by the bakground terms.

Even though the perturbative ode performs well in the linear regime for a wide variety of

neutron star models, we have observed a spurious exponential growth of the physial variables

in the evolution of marginally stable neutron star models if we trunate the neutron star at a

suÆiently large density and thus omit the outer low density layers from the numerial evo-

lution. The need to trunate the neutron star at �nite densities arises from the ourrene of

negative energy densities near the surfae of the star due to numerial inauraies. In a purely

Eulerian formulation the outer grid boundary does not oinide with the surfae of the star in a

non-linear evolution. When the star shrinks inside the numerial grid negative energy densities

will our beause the numerial evolution is not able to aurately model the vauum region

between the stellar surfae and the outer grid boundary. It is interesting to see that the surfae

represents a problemati area even in the omparatively simple linearized ase. For equations of

state with an asymptoti behaviour P � �



and  > 2 the Eulerian energy density perturbation

diverges at the surfae of the star. We have shown how this problem arises from the trans-

formation between Lagrangian and Eulerian perturbations and is not present in a Lagrangian

formulation.

In order to alleviate the surfae problem in the Eulerian ase in a simple manner we have used

a �xed boundary ondition by setting the radial veloity w = 0 at the outer grid boundary.

Furthermore we have trunated the outer layers of the neutron star, so that the resulting model

ontains 90% of the original mass. We have thus demonstrated seond order onvergene of the

ode in the non-linear regime and heked the onservation properties of the ode in the Cowling

approximation. We have �nally used the simpli�ed neutron star model to study the oupling

between eigenmodes due to non-linear e�ets. For this purpose we have provided initial data in

the form of an isolated eigenmode and quanti�ed the exitation of other modes in terms of the

inner produt, de�ned by the self-adjoined eigenvalue problem of the linearized ase, between

the non-linear data and the eigenmode solutions. The high auray of the perturbative sheme

enables us to vary the amplitude of the initial data over a wide range orresponding to a maxi-

mum displaement of uid elements between several m and about 50m. For signi�antly larger

amplitudes we observe the formation of steep gradients whih makes the aurate measurement

of the eigenmode oeÆients problemati.

In our study we have provided initial data in the form of either of the �rst three eigenmodes

in the veloity �eld while the energy density perturbation has been set to zero. We have then
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measured the maximum oeÆients for the �rst 10 or 15 eigenmodes. Our results learly show

the existene of two distint regimes. In the weakly non-linear regime with amplitudes up to

several metres all eigenmode oeÆients inrease quadratially with the amplitude. If the or-

der of the initially exited mode is j, we have also found that the oupling oeÆients in the

weakly non-linear regime derease with inreasing order of the eigenmodes starting with mode

2j. This derease an be approximated well with an inverse ubi power law. In the moderately

non-linear regime we have observed a di�erent behaviour of the modes. An initially present

mode j has been found to ouple more eÆiently to the eigenmodes n � j, where n = 2, 3, 4

and so on. For these modes we an model the resulting eigenmode oeÆients with a sum of a

quadrati power law and a power law of index n with good auray. The remaining eigenmode

oeÆients also show a steeper inrease with amplitude than in the weakly non-linear regime,

but the power law ontribution with exponent larger than two is generally too small to failitate

an aurate measurement.

Finally we have developed a fully non-linear Lagrangian ode for the evolution of spherially

symmetri dynami neutron stars. We have demonstrated how the numerial diÆulties enoun-

tered in the Eulerian ase are resolved in the Lagrangian formulation. The ode has been shown

to aurately reprodue the analyti solution of the linearized equations for low amplitudes and

the analyti solution of Oppenheimer and Snyder desribing the ollapse of a spherially sym-

metri homogeneous dust sphere. We have furthermore demonstrated seond order onvergene

of the ode. The ode has been used to investigate non-linear e�ets near the stellar surfae

arising in low amplitude osillations. Whereas we do not observe a signi�ant deviation from

the linear regime for low order eigenmodes and amplitudes of several metres, high order eigen-

modes of the order of 50 with amplitudes of 1m lead to the formation of steep gradients near

the surfae due to non-linear e�ets. We onlude that the magnitude of non-linear e�ets is

not only determined by the relative size of the perturbations with respet to the bakground

but also on the length sale on whih the perturbations vary signi�antly. The high resolution

at the surfae required for these evolutions has been obtained by the use of a resaled radial

oordinate whih naturally takes into aount the vanishing of the speed of sound at the surfae

and failitates a formulation of the equations in terms of whih the slopes of the harateristis

are by and large independent of the position in the star.
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A The �nite di�erening of the

Lagrangian equations

We use an impliit seond order in spae and time �nite di�erening sheme for the numer-

ial evolution of the fully non-linear perturbative Lagrangian equations (5.235)-(5.239). The

parameter � enables us to use the energy density �, �� on the \normal" grid (� = 0) or the

staggered grid (� = 1). The staggering, however, a�ets the energy density only. It is therefore

suitable to desribe the �nite di�erening for a general funtion f , �f and the energy density

�, ��. The funtion f always represents the bakground variables r, N and �. Similarly �f

stands for the perturbations �, w, �N and ��.

In that notation Eqs. (5.235) and (5.236) are onverted into �nite di�erenes by using
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In order to alulate the derivatives of the bakground variables we use the TOV equations to

express them in terms of undi�erentiated variables
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The remaining auxiliary variables follow from the de�nitions

r

x

=

(

1 if x = r

C if x = y,

(A.8)

� = 1� 2Nr; (A.9)

�� = �2(

^

N� + r�N); (A.10)

P = K�



; (A.11)

^

P = K�̂



; (A.12)

�P =

^

P � P; (A.13)

C

2

=

�P

��

= K�

�1

: (A.14)

The �nite di�erene expressions used for Eqs. (5.237) and (5.238) are given by
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where the total pressure

^

P is de�ned by Eq. (A.12). Finally we �nite di�erene Eq. (5.239)

aording to
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The auxiliary variables are again de�ned by Eqs. (A.8)-(A.14). We also use the relations
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The last relation is needed for the Newton-Raphson method we use to solve the resulting system

of non-linear algebrai equations (f. setion 2.3.5).

These �nite di�erene equations result in 5K � 5 algebrai relations, where K is the total

number of grid points. In order to determine the 5K variables �

k

, w

k

, �N

k

, ��

k

and ��

k

we
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also need the 5 boundary onditions (5.240)-(5.244) whih we now write as

�
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= 0; (A.32)
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