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This thesis des
ribes the appli
ation of numeri
al te
hniques to solve Einstein's �eld equations

in three distin
t 
ases.

First we present the �rst long-term stable se
ond order 
onvergent Cau
hy 
hara
teristi
 mat
h-

ing 
ode in 
ylindri
al symmetry in
luding both gravitational degrees of freedom. Compared

with previous work we a
hieve a substantial simpli�
ation of the evolution equations as well

as the relations at the interfa
e by applying the method of Gero
h de
omposition to both the

inner and the outer region. We use analyti
 va
uum solutions with one and two gravitational

degrees of freedom to demonstrate the a

ura
y and 
onvergen
e properties of the 
ode.

In the se
ond part we numeri
ally solve the equations for stati
 and dynami
 
osmi
 strings

of in�nite length 
oupled to gravity and provide the �rst fully non-linear evolutions of 
osmi


strings in 
urved spa
etimes. The in
lusion of null in�nity as part of the numeri
al grid allows us

to apply suitable boundary 
onditions on the metri
 and the matter �elds to suppress unphysi
al

divergent solutions. The resulting 
ode is 
he
ked for internal 
onsisten
y by a 
onvergen
e

analysis and also by verifying that stati
 
osmi
 string initial data remain 
onstant when evolved.

The dynami
 
ode is also shown to reprodu
e analyti
 va
uum solutions with high a

ura
y. We

then study the intera
tion between a Weber-Wheeler pulse of gravitational radiation with an

initially stati
 string. The intera
tion 
auses the string to os
illate with frequen
ies proportional

to the masses of its s
alar and ve
tor �eld. After the pulse has largely radiated away, the string


ontinues to ring but the os
illations slowly de
ay and eventually the variables return to their

equilibrium values.

In the �nal part of the thesis we probe a new numeri
al approa
h for highly a

urate evolu-

tions of neutron star os
illations in the 
ase of radial os
illations of spheri
ally symmetri
 stars.

For this purpose we de
ompose the problem into a stati
 ba
kground governed by the Tolman-

Oppenheimer-Volko� equations and time dependent perturbations. In 
ontrast to 
onventional

treatments, the fully non-linear form of the resulting perturbative equations is used. In an Eu-

lerian formulation of the problem the movement of the surfa
e of the star relative to the �xed

numeri
al grid leads to diÆ
ulties in the numeri
al as well as the algebrai
 analysis. In order

to alleviate the surfa
e problem we use a simpli�ed neutron star model to study the non-linear


oupling of eigenmodes. By virtue of the high a

ura
y of our numeri
al method we are able

to analyse the ex
itation of eigenmodes over a wide range of initial amplitudes. We �nd two

distin
t regimes, a weakly non-linear regime where the 
oeÆ
ients of higher order eigenmodes

in
rease quadrati
ally with the initial amplitude and a moderately non-linear regime where this

in
rease steepens and an initially present mode of order j 
ouples more eÆ
iently to modes of

order 2j, 3j and so on.

We 
on
lude this work with the development of a fully non-linear perturbative Lagrangian


ode. We demonstrate how the diÆ
ulties at the surfa
e of the star that arise in an Eulerian

framework are naturally resolved in the Lagrangian formulation. This 
ode is used to study the

formation of dis
ontinuities near the surfa
e for initial data of low amplitude.
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Notation

Unless stated otherwise, the following 
onventions apply. Greek indi
es run from 0 to 3, whereas

Latin indi
es are used for 3-dimensional quantities. We will generally represent ve
tors and ten-

sors of higher rank with boldfa
ed letters (e.g. T). Sometimes we will denote ve
tors, i.e. tensors

of rank (1,0), by partial di�erential operators (e.g. �

t

). If we need to distinguish between a

one-form and a ve
tor, the one-form will be marked with a tilde (e.g. ~u). If a one-form is the

exterior derivative of a s
alar fun
tion f , it will be denoted by df and the tilde will be omitted.

If v is a ve
tor, then ~v is the asso
iated one-form, i.e. ~v = g(v; :). In 
oordinate free language

the 
ontra
tion of a one-form ~u with a ve
tor v will be written as h~u; vi. The 4-dimensional

Riemann tensor and its 
ontra
tions will be denoted by the standard R. For the 3-dimensional

Riemann tensor we always use R. We will use square bra
kets to denote the 
ommutator as

is done in quantum me
hani
s, so for example [r

�

;r

�

℄ = r

�

r

�

� r

�

r

�

. Throughout this

work we will use natural units with 
 = 1 = G and the sign 
onvention \�+++" for the metri
.

v



1 INTRODUCTION 1

1 Introdu
tion

In 1915 Albert Einstein published a geometri
al theory of gravitation: The General Theory

of Relativity. He presented a fundamentally new des
ription of gravity in the sense that the

relative a

eleration of parti
les is not viewed as a 
onsequen
e of gravitational for
es but

results from the 
urvature of the spa
etime in whi
h the parti
les are moving. As long as no

non-gravitational for
es a
t on a parti
le, it is always moving on a \straight line". If we 
onsider


urved manifolds there is still a 
on
ept of straight lines whi
h are 
alled geodesi
s, but these

will not ne
essarily have the properties we intuitively asso
iate with straight lines from our

experien
e in 
at Eu
lidean geometry. It is, for example, a well known fa
t that two distin
t

straight lines in 2-dimensional 
at geometry will interse
t ea
h other exa
tly on
e unless they

are parallel in whi
h 
ase they do not interse
t ea
h other at all. These ideas result from the

�fth Eu
lidean postulate of geometry whi
h plays a spe
ial role in the formulation of geometry.

It is a well known fa
t that one needs to impose it separately from the �rst four Eu
lidean

postulates in order to obtain 
at Eu
lidean geometry. It was not realised until the work of

Gauss, Loba
hevsky, Bolyai and Riemann in the 19th 
entury that the omission of the �fth

postulate leads to an entirely new 
lass of non-Eu
lidean geometries in 
urved manifolds. A

fundamental feature of non-Eu
lidean geometry is that straight lines in 
urved manifolds 
an

interse
t ea
h other more than on
e and 
orrespondingly diverge from and 
onverge towards

ea
h other several times. In order to illustrate how these properties give rise to e�e
ts we


ommonly asso
iate with for
es su
h as gravitation, we 
onsider two observers on the earth's

surfa
e, say one in Southampton and one in Hamburg. We assume that these two observers

start moving due south in \straight lines" as for example guided by an idealised 
ompass exa
tly

pointing towards the south pole. If we follow their separate paths we will dis
over exa
tly the

ideas outlined above. As long as both observers are in the northern hemisphere the proper

distan
e between them will in
rease and rea
h a maximum when they rea
h the equator. From

then on they will gradually approa
h ea
h other and their paths will inevitably 
ross at the

south pole. In the framework of Newtonian physi
s the observers will attribute the relative

a

eleration of their positions to the a
tion of a for
e. It is 
lear, however, that no for
e is

a
ting in the east-west dire
tion on either observer at any stage of their journey. In a geometri


des
ription the relative movement of the observers �nds a qualitatively new interpretation in

terms of the 
urvature of the manifold they are moving in, the 
urvature of the earth's surfa
e.

With the development of general relativity Einstein provided the exa
t mathemati
al foundation

for applying these ideas to the for
es of gravitation in 4-dimensional spa
etime. One may ask



1 INTRODUCTION 2

why su
h a geometri
al interpretation has only been developed for gravitation. Or in other

words whi
h feature distinguishes gravitation from the other three fundamental intera
tions?

The answer lies in the \gravitational 
harge", the mass. It is a 
ommon observation that the

gravitational mass m

G

whi
h determines the 
oupling of a parti
le to the gravitational �eld is

virtually identi
al to the inertial mass m

I

whi
h des
ribes the parti
le's kinemati
 rea
tion to

an external for
e. High pre
ision experiments have been undertaken to measure the di�eren
e

between these two types of masses. All these results are 
ompatible with the assumption that

the masses are indeed equal. The mass will therefore drop out of the Newtonian equations

governing the dynami
s of a parti
le subje
t ex
lusively to gravitational for
es ma = GmM=r

2

,

where a is the a

eleration of the parti
le, G the gravitational 
onstant, M the mass of an

external sour
e and r the distan
e from this sour
e. The parti
le mass m 
an be fa
tored out so

that the movement of the parti
le is des
ribed in purely kinemati
 terms. The redundan
y of

the 
on
ept of a gravitational for
e is naturally in
orporated into a geometri
 theory of gravity

su
h as general relativity. It is important to note that this behaviour distinguishes gravity from

the other fundamental intera
tions whi
h are asso
iated with di�erent types of 
harges, su
h

as ele
tri
 
harge in the 
ase of ele
tromagneti
 intera
tion. It is not obvious how and whether

it is possible to obtain similar geometri
 formulations for the ele
tromagneti
, weak and strong

intera
tion. The uni�
ation of these three fundamental for
es with gravity in the framework of

quantum theory is one of the important areas of ongoing resear
h.

In order to formalize the ideas mentioned above, general relativity views spa
etime as a 4-

dimensional manifold equipped with a metri
 g

��

of Lorentzian signature where the Greek

indi
es range from 0 to 3. At any given point in the manifold the signature enables one to

distinguish between time-like, spa
e-like and null dire
tions. The metri
 further indu
es a

whole range of higher level geometri
 
on
epts on the manifold. It de�nes a s
alar produ
t

between ve
tors whi
h leads to the measurement of length and the idea of orthogonality. From

the metri
 and its derivatives one 
an derive a 
onne
tion on the manifold whi
h fa
ilitates

the de�nition of a 
ovariant derivative. The notion of a derivative is more 
ompli
ated in a


urved manifold than in the 
ommon 
ase of 
at geometry and Cartesian 
oordinates be
ause

the basis ve
tors will in general vary from point to point in the manifold. It is therefore no

longer possible to identify the derivative of a tensor with the derivative of its 
omponents.

Instead one obtains extra terms involving the derivatives of the basis ve
tors. In terms of a


ovariant derivative these terms are represented by the 
onne
tion. In general relativity one
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uses a metri
-
ompatible 
onne
tion de�ned by

�




��

=

1

2

g


Æ

(�

�

g

�Æ

+ �

�

g

�Æ

� �

Æ

g

��

);

where the Einstein summation 
onvention, a

ording to whi
h one sums over repeated upper

and lower indi
es, has been used. These 
onne
tion 
oeÆ
ients are also known as the Christo�el

symbols and de�ne a 
ovariant derivative of tensors of arbitrary rank by

r

Æ

T

��




= �

Æ

T

��




+ �

�

�Æ

T

��




+ �

�

�Æ

T

��




� �

�


Æ

T

��

�

;

where �

Æ

represents the standard partial derivative with respe
t to the 
oordinate x

Æ

. So for

ea
h upper index one adds a term 
ontaining the 
onne
tion 
oeÆ
ients and for ea
h lower

index a 
orresponding term is subtra
ted. With the de�nition of a 
ovariant derivative we 
an

�nally write down the exa
t de�nition of a \straight line" in a 
urved manifold. A geodesi
 is

de�ned as the integral 
urve of a ve
tor �eld v whi
h is parallel transported along itself

v

�

r

�

v

�

= 0:

Based on the 
ovariant derivative we 
an also give a pre
ise de�nition of 
urvature. For this

purpose the Riemann tensor is de�ned by

R

�

�
Æ

= �




�

�

Æ�

� �

Æ

�

�


�

+ �

�


�

�

�

Æ�

� �

�

Æ�

�

�


�

:

If we use a 
oordinate basis, i.e. e

�

= �=�x

�

, this de�nition 
an be shown to imply that for

any ve
tor �eld v

�

R

�

�
Æ

v

�

= r




r

Æ

v

�

�r

Æ

r




v

�

;

whi
h is 
ommonly interpreted by saying that a ve
tor v is 
hanged by being parallel transported

around a 
losed loop unless the 
urvature vanishes (see for example Misner, Thorne, andWheeler

1973). In order to des
ribe the e�e
t of the matter distribution on the geometry of spa
etime

one de�nes the Ri

i tensor as the 
ontra
tion of the Riemann tensor R

�Æ

= R

�

��Æ

, where again

the Einstein summation 
onvention for repeated indi
es has been used. The geometry and the

matter are then related by the Einstein �eld equations

G

��

:= R

��

� 1=2R g

��

= 8�T

��

;
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where R = R

�

�

is the Ri

i s
alar and T

��

the energy momentum tensor. The intera
tion

between the matter distribution and the geometry of spa
etime 
an be summed up in the words

of Misner, Thorne, and Wheeler: \Spa
e a
ts on matter, telling it how to move. In turn, matter

rea
ts ba
k on spa
e, telling it how to 
urve".

Although the �eld equations look rather neat in the 
ompa
t notation we have given above,

this should not hide the fa
t that the Einstein tensor G

��

is in fa
t a 
ompli
ated fun
tion of

the metri
 g

��

and its �rst and se
ond derivatives. Due to the symmetry of the Einstein tensor

and the energy momentum tensor the �eld equations represent 10 
oupled, non-linear partial

di�erential equations, whi
h written expli
itly may 
ontain of the order of 100,000 terms in the

general 
ase. It therefore 
ame as quite a surprise when Karl S
hwarzs
hild found a non-trivial,

analyti
 solution to these equations just some months after their publi
ation. Sin
e then many

analyti
 solutions have been found and a whole bran
h of the studies of general relativity is


on
erned with their 
lassi�
ation. Enormous insight into the stru
ture of general relativity has

been gained from these analyti
 solutions, but due to the 
omplexity of the �eld equations these

solutions are normally idealized and restri
ted by symmetry assumptions. In order to obtain

a

urate des
riptions of astrophysi
ally relevant s
enarios one may therefore have to go beyond

purely analyti
 studies. A parti
ularly important area of resear
h 
onne
ted with general rela-

tivity that has emerged in re
ent years 
on
erns the dete
tion of gravitational waves. In analogy

to the predi
tion of ele
tromagneti
 waves by the Maxwell equations of ele
trodynami
s, the

Einstein �eld equations admit radiative solutions with a 
hara
teristi
 propagation speed given

by the speed of light. Due to the weak 
oupling 
onstant of the gravitational intera
tion, whi
h

is a fa
tor of 10

40

smaller than the ele
tromagneti
 
oupling 
onstant, gravitational waves will

have an extremely small e�e
t on the movement of matter and are 
orrespondingly diÆ
ult to

dete
t. If one 
onsiders for example a metal bar of a length of several kilometres, estimates

have shown that the dete
tion of gravitational waves requires one to measure 
hanges in length

orders of magnitude smaller than the diameter of an atomi
 nu
leus. Even though attempts to

dete
t gravitational radiation go ba
k to the work of Joe Weber in the early sixties, it is only the

re
ent advan
e of 
omputer and laser te
hnology that provides s
ientists with a realisti
 
han
e

of su

ess. The 
urrent generation of gravitational wave dete
tors GEO-600, LIGO, TAMA and

VIRGO that have been 
onstru
ted for this purpose are 
omplex multi-national 
ollaborations

and have re
ently gone online or are expe
ted to go online in the near future. Due to the

extreme smallness of the signals, the a

umulation of data over several years is expe
ted to

improve the 
han
es of a positive identi�
ation of signals from extra-gala
ti
 sour
es.

Con�den
e in the existen
e of gravitational waves has been signi�
antly boosted by the Nobel
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prize winning dis
overy of the binary neutron star system PSR1913+16 (Hulse and Taylor 1975,

Taylor and Weisberg 1989). The spin-down of this system has been found to agree remarkably

well with the energy-loss predi
ted by general relativity due to the emission of gravitational

waves and is generally a

epted as indire
t proof of the existen
e of gravitational radiation.

In order to simplify the enormous task of dete
ting gravitational waves, it is vital to obtain

information about the stru
ture of the signals one is looking for. It is ne
essary for this purpose

to a

urately model the astrophysi
al s
enarios that are 
onsidered likely sour
es of gravita-

tional waves and extra
t the 
orresponding signals from these models. A

ording to Birkho�'s

(1923) theorem the S
hwarzs
hild solution, whi
h des
ribes a stati
, spheri
ally symmetri
 va
-

uum spa
etime, is the only spheri
ally symmetri
, asymptoti
ally 
at solution to the Einstein

va
uum �eld equations. As a 
onsequen
e a spheri
ally symmetri
 spa
etime, even if it 
ontains

a radially pulsating obje
t, will ne
essarily have an exterior stati
 region and be non-radiating.

It is ne
essary, therefore, to use less restri
tive symmetry assumptions in the modelling of as-

trophysi
al sour
es of gravitational waves. In fa
t the most promising sour
es of gravitational

waves 
urrently under 
onsideration are the in-spiralling and merger of two 
ompa
t bodies

(neutron stars or bla
k holes) and 
ompli
ated os
illation modes of neutron stars that in
rease

in amplitude due to the emission of gravitational waves by extra
ting energy from the rotation

of the star. Even though a great deal of information about these s
enarios has been gained

from approximative studies, su
h as the post-Newtonian formalism or the use of perturbative

te
hniques, a detailed simulation will require the solution of the Einstein equations in three

dimensions. The 
ompli
ated stru
ture of the 
orresponding models in 
ombination with the

enormous advan
e in 
omputer te
hnology has given rise to numeri
al relativity, the 
omputer

based generation of solutions to Einstein's �eld equations.

In order to numeri
ally solve Einstein's �eld equations it is ne
essary to 
ast the equations in

a form suitable for a 
omputer based treatment. Among the formulations proposed for this

purpose by far the most frequently applied is the 
anoni
al \3+1" de
omposition of Arnowitt,

Deser, and Misner (1962), 
ommonly referred to as the ADM formalism. In this approa
h

spa
etime is de
omposed into a 1-parameter family of 3-dimensional spa
e-like hypersurfa
es

and the Einstein equations are put into the form of an initial value problem. Initial data is

provided on one hypersurfa
e in the form of the spatial 3-metri
 and its time derivative and

this data is evolved subje
t to 
ertain 
onstraints and the spe
i�
ation of gauge 
hoi
es. It is

a known problem, however, that the ADM formalism does not result in a stri
tly hyperboli


formulation of the Einstein equations and in 
ombination with its 
ompli
ated stru
ture the

stability properties of the ensuing �nite di�eren
ing s
hemes remain un
lear. These diÆ
ulties
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have given rise to the development of modi�ed versions of the ADM formulation in whi
h the

Einstein equations are written as a hyperboli
 system. These and similar modi�
ations of the


anoni
al ADM s
heme have been su

essfully tested, but an optimal \3+1" formulation has

yet to be found and it may well be possible that an optimal \3+1"-strategy depends sensitively

on the problem that needs to be solved.

An entirely di�erent approa
h to the �eld equations is based on the de
omposition of spa
etime

into families of null-surfa
es, the 
hara
teristi
 surfa
es of the propagation of gravitational ra-

diation. The Einstein �eld equations are again formulated as an initial value problem and by

virtue of a suitable 
hoi
e of 
hara
teristi
 
oordinates one obtains a natural 
lassi�
ation of the

equations into evolution and hypersurfa
e equations. The 
hara
teristi
 initial value problem

was �rst formulated by Bondi et al. (1962) and Sa
hs (1962) in order to fa
ilitate a rigorous

analysis of gravitational radiation whi
h is properly des
ribed at null in�nity only. It is a generi


drawba
k of \3+1" formulations that null in�nity 
annot be in
luded in the numeri
al grid by

means of 
ompa
tifying spa
etime and instead outgoing radiation boundary 
onditions need

to be used at �nite radius. Aside from the non-rigorous analysis of gravitational radiation at

�nite distan
es these arti�
ial boundary 
onditions give rise to spurious numeri
al re
e
tions.

A 
hara
teristi
 formulation resolves these problems in a natural way but is itself vulnerable to

the formation of 
austi
s in regions of strong 
urvature. It is these properties of \3+1" formula-

tions and the 
hara
teristi
 method that resulted in the idea of Cau
hy 
hara
teristi
 mat
hing

(CCM), i.e. the 
ombination of a \3+1" s
heme applied in the interior and a 
hara
teristi


formalism in the outer va
uum region. This allows one to make use of the advantages of both

methods as we will illustrate in more detail below.

This thesis 
onsists of four parts. First we will investigate the Einstein �eld equations from

the numeri
al point of view. This in
ludes a detailed des
ription of the ADM and the 
har-

a
teristi
 Bondi-Sa
hs formalism as well as a general dis
ussion of �nite di�eren
e methods

and numeri
al 
on
epts su
h as stability and 
onvergen
e. Se
tion 3 is 
on
erned with Cau
hy


hara
teristi
 mat
hing as a numeri
al tool to solve the �eld equations. In parti
ular we present

a long term stable CCM 
ode for 
ylindri
ally symmetri
 va
uum spa
etimes 
ontaining both

gravitational degrees of freedom. In se
tion 4 we investigate the behaviour of stati
 and dy-

nami
 
osmi
 strings in 
ylindri
al symmetry. The numeri
al 
odes developed for the analysis

are des
ribed together with a detailed study of the os
illations of a 
osmi
 string ex
ited by

gravitational radiation. Finally in se
tion 5 we present a fully non-linear perturbative approa
h

to study non-linear radial os
illations of neutron stars. The perturbative formulation enables

us to study non-linear os
illations over a large amplitude range with high pre
ision. In an
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Eulerian formulation, however, the surfa
e of the star gives rise to numeri
al diÆ
ulties whi
h

leads us to investigate a simpli�ed neutron star model instead. The se
tion is 
on
luded with

the development of a Lagrangian formulation of dynami
 spheri
ally symmetri
 stars in whi
h

the surfa
e problems are resolved in a natural way. We use the exa
t treatment of the surfa
e

for the analysis of sho
k formation near the surfa
e for initial data of low amplitude.
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2 The �eld equations from a numeri
al

point of view

We have already mentioned that the Einstein �eld equations have to be put into an appropriate

initial value form before they 
an be integrated numeri
ally. In this se
tion we will des
ribe in

detail the \3+1" de
omposition of Arnowitt, Deser, and Misner (1962) and the 
hara
teristi


formalism introdu
ed by Bondi et al. (1962) and Sa
hs (1962). The se
tion is 
ompleted by a

dis
ussion of general numeri
al aspe
ts and the des
ription of some �nite di�eren
ing s
hemes

used later in this work.

2.1 The \3+1" de
omposition of spa
etime

2.1.1 The foliation

Following York (1979) we start the dis
ussion of the \3+1" formalism with a 4-dimensional

manifold M with 
oordinates x

�

. Then a suitable fun
tion t(x

�

) de�nes a 1-parameter family

of 3-dimensional hypersurfa
es by

t(x

�

) = 
onst: (2.1)

We will refer to these hypersurfa
es as �

t

. Geometri
ally they are represented by the one-form

dt. Next we 
onsider a 3-parameter family of 
urves threading the family of hypersurfa
es. By

threading we mean

(1) the 
urves do not interse
t ea
h other,

(2) the tangent ve
tors v of the 
urves are nowhere tangent to �

t

, i.e. hdt; vi 6= 0

everywhere.

In this 
ase the 
urves are parameterized by t and the tangent ve
tor with respe
t to this

parameterization is �

t

whi
h satis�es hdt;�

t

i = 1. This foliation is illustrated graphi
ally in

Fig. 1. We are now in the position to 
onstru
t basis ve
tor �elds in the manifold M . For ea
h

sli
e � we 
hoose three ve
tor �elds e

a

, so that they are linearly independent at ea
h point of �

and satisfy the 
ondition hdt; e

i

i = 0. Then at ea
h point P of M , the set of ve
tors f�

t

; e

i

g is

a basis of the tangent spa
e T

P

at this parti
ular point. We note that no use of a \metri
" has

been made so far. All we have done is to foliate M into a 1-parameter family of 3-dimensional

sli
es and to 
hoose suitable basis ve
tors at ea
h point.
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t(x

�

) = 0

�

dt

�

0

t(x

�

) = dt

�n

β

n

�

t

Figure 1: Two hypersurfa
es of the foliation of spa
etime in the \3+1" formalism. �

t

is the

tangent ve
tor �eld to the 
urves threading the foliation and n the hypersurfa
e orthogonal

ve
tor �eld. The relation between these ve
tors is de�ned by the lapse fun
tion � and the shift

ve
tor β.

2.1.2 Gauge freedom

Without a metri
, the 
on
epts of length and orthogonality are not de�ned. It will, therefore,

be an essential step in the 
onstru
tion of a metri
 to give meaning to these notions. We let g

be a symmetri
 rank two tensor �eld, 
hoose a ve
tor �eld n with hdt; ni 6= 0 and demand

g(n; n) = �1 (n is a unit ve
tor); (2.2)

8

i

g(e

i

; n) = 0 (n is orthogonal to �); (2.3)

g(e

i

; e

j

) = γ
ij

; (2.4)

where γ
ij

is a positive de�nite metri
 inside the hypersurfa
es �. At this stage the 3-metri
 γ

is unknown and below we shall see that its 
omponents are the dynami
 variables of the ADM

\3+1" s
heme and thus need to be spe
i�ed on the initial sli
e (subje
t to 
ertain 
onstraints).

It is important to note the minus sign in Eq. (2.2). It is this 
hoi
e in 
ombination with the

positive de�niteness of the 3-metri
 γ whi
h determines the spatial nature of the 3-dimensional

hypersurfa
es and the time-like 
hara
ter of the normal ve
tor n. To what extent we have

now spe
i�ed the metri
 will be
ome 
learer if we use the basis f�

t

; e

i

g. Furthermore we will
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introdu
e the lapse fun
tion � and the shift ve
tor βi de�ned by

�

t

= �n+ βie
i

; (2.5)

n =

1

�

(�

t

� βie
i

): (2.6)

Then the 
omponents of the metri
 be
ome

g

00

= g(�

t

;�

t

) = g(�n+ βie
i

; �n+ βie
i

)

= ��

2

+ βiβ
i

;

(2.7)

g

0i

= g(�

t

; e

i

) = g(�n+ βje
j

; e

i

)

= β
i

;

(2.8)

g

ij

= γ
ij

; (2.9)

whi
h 
orresponds to the 
anoni
al \3+1" line element

ds

2

= (��

2

+ β
i

βi)dt2 + 2β
i

dtdx

i

+ γ
ij

dx

i

dx

j

: (2.10)

From this equation we 
an see that the metri
 
omponent g

tt

will be negative unless a large

shift ve
tor is 
hosen. In the remainder of this dis
ussion we will assume a suÆ
iently small

shift ve
tor and therefore 
onsider t the time-like 
oordinate. In 
ontrast the positive de�nite

nature of the 3-metri
 γ implies that the xi are spa
e-like 
oordinates.

In order to investigate the remaining gauge freedom we will now 
onsider the impli
ations of a

di�erent 
hoi
e of lapse � and shift β. A

ording to Eq. (2.5) su
h a di�erent 
hoi
e would result

in a modi�ed relation between n and �

t

, i.e. a di�erent family of 
urves threading the foliation.

This, however, merely 
orresponds to a 
oordinate transformation (relabelling of the points in

the manifold) and we see that lapse and shift represent the 
oordinate or gauge freedom of

general relativity. They 
an in prin
iple be 
hosen arbitrarily without a�e
ting the resulting

spa
etime.

The lapse 
an be interpreted as the proper time measured by an Eulerian observer, that is an

observer moving with 4-velo
ity n. If we 
onsider two hypersurfa
es �

t

, �

t+Æt

, the di�eren
e in


oordinate time is by de�nition hdt; Æt � �

t

i = Æt. An illustrative way of des
ribing this result

is to say that Æt � �

t

points from �

t

to �

t+Æt

. On the other hand we know from Eq. (2.6) that

hdt; ni = 1=�. So the ve
tor 
onne
ting the two hypersurfa
es in the normal dire
tion is � �Æt �n.

The proper length of this ve
tor is given by ds

2

= ��

2

Æt

2

and the proper time experien
ed by

travelling along the integral 
urve of n from �

t

to �

t+Æt

is � � Æt. In this sense, the lapse allows
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us to measure the length of ve
tors pointing outside the hypersurfa
es. In numeri
al relativity

the lapse 
an be used to 
ontrol the advan
e of proper time in di�erent regions of spa
etime as

the numeri
al 
ode is evolved into the future. Suitable 
hoi
es for � and β will be dis
ussed in

se
tion 2.1.6.

The shift ve
tor on the other hand introdu
es the 
on
ept of orthogonality relative to the spatial

hypersurfa
es �. For this purpose it is ne
essary to de�ne the s
alar produ
t between the spatial

basis ve
tors e

i

and ve
tors pointing out of the hypersurfa
e. The shift ve
tor whi
h is given

by β
i

= g(�

t

; e

i

) introdu
es this s
alar produ
t. As a result �

t

� βie
i

is orthogonal to � in the

sense that its s
alar produ
t with any ve
tor tangent to � vanishes. We 
an then use the lapse

fun
tion to res
ale this ve
tor to unit length and thus re
over Eq. (2.3).

2.1.3 Extrinsi
 
urvature K and the 3-metri
 γ

Even though we have determined a basis adapted to our foliation of spa
etime, it is 
onvenient

to des
ribe the Cau
hy initial value problem in a general basis. Following York (1979), we

introdu
e the proje
tion operator ? and a shorthand notation for the proje
tion of a tensor of

arbitrary rank ?T by

?

�

�

= Æ

�

�

+ n

�

n

�

; (2.11)

?T

�

��

= ?

�

�

?

�

�

?




�

T

�

�


: (2.12)

We 
an use this de�nition to write the 3-metri
 γ as the proje
tion of the 4-metri
 g onto �

γ
��

=?g

��

= g

��

+ n

�

n

�

; (2.13)

whi
h in the \3+1" basis redu
es to

γ
ij

= ?

�

i

?

�

j

g

��

= g

ij

; (2.14)

γ
0�

= 0: (2.15)

The 3-metri
 γ 
ompletely des
ribes the intrinsi
 properties of the 3-dimensional manifold �.

In parti
ular, the 
onne
tion on � whi
h for a ve
tor v tangent to the sli
e is de�ned by

D

�

v

�

= ?

�

�

?

�

�

r

�

v

�

; (2.16)
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n

Σ

n

Σ

t+dt

t

Σ

Figure 2: Illustration of the e�e
t of a non-zero extrinsi
 
urvature on the embedding of the

hypersurfa
e �. In the left plot we see that n points in di�erent dire
tions at di�erent points of

�. In the right plot distan
es in
rease or de
rease as an observer moves from one hypersurfa
e

to another.

with obvious extension to general tensors, turns out to be the Christo�el 
onne
tion of γ
ij

if we

restri
t ourselves to spatial quantities and use the \3+1" basis f�

t

; e

i

g. Furthermore we de�ne

the 3-dimensional Riemann tensor R by

[D

�

;D

�

℄v�D

[e

�

;e

�

℄

v = R(e

�

; e

�

)v; (2.17)

R(e

�

; e

�

)n = 0: (2.18)

Again, this amounts to the usual de�nition in terms of γ
ij

if the \3+1" basis is used.

In order to des
ribe the embedding of � into M , we de�ne the extrinsi
 
urvature

K

��

= �?r

�

n

�

: (2.19)

This 
an be shown to be equivalent to

K

��

= �

1

2

?L

n

g

��

= �

1

2

L

n

γ
��

; (2.20)

where L

n

is the Lie-derivative along the unit normal ve
tor �eld n. In parti
ular this equation

implies that K is a symmetri
 tensor. The e�e
t of a non-vanishing extrinsi
 
urvature is

s
hemati
ally illustrated in Fig. 2 by the following two examples.

(1) At di�erent points of �, the unit normal ve
tor n points in di�erent dire
tions

be
ause of the embedding: ?rn 6= 0.

(2) Due to the extrinsi
 
urvature an observer moving along n from one hypersurfa
e

to another observes an in
rease or de
rease in distan
e between points with �xed

spatial 
oordinates. This 
orresponds to a 
hange of the 3-metri
 γ: L
n

γ 6= 0.

In se
tion 2.1.5 we will see that the extrinsi
 
urvature K and the 3-metri
 γ are the dynami


variables of the ADM s
heme and need to be spe
i�ed on an initial hypersurfa
e �

0

. With an
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appropriate 
hoi
e of lapse fun
tion and shift ve
tor we will then be able to evolve the 4-metri


over some region of the manifold.

2.1.4 The proje
tions of the Riemann tensor

In order to derive the equations that will �nally determine the evolution of the metri
, we follow

Sta
hel (1962) and look at the proje
tions of the Riemann tensor. Given the 3-dimensional

hypersurfa
es and the unit normal ve
tor �eld n there are three non-trivial proje
tions of R

����

:

(1) all four 
omponents are proje
ted onto �: ?R

����

,

(2) three times onto �, on
e onto n: ?R

����

n

�

,

(3) twi
e onto �, twi
e onto n: ?R

����

n

�

n

�

.

These are all non-trivial proje
tions we 
an 
onstru
t sin
e proje
ting three or more 
omponents

onto n yields zero be
ause of the symmetry properties of R. It is a remarkable fa
t that the

�rst two proje
tions are entirely determined by the initial data a

ording to the Gauss-Coda

i

equations

?R

����

= R

����

+ K

��

K

��

� K

��

K

��

; (2.21)

?R

����

n

�

= D

�

K

��

�D

�

K

��

: (2.22)

These equations determine 14 of the 20 independent 
omponents of the 4-dimensional Riemann

tensor. The remaining 6 
omponents are 
ontained in the third proje
tion of R a

ording to

the Mainardi equation

?R

����

n

�

n

�

= L

n

K

��

+ K

��

K

�

�

+

1

�

D

�

D

�

�: (2.23)

If we assume that the 3-metri
 γ and the extrinsi
 
urvature K are given on some initial sli
e

we are able to derive 14 of the 20 
omponents of the 4-dimensional Riemann tensor from these

initial data. The Lie derivative of the extrinsi
 
urvature L

n

K

��

, however, is not known at

this stage and as a 
onsequen
e we 
annot determine the remaining 6 
omponents of R

����

nor


an we evolve the extrinsi
 
urvature and the 3-metri
 forward in time. We therefore need an

additional sour
e of information that relates the Lie-derivative L

n

K

��

, i.e. the time derivative

of the extrinsi
 
urvature, to the initial data. In general relativity this extra information is
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given in the form of the �eld equations

R

��

�

1

2

R g

��

= 8�T

��

; (2.24)

where the Ri

i tensor R

��

= R

�

���

and the Ri

i s
alar R = R

�

�

des
ribe the geometry and

the energy-momentum tensor T

��

is determined by the distribution of matter in spa
etime.

The terms on the left hand side of this equation are often 
ombined into the Einstein tensor

G

��

.

2.1.5 The role of the �eld equations

It is important to note that the �eld equations have not been used so far. We have seen that

the initial data K and γ determine a substantial part of the 4-dimensional Riemann tensor,

but 6 
omponents, or put another way, the se
ond time derivatives of the 3-metri
 γ remain

unknown. It is Einstein's �eld equations that allow us to express the undetermined proje
tions

of the Riemann tensor?R

����

n

�

n

�

in terms of the other proje
tions?R

����

and?R

����

n

�

and

the matter distribution on �. That allows us to 
al
ulate the 4-dimensional Riemann tensor

R

����

on the initial sli
e �

0

. Furthermore we 
an 
al
ulate the time derivatives of γ and K and

evolve the variables onto the next sli
e �

dt

. Then the pro
ess is repeated on ea
h new sli
e

and eventually we have (in prin
iple) determined the geometry of the whole spa
etime. Lapse

and shift provide the remaining information for the 
omponents of the 4-metri
 g. Before we

look at the �eld equations in more detail, however, we have to turn our attention to the matter

distribution.

a) The energy-momentum tensor

We have already mentioned that the energy-momentum tensor represents the matter distribu-

tion in spa
etime. We illustrate this by 
onsidering the 
omponents of T in a 
oordinate system

x

�

. One 
an then interprete the 
omponent T

��

as the �-
omponent of 
ux of �-momentum as

measured by an observer at rest in the 
oordinate system. In the 
ase of spatial 
omponents

this is 
ommonly referred to as the (�; �)-
omponent of the \stress". The 
on
ept extends to

the time 
omponent, so that T

�0

des
ribes the 
ux of �-momentum a
ross surfa
es t = 
onst

whi
h is just the density of �-momentum. As a spe
ial 
ase T

00

represents the energy density.

Similarly T

0�

is the energy 
ux a
ross surfa
es x

�

= 
onst. It 
an be shown that the energy


ux T

0�

is equal to the momentum density T

�0

and that the stress 
omponents T

ij

are sym-

metri
 (see for example Misner et al. 1973). As a 
onsequen
e the energy momentum tensor is

symmetri
: T

��

= T

��

.
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Below we will see that proje
ting the Einstein equations in the same way as the Riemann tensor

will naturally divide the equations into two di�erent groups, the 
onstraints and the evolution

equations. In the previous se
tion we have studied the proje
tions of the Riemann tensor,

whi
h determines the left hand side of the �eld equations (2.24), onto n and the hypersurfa
es

�. It remains therefore to 
al
ulate the 
orresponding proje
tions of the right hand side of the

equations given by the energy-momentum tensor. For this purpose we de�ne the energy and

momentum density and the stress tensor by

� = T

��

n

�

n

�

; (2.25)

j

�

= ?T

��

n

�

; (2.26)

S

��

= ?T

��

: (2.27)

The evolution of the matter variables follows from the 
onservation of energy and momentum

r

�

T

��

= 0

L

�

t

� = ��D

�

j

�

+ �(S

��

K

��

+ � trK)� 2j

�

D

�

�+ Lβ�; (2.28)

L

�

t

j

�

= ��D

�

S

��

+ �(2K

��

j

�

+ j

�

trK)� S

��

D

�

�� �D

�

�+ Lβj
�

: (2.29)

In order to determine the time derivatives of S extra information is required whi
h usually


omes in the form of an equation of state.

b) The evolution equations

With the proje
tions of the Riemann tensor given by Eqs. (2.21)-(2.23) and those of the energy-

momentum tensor given by Eqs. (2.25)-(2.27) we are now in a position to proje
t the �eld

equations onto � and n. First we 
onsider the proje
tion of both 
omponents onto �

?G

��

= 8�?T

��

: (2.30)

Inserting the proje
tions of T and G and solving for the time derivative of K, we obtain

L

�

t

K

��

= �D

�

D

�

�+ �[R

��

� 2K

��

K

�

�

+ K

��

trK� 4� (2S

��

� γ
��

tr S+ �γ
��

)℄ + LβK�� ;

(2.31)

L

�

t

γ
��

= �2�K

��

+ Lβγ�� ; (2.32)
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where the evolution equations for the 3-metri
 are simply the de�nition of the extrinsi
 
urva-

ture. It is this set of equations whi
h forms the 
ore of the ADM-evolution of the metri
. Given

appropriate initial data on some initial sli
e �

0

for the extrinsi
 
urvature K

��

and the 3-metri


γ
��

we 
an evolve these fun
tions into the future. The 4-dimensional Riemann tensor and thus

the geometry of the spa
etime is determined at any time a

ording to Eqs. (2.21)-(2.23). The

appearan
e of Greek indi
es in the evolution equations should not hide the fa
t that there are

only six 
omponents ea
h for the extrinsi
 
urvature and the 3-metri
 γ. This be
omes 
lear

when we use the adapted basis f�

t

; e

i

g in whi
h 
ase all Greek indi
es 
an be repla
ed by Latin

indi
es in Eqs. (2.31), (2.32). We 
an also see then that there are no evolution equations for g

0�

or, put another way, in this basis the �eld equations do not 
ontain se
ond time derivatives of

the g

0�

. In this sense the problem is under-determined.


) The 
onstraint equations

If we 
onsider the remaining proje
tions of the �eld equations, we �nd that they 
an be expressed

in terms of the initial data only

G

��

n

�

n

�

=

1

2

�

R+ (trK)

2

� K

��

K

��

�

= 8��; (2.33)

?G

��

n

�

= �D

�

K

��

+D

�

trK = 8�j

�

: (2.34)

These equations impose 
onditions that need to be satis�ed by the hypersurfa
e data for all

values of t. They are 
alled the energy or Hamiltonian 
onstraint (2.33) and the momentum


onstraints (2.34). In this sense, the problem is over-determined. However, it 
an be shown

that by virtue of the 
ontra
ted Bian
hi identities r

�

G

��

= 0 the 
onstraints are satis�ed for

all values of t if they are satis�ed by the initial data.

d) The initial data problem

The problem we are fa
ing now is to �nd initial data for γ and K that satisfy the 
onstraint

equations. A systemati
 approa
h to solving this problem is given in

�

O Mur
hadha and York

(1974). We will illustrate their method in the va
uum 
ase with \maximal sli
ing" (
f. se
tion

2.1.6), where the vanishing of trK leads to a de
oupling of the 
onstraint equations.

�

O Mur-


hadha and York start by introdu
ing a 
onformal 3-metri
 and extrinsi
 
urvature a

ording
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to

γ
ij

= �

4

^γ
ij

; (2.35)

K

ij

= �

�2

^

K

ij

: (2.36)

In the 
ase of maximal sli
ing the 
onstraint equations 
an then be written in the form

^

���

1

8

�

^

R+

1

8

�

�7

^

K

ij

^

K

ij

= 0; (2.37)

^

D

j

^

K

ij

= 0; (2.38)

where

^

D is the 
ovariant derivative with respe
t to
^γ and ^

� =
^γij ^D

i

^

D

j

is the 
onformal Lapla
e

operator. The 
onformal transformation of the 3-dimensional 
urvature s
alar is given by

R = �

�4

^

R� 8�

�5

^

��: (2.39)

One 
an further split the tra
eless

^

K

ij

a

ording to

^

K

ij

=

^

A

ij

�

+

^

D

i

W

j

+

^

D

j

W

i

�

2

3

^γij ^D
k

W

k

: (2.40)

Here

^

A

ij

�

is the transverse tra
eless part of the 
onformal extrinsi
 
urvature

^

K

ij

satisfying

^

D

j

^

A

ij

�

= tr

^

A

ij

�

= 0; (2.41)

and the ve
tor W is to be determined by Eq. (2.38) whi
h in the 
ase of maximal sli
ing 
an be

written as

^

�W

i

+

1

3

^

D

i

^

D

j

W

j

+

^

R

i

j

W

j

= 0: (2.42)

In this formulation of the initial data problem the 
onformal 3-metri

^γ and the transverse

tra
eless part

^

A

�

are regarded as given. Then the momentum 
onstraint (2.40) has to be solved

to obtain W and the 
onformal fa
tor � results from the energy 
onstraint (2.37). By means of

the 
onformal de
omposition we have thus isolated � and W

j

as the four variables determined

by the 
onstraint equations on the initial hypersurfa
e.

Mu
h of the work that has gone into the 
al
ulation of initial data has been based on the


onformally 
at approa
h of Bowen and York (1980). In this approa
h one assumes the spatial

3-metri
 to be 
onformally 
at, so that γ
ij

= �

4

Æ

ij

. However, re
ent work has 
ast doubt
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on the suitability of this approa
h in the 
ase of bla
k hole initial data. The diÆ
ulties arise

from the fa
t that there exist no 
onformally 
at spa
e-like sli
es of the Kerr spa
etime (Garat

and Pri
e 2000). The initial data resulting from the 
onformally 
at approa
h will therefore

represent distorted Kerr bla
k holes whi
h generally radiate o� a burst of gravitational waves

whi
h 
ontaminates the evolution of binary bla
k holes or perturbed Kerr spa
etimes (\
lose

limit" 
al
ulations). Re
ent e�orts have therefore gone into the 
al
ulation of more realisti


initial data whi
h is not based on the 
onformally 
at approa
h (see for example Marronetti

and Matzner 2000).

A 
omprehensive des
ription of the general initial value problem and more details on solving

the 
onstraint equations 
an be found in York (1983).

2.1.6 The kinemati
 degrees of freedom: lapse and shift

In the previous se
tion we have seen that there are no evolution equations for the 
omponents

g

0�

of the metri
 if we use the adapted basis f�

t

; e

i

g. The line element (2.10), however, shows

that the g

0�

are 
ompletely determined by the lapse � and the shift ve
tor β and these 
an

be 
hosen arbitrarily without a�e
ting the metri
. Nevertheless the 
hoi
e has a substantial

impa
t on the performan
e of a numeri
al s
heme. For example a poor 
hoi
e of 
oordinates


an result in a 
ode whi
h runs into a singularity before interesting results are 
omputed. A

large number of gauge 
hoi
es have been suggested in the past, some of whi
h we will des
ribe

below. A more 
omprehensive dis
ussion 
an be found in Piran (1983).

The lapse fun
tion

(a) Geodesi
 sli
ing

In geodesi
 sli
ing � is set to 1 everywhere. This means that the 
oordinate time is identi
al

to the proper time of Eulerian observers. Although this sli
ing 
ondition appears to be quite

natural it does not lead to any signi�
ant simpli�
ations of the equations and, worse, it is

singularity seeking. We illustrate this behaviour in the 
ase of the S
hwarzs
hild spa
etime in

Kruskal 
oordinates (Smarr and York 1978), by 
onsidering an Eulerian observer 
lose to the

bla
k hole. An Eulerian observer does not initially move in the spatial hypersurfa
e and will

fall into the singularity on a time s
ale �M , where M is the mass of the bla
k hole. Choosing

the orthogonal time of an Eulerian observer as 
oordinate time will therefore 
ause the 
ode to


rash on a 
oordinate time s
ale of �M . Far away from the bla
k hole, however, where Eulerian

proper time is 
lose to the proper time of an astronomi
al observer we would basi
ally like the


ode to advan
e up to t ! 1. One way to a

omplish this is to slow down the advan
e of
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n; �

t

t

t+ dt

r

t+ 2dt

t

�

t

= �n

n

Figure 3: In order to avoid the 
ode entering a singularity that forms after a �nite amount of

time (the shaded region indi
ates an asso
iated horizon) the advan
e of proper time is delayed

in the 
entral region by use of an appropriate lapse fun
tion. For 
onvenien
e we have set the

shift ve
tor β = 0.

proper time near the formation of a singularity as illustrated in Fig. 3. This, however, implies

a di�erent 
hoi
e for the lapse fun
tion �.

An alternative way of avoiding the 
ode to en
ounter singularities 
onsists in 
utting o� the

singularity from the 
al
ulation assuming that it is hidden inside an apparent horizon and thus

no information is lost in the ex
ision (Thornburg 1987, Seidel and Suen 1992). This approa
h

has attra
ted a lot of attention in re
ent years and has been su

essfully implemented in the

evolution of bla
k holes (see Al
ubierre et al. 2001 for example). In this work, however, we will

not make use of these methods and therefore restri
t this dis
ussion to 
onventional te
hniques

for avoiding singularities.

(b) Maximal sli
ing

The restri
tions arising from geodesi
 sli
ing were re
ognised long ago by Li
hnerowi
z (1944)

who showed that a mu
h more suitable 
hoi
e for � is obtained if one requires that the tra
e

of the extrinsi
 
urvature vanishes: trK = 0. This 
hoi
e has been termed maximal sli
ing

sin
e the volume of an arbitrary region 
 of a hypersurfa
e � will be maximal with respe
t to

all other hypersurfa
es that are identi
al with � outside 
 if trK = 0 (see for example York

1979). If we insert the energy 
onstraint (2.33) into the evolution equation for trK [obtained

from Eq. (2.31)℄ we obtain the following 
ondition for �

�� = R�

3

2

�

��

1

3

trS

�

�: (2.43)
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A number of useful properties have made maximal sli
ing one of the most popular 
hoi
es in

numeri
al relativity.

(1) It avoids singularities.

(2) The 
onstraint equations in the initial data problem are de
oupled (
f. se
tion

2.1.5).

(3) It leads to some simpli�
ation of the evolution equations.

The major drawba
k is that we have to solve the ellipti
 partial di�erential equation (PDE)

(2.43) on ea
h time sli
e.

(
) Hyperboli
 sli
ing

Hyperboli
 sli
ing is a generalised version of maximal sli
ing. The tra
e of the extrinsi
 
urva-

ture is required to be 
onstant but not ne
essarily to vanish: trK = 
onst. The major di�eren
e

is that the hypersurfa
es asymptoti
ally extend to future or past null in�nity, depending on the

sign of trK, instead of spatial in�nity as in the 
ase of maximal sli
ing. This property makes it

an interesting 
hoi
e for the analysis of gravitational radiation.

(d) Polar sli
ing

Another sli
ing 
ondition where the lapse fun
tion is determined by enfor
ing a 
ondition on

the extrinsi
 
urvature is polar sli
ing (see Bardeen and Piran 1983 for a detailed dis
ussion).

Using polar 
oordinates (r; �; �), one demands that

trK = K

r

r

, K

�

�

+ K

�

�

= 0: (2.44)

This 
ondition leads to a paraboli
 PDE for the lapse fun
tion � whi
h, in general, is easier

to solve than the ellipti
 PDE that appears for example in maximal sli
ing. Furthermore

polar sli
ing is strongly singularity avoiding as we will illustrate in the evolution of a spheri
ally

symmetri
 dust sphere in Lagrangian gauge and polar sli
ing in se
tion 5.4. The main drawba
k

of polar sli
ing is the irregular behaviour of the lapse fun
tion in the non-spheri
ally symmetri



ase (Bardeen and Piran 1983). This problem 
an be over
ome by using an alternative 
ondition,

for example maximal sli
ing, near the origin and implementing a gradual transition to polar

sli
ing outside a �nite radius r.

(e) Harmoni
 sli
ing



2 THE FIELD EQUATIONS FROM A NUMERICAL POINT OF VIEW 21

In harmoni
 sli
ing one requires that t is a harmoni
 time 
oordinate

�t = 0: (2.45)

In terms of the lapse fun
tion � this 
ondition results in equations similar to those of maximal

sli
ing

harmoni
 sl. maximal sl.

r

�

n

�

�

= 0, �trK = r

�

n

�

= 0,

�

t

p

γ = 0, �

t

p

γ
�

= 0.

Harmoni
 sli
ing is another singularity avoiding 
ondition and was used by Bona and Mass�o

(1992) to write the Einstein equations as a hyperboli
 system of balan
e laws. The same authors

and 
oworkers have shown that many other sli
ing 
onditions suite this purpose as well (Bona

et al. 1997).

(f) approximate 
oordinate 
onditions, driver 
onditions

The suggestion of so-
alled driver 
onditions by Balakrishna et al. (1996) arises from the fa
t

that one is normally interested in the ensuing properties of the numeri
al evolution rather than

the exa
t shape of the lapse (or shift) fun
tion. In this respe
t one has to note that the �eld

equations are intrinsi
ally 
oordinate independent and thus there is no need to implement a spe-


i�
 
oordinate 
ondition exa
tly if an approximate implementation leads to a stable evolution.

Balakrishna et al. illustrate this e�e
t in the 
ase of maximal sli
ing trK = 0, where the impor-

tant property is the vanishing of the tra
e of the extrinsi
 
urvature. They demonstrate how

this 
ondition is a
tually satis�ed with higher numeri
al a

ura
y if one imposes the \K-driver"

sli
ing 
ondition �

t

(trK) + 
 � trK = 0 where 
 is a positive 
onstant. This 
ondition will result

in an exponential de
ay in any deviation from trK = 0, whereas the original implementation of

maximal sli
ing has no su
h built-in 
orre
tion me
hanism. The lapse fun
tion � is determined

in this 
ase by an ellipti
 equation similar to Eq. (2.43) in maximal sli
ing. The only di�eren
e

is the appearan
e of the term 
 � trK on the right hand side of the equation. Balakrishna et al.

demonstrate the superior performan
e of the \K-driver" 
ondition in the 
ases of 
at spa
e and

a self-gravitating s
alar �eld.

A related proposal by Balakrishna et al. 
on
erning ellipti
 
oordinate 
onditions in general is

also based on the suitability of approximate implementations of 
oordinate 
onditions. Instead

of solving the ellipti
 equation dire
tly, whi
h in general is 
omputationally expensive, they

suggest \evolving the ellipti
 equations" by rewriting them in paraboli
 form whi
h is similar
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to the relaxation method of solving ellipti
 PDEs (see for example Press et al. 1989).

We have listed these methods under the heading of sli
ing 
onditions, but the same prin
iples

apply to the shift ve
tor.

(g) New sli
ing 
onditions used in bla
k hole evolutions

In re
ent work on 3-dimensional bla
k hole ex
ision Al
ubierre et al. (2001) have a
hieved

substantial progress in terms of stability and a

ura
y by using a new type of evolution equation

for the lapse fun
tion in 
ombination with \Gamma freezing" 
onditions for the shift ve
tor

(see below). Al
ubierre et al. propose to evolve the lapse � a

ording to

�

2

t

� = ��

2

f(�)�

t

(trK); (2.46)

where f(�) is a positive fun
tion of � whi
h they normally set to 2=�. The key feature of this


hoi
e is that the tra
e of the extrinsi
 
urvature be
omes time independent for the �nal state

of a stationary bla
k hole (see their paper for details).

The shift ve
tor

(a) Normal 
oordinates

In normal 
oordinates the shift ve
tor is set to zero

βi = 0; (2.47)

whi
h implies that the 
oordinate ve
tor �

t

is normal to the hypersurfa
es �. Normal 
oordi-

nates have the advantage that they do not be
ome singular as long as the hypersurfa
es have

a regular intrinsi
 and extrinsi
 geometry (Bardeen 1983). They do not, however, fa
ilitate a

substantial simpli�
ation of the �eld equations.

(b) Minimal shear gauge

The minimal shear 
ondition suggested by Smarr and York (1978) leads to ellipti
 equations

for the 
omponents of βi. Smarr and York �nd this gauge 
hoi
e parti
ularly useful for the

des
ription of gravity in the wave zone. The major drawba
ks are the 
omplexity of the ellipti


equations for βi and the fa
t that it barely simpli�es the �eld equations.

(
) Simplifying gauge 
hoi
es
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This is a
tually a whole 
lass of gauge 
hoi
es. The idea is to impose algebrai
 relations on the

metri
 
omponents on the initial sli
e

f(γ
ij

; x

i

) = q(x

i

); (2.48)

and to 
hoose the shift ve
tor so that these algebrai
 relations hold on all future hypersurfa
es.

The three 
omponents of the shift ve
tor allow us to impose three relations of this kind. In

parti
ular, we 
an 
hoose up to three metri
 
omponents to vanish identi
ally. Solving the

resulting equations for βi, however, is non-trivial and it 
annot even be guaranteed that su
h a

solution does exist. Popular examples of this gauge 
hoi
e are

(1) Diagonal gauge, where the 3-metri
 γ is diagonalized.

(2) Radial gauge, whi
h employs polar 
oordinates (r; �; �) and imposes the 
ondi-

tions γ
r�

= γ
r�

= 0 and γ
��

γ
��

�γ 2

��

= r

4

sin

2

�. Radial gauge simpli�es the �eld

equations signi�
antly and results in paraboli
 equations for the βi.

(3) Isothermal gauge is similar to radial gauge, ex
ept that the third 
ondition on the

metri
 
omponents is now γrr = γ��. The simpli�
ations are not as substantial

as in radial gauge, but isothermal gauge 
an be used for a more general 
lass of

physi
al s
enarios.

(d) \Gamma freezing 
onditions"

We have already mentioned the substantial improvements that Al
ubierre et al. (2001) have

a
hieved in their 3-dimensional bla
k hole evolutions using new gauge 
onditions. In 
ombi-

nation with the sli
ing 
ondition mentioned above under (g) they relate the shift ve
tor to

the evolution of the 
onformal 
onne
tion fun
tions

^

�

i

introdu
ed by Baumgarte and Shapiro

(1999) and Shibata and Nakamura (1995). In their simulations they use a 
ondition of the form

�

2

t

βi =
k

�

4

�

t

^

�

i

� ��

t

βi; (2.49)

where k = 0:75, � = 3=M , M is the initial ADM mass of the system and � is the 
onformal

fa
tor introdu
ed in the dis
ussion of the initial value problem in se
tion 2.1.5. Al
ubierre et al.


all these 
onditions \Gamma freezing" be
ause they are related to the ellipti
 operator for βi

in the \Gamma freezing 
ondition" �

^

�

i

= 0.

A more detailed des
ription of di�erent gauge 
hoi
es 
an be found in Piran (1983).
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2.1.7 The 
urrent state of \3+1" formulations: re
ent progress and limitations

The standard \3+1" de
omposition we have des
ribed above was �rst formulated by Arnowitt,

Deser, and Misner (1962). In the 
ourse of time numerous 
odes have been developed on the

basis of this formulation. The stru
ture of the ADM evolution equations (2.31), (2.32), how-

ever, has been a 
onstant 
ause of 
on
ern. It is well known that these equations do not satisfy

any known hyperboli
ity 
ondition and the stability properties of the 
orresponding numeri
al

implementations remain obs
ure. In the 
ourse of the 1990s attention shifted towards modi-

fying the 
anoni
al ADM-formalism in order to obtain stri
tly hyperboli
 formulations of the

Einstein equations (see for example Bona et al. 1995, Friedri
h 1996, Anderson et al. 1997).

The question to what extent these formulations result in a superior numeri
al performan
e and

thus whether the diÆ
ulties en
ountered in the ADM formalism are entirely due to a possible

non-hyperboli
ity has not yet been answered.

An alternative modi�
ation of the ADM-formulation whi
h has attra
ted a great deal of atten-

tion re
ently is based on a 
onformal de
omposition of the original ADM-equations (Shibata

and Nakamura 1995, Baumgarte and Shapiro 1999). In this \BSSN"-formulation one starts

with a 
onformal transformation analogous to that used in the initial-value problem in se
tion

2.1.5 (d). The 3-metri
 γ
ij

is de
omposed into the 
onformal metri

^γ
ij

and the 
onformal fa
tor

� a

ording to Eq. (2.35). Similarly the extrinsi
 
urvature is split up into the tra
e trK and

the 
onformal tra
eless extrinsi
 
urvature

^

A

ij

. The set of fundamental variables is 
ompleted

by the 
onformal 
onne
tion 
oeÆ
ients

^

�

i

=
^γjk^�i

jk

. In terms of these variables Baumgarte

and Shapiro have obtained signi�
antly improved stability properties as 
ompared with the

standard ADM-equations. The \BSSN"-formalism has also been su

essfully implemented by

Al
ubierre et al. 2001.

Signi�
ant progress in \3+1" numeri
al relativity has been a
hieved by the implementation of

new sli
ing 
onditions and shift ve
tors in 3-dimensional evolutions of bla
k holes (Al
ubierre

et al. 2001). We have in
luded these new gauge 
onditions in the list in the previous se
tion.

In spite of the progress a
hieved in re
ent years, there remain some diÆ
ulties intrinsi
 to any

\3+1" formulation. These are generally 
on
erned with the restri
tion to a �nite grid in numer-

i
al 
omputations. A lot of interest in the modelling of 
ompli
ated astrophysi
al s
enarios in

the framework of general relativity is motivated by the advent of highly sensitive gravitational

wave dete
tors. One of the fundamental requirements of a numeri
al simulation is therefore the

extra
tion of gravitational waves and the generation of predi
ted gravitational wave templates.

It is a well known fa
t, however, that gravitational waves are unambiguously de�ned at null

in�nity only. Penrose (1963) has shown how it is possible to des
ribe in�nity in terms of �nite
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oordinate values whi
h enables one to in
orporate null in�nity in a �nite 
oordinate grid. In

numeri
al relativity, however, this \
ompa
ti�
ation" is only pra
ti
al if the 
oordinates are

adapted to the 
hara
teristi
s of the underlying equations and it is not entirely 
lear how to

implement this te
hnique in \3+1" formulations. Consequently approximative te
hniques are

used to interprete gravitational waves at �nite radii. Furthermore outgoing radiation boundary


onditions need to be spe
i�ed at the outer grid boundaries. These will normally give rise to

spurious re
e
tions whi
h 
ontaminate the numeri
al evolution.

The diÆ
ulties 
on
erning the interpretation of gravitational waves in \3+1" formulations have

been known for a long time and motivated the development of alternative de
ompositions of

spa
etime as early as the early sixties (Bondi et al. 1962, Sa
hs 1962). In the next se
tion

we will dis
uss this 
hara
teristi
 formulation in more detail. A generi
 problem of this ap-

proa
h, however, arises from the fa
t that light rays are de
e
ted by matter. In regions of

strong 
urvature the fo
using of light rays may give rise to so-
alled 
austi
s. If that is the 
ase

the 
hara
teristi
 foliation of spa
etime whi
h is based on the null-geodesi
s will break down.

Regions of strong 
urvature are generally restri
ted to small regions around the astrophysi
al

sour
es. In this sense the \3+1" and the 
hara
teristi
 formalisms 
omplement ea
h other whi
h

has given rise to the idea of Cau
hy-
hara
teristi
 mat
hing, i.e. the use of a \3+1" s
heme for

an interior region 
ontaining the astrophysi
al sour
e and a 
hara
teristi
 method in the outer

va
uum region in
luding null in�nity. In se
tion 3 we will dis
uss these ideas in more detail and

develop a Cau
hy-
hara
teristi
 mat
hing 
ode in 
ylindri
al symmetry.

2.2 The 
hara
teristi
 initial value problem

In se
tion 2.1 we have seen how one 
an de
ompose spa
etime into a 1-parameter family of

3-dimensional spa
e-like hypersurfa
es. An alternative way to foliate spa
etime is based on the


hara
teristi
 surfa
es of the va
uum �eld equations whi
h 
an be shown to be the null surfa
es

of the underlying spa
etime (Pirani 1965). Gravitational waves will as a matter of 
ourse travel

along null geodesi
s and the 
hara
teristi
 approa
h is thus parti
ularly suitable for the analysis

of gravitational waves. It is this property whi
h provided the main motivation for the ground

breaking work by Bondi et al. (1962) and Sa
hs (1962) whi
h we will follow in our des
ription

of the 
hara
teristi
 formalism. In this dis
ussion we will 
onsider the va
uum 
ase of the �eld

equations R

��

= 0. In the 
ase of Cau
hy-
hara
teristi
 mat
hing this is normally no restri
tion

sin
e matter is assumed to be present in the inner Cau
hy region only.
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2.2.1 Chara
teristi
 
oordinates

We start our dis
ussion with a 4-dimensional manifoldM and assume thatM is equipped with a

metri
 g of signature +2. In the Bondi-Sa
hs formalism the gauge freedom of general relativity

is used to impose the following 
onditions on the 
oordinates.

(1) It is assumed that there exists a s
alar fun
tion u with the property g(du; du) = 0,

whi
h means that the surfa
es u = 
onst are null surfa
es. Su
h null surfa
es will always

exist if the �eld equations admit wave-like solutions sin
e the 
orresponding 
hara
teristi


surfa
es 
an be shown to be null (Pirani 1965).

(2) A normal dire
tion to these surfa
es is de�ned by

~

k := du. It follows that h

~

k; ki = 0 and

r

k

k = 0, i.e. the tangent 
urves of k are null-geodesi
s. They are normal to the surfa
es

u = 
onst [any ve
tor v in that surfa
e satis�es g(k; v) = 0℄ and lie in these surfa
es

(hdu; ki = 0).

(3) In order to eliminate 
oordinate irregularities, the normal ve
tor k

�

is assumed to satisfy

the 
onditions

� := r

�

k

�

6= 0; (2.50)

j�j

2

:=

1

2

(r

�

k

�

)(r

�

k

�

)� �

2

6= �

2

; (2.51)

where � 
an be interpreted as the expansion and � as the shear of the 
ongruen
es of null

geodesi
s.

(4) The next step 
onsists of labelling the geodesi
s. For this purpose we will use standard

angular 
oordinates � and �. These 
an always be 
hosen so that

hd�; ki = hd�; ki = 0; (2.52)

D := g

��

� g

��

� g

2

��

6= 0: (2.53)

The �rst 
ondition implies that the 
oordinates � and � are 
onstant along a geodesi
 and

the se
ond 
ondition ensures a non-degenerate 2-dimensional volume element det (g

AB

) 6= 0,

where upper 
ase Latin indi
es run from 2 to 3 
orresponding to the 
oordinates � and �.

(5) Finally the null geodesi
s labelled by u; �; � are parametrized by a fun
tion r(u; �; �). In

order to obtain a regular parametrization it is ne
essary that the Ja
obian matrix of r
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u

r

Figure 4: Chara
teristi
 
oordinates in the 
ase of a null time-like foliation.

vanish nowhere. The 
onditions imposed in (3) on the expansion and shear ensure that

this will be the 
ase. Bondi and Sa
hs further require the 
oordinate r to satisfy the

relation

r

4

:= D(sin

2

�)

�1

: (2.54)

As a 
onsequen
e the area of the 2-spheres de�ned by u; r = 
onst is given by 4�r

2

and

r is the so-
alled areal radius. This 
ondition 
orresponds to the radial gauge 
ondition

dis
ussed in se
tion 2.1.6.

The 
oordinate lines u = 
onst and r = 
onst are s
hemati
ally illustrated in Fig. 4 in the 
ase

of a time-like �

u

and a null ve
tor �

r

.

2.2.2 The Bondi-Sa
hs line element

With the 
oordinate 
onditions of the previous paragraph the gauge freedom of general relativity

has been used to 
onstrain the form of the metri
. This pro
ess is analogous to spe
ifying lapse

and shift in the \3+1" formalism. The result 
an be shown to be the Bondi-Sa
hs line element

ds

2

= V

e

2�

r

du

2

� 2e

2�

dudr + r

2

h

AB

(dx

A

� U

A

du)(dx

B

� U

B

du); (2.55)

where upper 
ase Latin indi
es again run from 2 to 3 and h

AB

is de�ned by

2h

AB

dx

A

dx

B

= (e

2


+ e

2Æ

)d�

2

+ 4 sin � sinh(
 � Æ)d�d� + sin

2

�(e

�2


+ e

�2Æ

)d�

2

: (2.56)
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We note that the metri
 g as a geometri
 obje
t is still 
ompletely undetermined. This is

represented by the six unknowns V;U

A

; �; 
; Æ whi
h 
orrespond to the six unknown fun
tions

γ
ij

in the \3+1" de
omposition. We shall see below that the 
hara
teristi
 formulation leads

to a natural 
lassi�
ation of the �eld equations and the two gravitational degrees of freedom

are 
ontained in the fun
tions 
 and Æ. The remaining quantities are determined on ea
h

hypersurfa
e irrespe
tive of their history.

2.2.3 Introdu
tion of a tetrad

In order to 
lassify the �eld equations, it is 
onvenient to introdu
e basis ve
tors k; l;m; �m, where

l is a real and m; �m are 
omplex null-ve
tors and k is the null-ve
tor �eld introdu
ed above.

These ve
tors are required to satisfy the relations

k � l = 1; (2.57)

m � �m = 1; (2.58)

l � l = k � k = m �m = l �m = k �m = 0: (2.59)

If we use the 
omplex 
onjugate of the last equation we further obtain

�m � �m = l � �m = k � �m = 0: (2.60)

With the 
orresponding one forms the metri
 
an now be written as

g =

~

k


~

l+

~

l


~

k+

~

�m
 ~m+ ~m


~

�m: (2.61)

We note that in spite of the use of 
omplex ve
tors eventually all results will be real. In fa
t

if we write the 
omplex ve
tor as m = µ + iν, it follows dire
tly from the 
onditions imposed

on m, that µ and ν are spa
e-like ve
tors orthogonal to the null-ve
tors k and l. We 
on
lude

that k represents the null-surfa
es u = 
onst, l determines a unique null-dire
tion out of these

hypersurfa
es and the 
omplex ve
tor m de�nes two spatial dire
tions orthogonal to both k

and l. The only remaining freedom is the phase of m whi
h is normally �xed by relating �m

to the shear � (see Sa
hs for details). The bene�t of this parti
ular basis is that it provides a


onvenient way to 
reate linear 
ombinations of the va
uum �eld equations that 
an be 
lassi�ed

in a natural way.
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2.2.4 The �eld equations

We have already mentioned that the two gravitational degrees of freedom are 
ontained in

the metri
 fun
tions 
 and Æ. It is a remarkable property of the 
hara
teristi
 formalism that

it naturally leads to a 
lassi�
ation of the �eld equations whi
h re
e
ts the isolation of the

gravitational degrees of freedom. As originally shown by Bondi the �eld equations 
an be

grouped into

(i) 6 main equations:

(a) 4 hypersurfa
e equations: R

��

k

�

k

�

= R

��

k

�

m

�

= R

��

m

�

�m

�

= 0,

(b) 2 evolution equations: R

��

m

�

m

�

= 0,

(ii) 1 trivial equation: R

��

k

�

l

�

= 0,

(iii) 3 supplementary equations: R

��

l

�

m

�

= R

��

l

�

l

�

= 0.

The reasoning for this 
lassi�
ation is as follows. If we suppose that the main equations are

satis�ed, it 
an be shown that

(1) The trivial equation is satis�ed: R

��

l

�

k

�

= 0.

(2) R

��

l

�

m

�

vanishes along a null-geodesi
 (integral 
urve of k) either everywhere or

nowhere.

(3) If all equations ex
ept R

��

l

�

l

�

= 0 are satis�ed, it follows from the Bian
hi

identities that �

r

(r

2

R

��

l

�

l

�

) = 0.

We 
on
lude that the trivial equation is an algebrai
 
onsequen
e of the main equations. The

supplementary equations are satis�ed everywhere if they are satis�ed at some value r = 
onst

and the main equations are satis�ed. As far as the main equations are 
on
erned, we note that

(1) the hypersurfa
e equations do not 
ontain any derivatives of the metri
 fun
tions

with respe
t to u,

(2) the evolution equations 
ontain the derivatives 


;u

and Æ

;u

(although in several

forms, e.g. 


;ur

).

2.2.5 Boundary 
onditions

The boundary 
onditions are determined by the requirements that

(1) the spa
etime has Eu
lidean topology at large distan
e from the sour
e,

(2) the spa
etime is asymptoti
ally 
at,
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M

i

(�; �) pres
ribed on u = u

0

, r = 
onst


(r; �; �); Æ(r; �; �) spe
i�ed on u = u

0

r = 
onst

r = 
onst

u = u

1

u = u

0


; Æ;M

i

Figure 5: Evolution of the initial data in the 
hara
teristi
 formalism.

(3) gravitational radiation obeys an outgoing radiation boundary 
ondition.

As shown by Sa
hs (1962) these requirements are ne
essarily satis�ed if the following boundary


onditions are imposed.

(1) For any 
hoi
e of u one 
an go to the limit r !1 along ea
h ray.

(2) For this u and any 
hoi
e of �; � we have

lim

r!1

V=r = �1

lim

r!1

(rU

A

) = lim

r!1

� = lim

r!1


 = lim

r!1

Æ = 0.

(3) For u

0

� u � u

1

, r

0

� r � 1, 0 � � � �, 0 � � � 2� all metri
 
omponents and

quantities of interest 
an be expressed as a series in r

�1

with at most a �nite

pole at r =1.

2.2.6 Initial data and the integration of the �eld equations

The evolution of the metri
 variables V , U

A

, �, 
 and Æ 
an be split up into four steps. In the

dis
ussion of these steps it will be
ome obvious what type of initial data we need to spe
ify in

order to start the evolution of the metri
. We have graphi
ally illustrated the integration of the

�eld equations from time sli
e u

0

to u

1

in Fig. 5.

1.) We start by providing initial data for 
 and Æ on a hypersurfa
e u = u

0

. This means that

we need to spe
ify two fun
tions of (r; �; �).
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earth

light 
one u = u

0

Figure 6: Information on a past light 
one is insuÆ
ient to determine the future of the earth.

2.) Next the hypersurfa
e equations are integrated along r to obtain �, V , U

A

on the ini-

tial hypersurfa
e. For this purpose we need to spe
ify three fun
tions of integration M

i

(�; �).

A potential fourth fun
tion of integration for � is �xed by the boundary 
ondition lim

r!1

� = 0.

3.) We use the evolution equations in order to 
al
ulate 
 and Æ on the future hypersurfa
e

u = u

1

. The evolution equations 
ontain the u-derivatives of 
 and Æ in the form 


;ur

, Æ

;ur

. Con-

sequently the solution requires in prin
iple the integration over r to obtain the 
orresponding

u-derivatives. For this purpose we need to spe
ify two fun
tions of (u; �; �) as fun
tions of in-

tegration. These fun
tions are 
ommonly introdu
ed as the 
omplex news fun
tion

�


�u

(u; �; �).

Below we will illustrate the meaning of news fun
tion in more detail.

4.) Finally, the supplementary equations are used to evolve the M

i

(�; �) onto the hypersurfa
e

u = u

1

.

We 
omplete the des
ription of the 
hara
teristi
 formalism with an explanation why the news

fun
tion needs to be spe
i�ed for all values of u. For this purpose we 
onsider the path of an

obje
t, e.g. the earth, in spa
etime as illustrated in Fig. 6. Even if we have 
omplete data

on the past light 
one t + r = u

0

, we 
an still not determine the future of the earth. There

may be waves outside u = u

0

, that have not yet rea
hed the planet.

�


�u

(u; �; �) provides this

extra information and is, therefore, 
alled the news fun
tion. This is to be 
ontrasted with the

\3+1" de
omposition dis
ussed above, where the initial data on a sli
e t = 
onst 
ompletely

determines the evolution up to the spe
i�
ation of boundary 
onditions.

In se
tions 3 and 4 we will use a similar 
hara
teristi
 formulation with a di�erent gauge 
hoi
e

to evolve 
ylindri
ally symmetri
 va
uum spa
etimes and dynami
 
osmi
 strings. The presen
e

of matter in the latter 
ase does not result in any signi�
ant 
ompli
ations 
ompared with the
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t

x
0

dt

dx

Figure 7: A 2-dimensional grid with 
onstant spa
ing. We note that the domain does not have

to be re
tangular and di�erent values for dt and dx may be used.

va
uum 
ase des
ribed in this se
tion.

2.3 Numeri
al methods

In order to numeri
ally solve a set of di�erential equations, the equations have to be 
ast into

a form suitable for a 
omputer based treatment. The most 
ommon method used for this

purpose is �nite di�eren
ing whi
h repla
es derivatives with �nite di�eren
e expressions and

thus 
onverts di�erential equations into large sets of algebrai
 equations. Alternative methods,

as for example spe
tral or �nite element methods have been used su

essfully in various 
ases.

In this thesis, however, we will use �nite di�eren
e methods throughout and therefore restri
t

our des
ription to this approa
h. In parti
ular, we will 
on
entrate on �nite di�eren
ing in the


ase of two dimensions, time and one spatial dimension, whi
h we will label by the 
oordinates

t and x.

2.3.1 The numeri
al grid

Given a system of di�erential equations, our aim is to determine the solution f in a subset


 � R

2

. In �nite di�eren
ing the domain of f is repla
ed by a set of dis
rete grid points as

illustrated in Fig. 7 and the numeri
al s
heme will provide values for f at these grid points

only. If information of the fun
tion f is required between the grid points we will derive the


orresponding values from interpolation.

Throughout this work, we will only use uniform grids whi
h means that the distan
e dx between

neighbouring grid points is independent of position x and time t. At any given value of t the
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interval [x

0

; x

K

℄ will therefore be repla
ed by the set of points (x

0

, x

0

+ dx, x

0

+ 2dx,: : : , x

K

)

with

dx =

x

K

� x

0

K

: (2.62)

In se
tion 5 we will demonstrate how a 
oordinate transformation to a new spatial 
oordinate

y 
an be used to simulate an inhomogeneous grid in terms of the original 
oordinate x without

abandoning the 
on
ept of a uniform grid.

For the presentation of �nite di�eren
e expressions it is 
onvenient to introdu
e a short hand

notation for the fun
tion values at the grid points. For this purpose we de�ne f

n

k

:= f(x

k

; t

n

).

If the meaning is obvious we may omit either index.

2.3.2 Derivatives and �nite di�eren
es

We des
ribe the approximation of derivatives with �nite di�eren
es in the 
ase of spatial deriva-

tives. The same ideas apply to time derivatives. Suppose a fun
tion f is given at positions

x

0

; : : : ; x

K

for �xed time and we want to 
al
ulate

�

m

f

�x

m

at x

k

. For this purpose we expand

f in a Taylor series about x

k

whi
h allows us to express f

k

, f

k�1

, f

k+1

,: : : in terms of f and

its derivatives at x

k

. Next the derivative that needs to be 
al
ulated is expressed as a linear


ombination of the fun
tion values at neighbouring grid points. The required �nite di�eren
e

expression is then obtained from inserting the Taylor expansions for the f

k

, f

k�1

, f

k+1

; : : :

and 
omparing the 
oeÆ
ients on both sides of the equations. The number of grid points that

needs to be in
luded in this 
al
ulation depends on the degree of the derivative and the order

of a

ura
y to be a
hieved.

We illustrate these ideas by 
al
ulating the se
ond derivative f

00

k

with se
ond order a

ura
y.

We assume that the fun
tion f is known at the grid points x

k

, x

k�1

, x

k�2

and x

k�3

. By Taylor

expanding f around x

k

we 
an relate the fun
tion values to f and its derivatives at x

k

f

k

= f

k

; (2.63)

f

k�1

= f

k

� f

0

k

dx+

1

2

f

00

k

dx

2

�

1

6

f

000

k

dx

3

+O(dx

4

); (2.64)

f

k�2

= f

k

� f

0

k

2dx+

1

2

f

00

k

4dx

2

�

1

6

f

000

k

8dx

3

+O(dx

4

); (2.65)

f

k�3

= f

k

� f

0

k

3dx+

1

2

f

00

k

9dx

2

�

1

6

f

000

k

27dx

2

+O(dx

4

): (2.66)
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Next we write f

00

k

as a linear 
ombination of the fun
tion values

dx

2

� f

00

k

= Af

k

+Bf

k�1

+ Cf

k�2

+Df

k�3

: (2.67)

If we insert Eqs. (2.63)-(2.66) for the fun
tion values f

k�3

; : : : ; f

k

and 
ompare the 
oeÆ
ients

of both sides of the equation, we obtain the system of linear equations

A+B + C +D = 0;

B + 2C + 3D = 0;

B + 4C + 9D = 2;

B + 8C + 27D = 0:

(2.68)

The solution is A = 2, B = �5, C = 4, D = �1 and we 
an approximate the derivative f

00

k

with

se
ond order a

ura
y by

f

00

k

=

2f

k

� 5f

k�1

+ 4f

k�2

� f

k�3

dx

2

+O(dx

2

): (2.69)

In general, a one sided 
al
ulation as used in this example yields less a

urate estimates of

the derivative and two sided approximations are to be preferred. In our 
ase the 
entred �nite

di�eren
e expression is given by

f

00

k

=

f

k+1

� 2f

k

+ f

k�1

dx

2

+O(dx

2

): (2.70)

If we substitute expressions 
orresponding to (2.69) or (2.70) for all derivatives, the di�erential

equation is repla
ed by a large set of algebrai
 equations.

2.3.3 The leapfrog s
heme

The leapfrog s
heme is a se
ond order in spa
e and time �nite di�eren
ing s
heme in whi
h

three su

essive time-levels are used at ea
h integration step. If we assume that the di�erential

equation 
an be written in the form

f

;t

= H(f; f

;x

; f

;xx

; :::; x; t); (2.71)
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Figure 8: The leapfrog s
heme: In the evolution one sli
e is leapt over.

the right hand side 
an be evaluated on the n

th

time sli
e. The time derivative, on the other

hand, is approximated by

�f

�t

=

f

n+1

� f

n�1

2dt

; (2.72)

and the di�eren
e equation 
an be expli
itly solved for f

n+1

. Be
ause of the 
entred �nite

di�eren
e approximation for f

;t

, three time sli
es are involved in the 
al
ulation. As an example

we 
onsider the spe
ial 
ase where H = f

;x

. At the spatial position x

k

the �nite di�eren
e

equation is then given by

f

n+1

k

= f

n�1

k

+

dt

dx

(f

n

k+1

� f

n

k�1

): (2.73)

The value of f is taken on sli
e n � 1 and we \leap" a
ross sli
e n to 
al
ulate f

n+1

. This

property is s
hemati
ally illustrated in Fig. 8 and has given the s
heme its 
hara
teristi
 name.

The need to store the fun
tion values of two time sli
es makes this s
heme more memory

intensive than 2-level s
hemes su
h as the M
Corma
k s
heme dis
ussed in the next se
tion.

Se
ond order a

urate two-level s
hemes, on the other hand, involve more 
ompli
ated �nite

di�eren
e expressions and are therefore more CPU-intensive.

A potential problem of the leap-frog s
heme is its vulnerability to the so-
alled mesh-drifting

e�e
t, an instability that results from the de
oupling of odd and even mesh points. This

instability 
an often be 
ured by evolving some of the variables on a separate grid translated

with respe
t to the original one by half a grid step (staggered leap-frog) or introdu
ing arti�
ial

dissipation whi
h 
ouples odd and even grid points. In our appli
ation of this s
heme in se
tion
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3, however, we do not en
ounter this problem and have no need to use either of the remedies.

We �nally note that in Eq. (2.73) the fun
tion value on the new sli
e f

n+1

k

is expressed expli
itly

in terms of known fun
tion values on previous sli
es. Finite di�eren
ing s
hemes with this

property are 
alled expli
it s
hemes. In se
tion 2.3.6 we will, by 
ontrast, introdu
e an impli
it

s
heme where this is in general not possible for non-linear partial di�erential equations and

iterative methods or linear solvers are used to determine the f

n+1

k

.

2.3.4 The M
Corma
k s
heme

The M
Corma
k s
heme is another se
ond order a

urate expli
it �nite di�eren
ing method.

In 
ontrast to the leapfrog s
heme it is a two-level method, i.e. requires storage of one previous

sli
e only. However, this 
omes at the expense of two 
omputation steps in the 
al
ulation of

the new values, a predi
tor and a 
orre
tor step. We illustrate this method by 
onsidering the

partial di�erential equation

f

;t

= H(f; f

;x

; x; t): (2.74)

In the �rst step preliminary values on the new time sli
e are 
al
ulated a

ording to

~

f

n+1

k

= f

n

k

+�t �H

n

k;k�1

; (2.75)

where H

n

k;k�1

is the sour
e term evaluated to se
ond order a

ura
y at x

k�1=2

by using f

n

k�1

and f

n

k

. This predi
tor step itself is a �rst order a

urate s
heme, but the terms of �rst order

trun
ation error are eliminated in the 
orre
tor step

f

n+1

k

= f

n

k

+�t �

1

2

�

H

n

k;k�1

+

~

H

n+1

k+1;k

�

; (2.76)

where

~

H

n+1

k+1;k

is the sour
e term evaluated from the preliminary values

~

f

n+1

k

and

~

f

n+1

k+1

. The

extension to systems with more fun
tions is obvious.

2.3.5 Relaxation

Relaxation is a method for solving so-
alled two point boundary value problems, that is ordinary

di�erential equations (ODEs) where boundary 
onditions are given at di�erent lo
ations on the

grid. A straightforward integration to obtain the solution is not possible in these 
ases and one

needs to resort to more sophisti
ated te
hniques. One su
h te
hnique, of whi
h we will make
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extensive use in this work is numeri
al relaxation. In the 
ase of ordinary di�erential equations

only one independent 
oordinate is present whi
h 
an be visualised in Fig. 7 by suppressing

the time dimension so that we have only one row of grid points. It is straightforward to see

that any ordinary di�erential equation 
an be written as a �rst order system. Without loss of

generality we will therefore restri
t our dis
ussion to this 
ase. Suppose for example that we

have a system of 4 ODEs for 4 fun
tions A(x), B(x), C(x) and D(x) given by

G

i

(A;A

;x

; B;B

;x

; C;C

;x

;D;D

;x

) = 0; i = 1 : : : 4: (2.77)

A numeri
al solution 
onsists of 4K fun
tion values A

1

, B

1

, C

1

, D

1

, A

2

, B

2

and so on. It is


onvenient to introdu
e a ve
tor f

j

to label these values, i.e. f

1

:= A

1

, f

2

:= B

1

and so on. For

ea
h pair of grid points k, k � 1 we apply 
entred �nite di�eren
ing a

ording to

A =

1

2

(A

k

+A

k�1

); (2.78)

A

;x

=

A

k

�A

k�1

�x

; (2.79)

and likewise for the other fun
tions. In 
ombination with Eq. (2.77) this amounts up to 4(K�1)

algebrai
 equations for the 4K variables f

j

. This set is 
ompleted by 4 boundary 
onditions for

A, B, C and D and we arrive at 4K algebrai
 equations whi
h we write in the form

F

i

(f

j

) = 0: (2.80)

In general these equations are non-linear and we have to resort to iterative te
hniques to obtain

a solution f

j

. For this purpose we assume that f

j

is a solution of (2.80) and f

0

j

is a suÆ
iently


lose guess. Then 4K-dimensional Taylor expansion yields

0 = F

i

(f

j

) � F

i

(f

0

j

) +

X

j

�F

i

�f

j

�f

j

; (2.81)

where �f

j

= f

j

� f

0

j

. This is simply a system of linear equations whi
h we 
an write as

A�f = b; (2.82)
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Figure 9: The numeri
al sten
il used in the Crank Ni
holson s
heme to obtain 
entred se
ond

order a

urate expressions for f , f

;x

and f

;t

at position (x

k

+�x=2; t

n

+�t=2).

where

A

ij

=

�F

i

�f

j

; (2.83)

b

i

= �F

i

(f

0

j

): (2.84)

Even though the Ja
obi matrix A is a 4K by 4K matrix, it is a sparse matrix whi
h greatly

simpli�es its inversion. If the equations F

i

= 0 are ordered appropriately, A has blo
k diagonal

stru
ture and 
an be inverted by standard methods (see for example Press et al. 1989). Start-

ing with an initial guess f

0

j

, we 
an 
al
ulate the 
orre
tion �f

j

whi
h leads to an improved

approximation f

1

j

and the pro
ess is repeated until the norm jj�f

j

jj satis�es some 
onvergen
e


riterion. This iteration s
heme is the Newton-Raphson method generalized to 4K dimensions

and usually 
onverges fast.

2.3.6 The Crank-Ni
holson s
heme

The Crank-Ni
holson s
heme is a two-level evolution s
heme for partial di�erential equations

and 
an be 
onsidered a generalization of the relaxation s
heme. Again the system of equations

is rewritten as a �rst order system by introdu
ing auxiliary variables. For 
onvenien
e we will

illustrate the s
heme for one equation and one fun
tion f only. The extension to more fun
tions

is obvious. Consider the PDE

G(f; f

;t

; f

;x

; x; t) = 0 (2.85)

on a grid of the type shown in Fig. 7 with K points on ea
h sli
e t = 
onst. We 
an use a sten
il

of the type shown in Fig. 9 to obtain se
ond order 
entred �nite di�eren
e expressions for the
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fun
tions and their derivatives a

ording to

f =

1

4

(f

n+1

k

+ f

n+1

k�1

+ f

n

k

+ f

n

k�1

); (2.86)

f

;x

=

f

n+1

k

� f

n+1

k�1

+ f

n

k

� f

n

k�1

2�x

; (2.87)

f

;t

=

f

n+1

k

+ f

n+1

k�1

� f

n

k

� f

n

k�1

2�t

: (2.88)

Inserting these relations into Eq. (2.85) we obtain K�1 algebrai
 equations for the K unknown

values f

n+1

k

in terms of the known f

n

k

. The set is 
ompleted by the boundary 
ondition for f

and we are in exa
tly the same situation as in Eq. (2.80) in the relaxation s
heme. Note that

ea
h algebrai
 equation involves two unknown values f

n+1

k

, f

n+1

k�1

, so it is in general not possible

to obtain expli
it expressions similar to Eq. (2.73) in the leapfrog-s
heme. Therefore methods

like the Crank-Ni
holson s
heme are 
alled impli
it and a solution is obtained by using iterative

methods. The initial guess for the values on the new sli
e is usually taken from the previous

sli
e.

Before we apply these numeri
al s
hemes to general relativisti
 s
enarios, we dis
uss some

general properties of numeri
al evolution s
hemes.

2.3.7 Consisten
y

If we take the di�eren
e equations and 
al
ulate the f

n

k

as a Taylor series about some �xed

grid-point, we will again arrive at a di�erential equation for f . The di�eren
e between this

di�erential equation and the original one is the trun
ation error. The numeri
al s
heme is

said to be 
onsistent if the trun
ation error vanishes in the limit dx; dt ! 0 (see for example

Le Veque 1992). Assuming that dx and dt di�er by a 
onstant fa
tor in the limit dx ! 0, the

s
heme is of n

th

order a

ura
y if the leading term of the trun
ation error vanishes as dx

n

.

2.3.8 Stability

The 
on
ept of stability is 
on
erned with an exponentially in
reasing deviation of the numeri
al

solution from the solution of the underlying di�erential equation. If su
h a deviation is present

either due to the initial data or round o� errors, it will qui
kly swamp the entire numeri
al

solution and make the 
ode pra
ti
ally useless. The stability of a 
ode 
an depend on many

properties. Often 
hanging the grid parameters dx, dt has a substantial e�e
t on the stability.

In the 
ase of linear partial di�erential equations one 
an use the von Neumann stability analysis
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in order to test �nite di�eren
ing s
hemes for stability. For this purpose we assume that the

numeri
al grid is uniform, i.e. dx and dt are 
onstant. The solution of the di�eren
e equation


an then be expanded as a Fourier series

f

n

(x) =

X

�

^

f

n

(�)e

i�x

; (2.89)

where � is a spatial wave ve
tor (1-dimensional in our 
ase). It is suÆ
ient to 
onsider one

mode

^

f

n

(�)e

i�x

whi
h 
an be written as

^

f

n

�

= �(�)

n

e

i�x

; (2.90)

if the 
oeÆ
ients of the di�eren
e equations show suÆ
iently weak variation in spa
e and time

and 
an be 
onsidered nearly 
onstant. The important aspe
t is that the amplitude at some

time is obtained from that of the pre
eding time step by multipli
ation with a time independent

fa
tor �(�). If j�(�)j > 1 the s
heme is unstable. In pra
ti
e, Eq. (2.90) is inserted into the

di�eren
e equations whi
h then is solved for �. For many appli
ations, the result is the well

known Courant-Friedri
hs-Lewy 
ondition (CFL-
ondition)

�

�

�

�

�

i

� dt

dx

�

�

�

�

� 1; (2.91)

where the �

i

are the slopes of the 
hara
teristi
s of the underlying system of PDEs. An intuitive

interpretation of this result is that the numeri
al domain of dependen
y of the point where f

is to be 
al
ulated must 
ontain the physi
al one. Indeed this 
ondition was re
ognised as a

ne
essary stability 
ondition for any numeri
al s
heme by Courant, Friedri
hs, and Lewy (1928)

(See Courant et al. 1967 for an English translation). The CFL 
ondition is therefore 
ommonly

used in non-linear 
odes to determine the permissible Courant fa
tor dt=dx. We will illustrate

the use of this 
riterion in the evolution of non-linear radial os
illations of neutron stars in

se
tion 5.3.5.

2.3.9 Convergen
e

It is ne
essary to 
arefully distinguish between 
onsisten
y, stability and 
onvergen
e of a 
ode.

The 
onvergen
e of a numeri
al method is a stronger requirement than 
onsisten
y or stability.

It is quite obvious, for example that a 
onsistent method will not be 
onvergent if it is unstable.

In order to de�ne 
onvergen
e, we 
onsider a solution f of the system of di�erential equations

and a solution F of the 
orresponding di�eren
e equations. We note that F is never obtained
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in pra
ti
e due to round o� errors. A s
heme is said to 
onverge if

jf

n

k

� F

n

k

j ! 0 as dx; dt! 0: (2.92)

In the 
ase of linear equations 
onvergen
e 
an be ensured by the Lax Equivalen
e Theorem

whi
h states: Given a properly posed linear initial value problem and a �nite di�eren
e approx-

imation to it that satis�es the 
onsisten
y 
ondition, the stability is a ne
essary and suÆ
ient


ondition for 
onvergen
e (see for example Ri
htmyer and Morton 1967).

In the 
ase of non-linear equations there is no 
orresponding theorem but in some 
ases we will

be able to 
he
k our 
odes for 
onvergen
e by 
omparing the results with known analyti
 solu-

tions. If su
h analyti
 solutions are not available, we need to use referen
e solutions obtained

for high resolutions instead. We will thus be able to ensure the Cau
hy 
onvergen
e of the

numeri
al s
heme. This is, however, a weaker statement than Eq. (2.92) and does not stri
tly

guarantee 
onvergen
e to the solution of the di�erential equations.
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3 Cau
hy 
hara
teristi
 mat
hing in


ylindri
al symmetry

3.1 The idea of Cau
hy 
hara
teristi
 mat
hing

Cau
hy 
hara
teristi
 mat
hing (CCM) is a method that simultaneously makes use of the ben-

e�
ial properties of the \3+1" and the 
hara
teristi
 formalism. In se
tion 2.1 we have seen

that in the \3+1" 
ase spa
etime is de
omposed into 3-dimensional spa
e-like hypersurfa
es

threaded by a one parameter family of 
urves. The dynami
 variables are the 
omponents γ
ij

of the 3-metri
 of the hypersurfa
es. A 
omplete set of initial data 
onsists of values for γ
ij

and

their time derivatives on some initial hypersurfa
e. The se
ond order evolution equations then

determine the 4-metri
 of the spa
etime up to gauge transformations. This type of initial value

problem is known as a Cau
hy problem and has been extensively used for the numeri
al solution

of Einstein's �eld equations. It is however not suitable for the analysis of gravitational radiation

sin
e it is not 
lear how to in
orporate null in�nity into a �nite numeri
al grid via 
onformal

Figure 10: In this 
onformal diagram Cau
hy 
hara
teristi
 mat
hing is s
hemati
ally illus-

trated. In the inner region matter is evolved with a \3+1" s
heme whereas 
hara
teristi
 
oor-

dinates de�ned by the null geodesi
s are used in the outer va
uum region. The two formalisms

are mat
hed at the interfa
e at �nite radius.
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ompa
ti�
ation. Instead one uses approximative te
hniques to extra
t information about the

gravitational radiation at �nite radii and imposes outgoing radiation boundary 
onditions in

order to prevent in
oming gravitational waves. Unfortunately attempts to implement these

boundary 
onditions give rise to spurious re
e
ted numeri
al waves. Chara
teristi
 formalisms

solve this problem in an elegant way. Spa
etime is de
omposed into a 2-parameter family of

2-dimensional spa
e-like surfa
es threaded by two 1-parameter families of 
urves. At least one

of these families 
onsists of null geodesi
s, the 
hara
teristi
s of the propagation of radiation.

The spa
etime 
an be 
ompa
ti�ed by standard methods, exa
t boundary 
onditions 
an be

applied at future or past null in�nity and gravitational radiation 
an be properly analysed. In

regions of strong 
urvature, however, 
austi
s 
an form and the foliation along null geodesi
s

breaks down.

A possible remedy for this problem 
onsists in using both a \3+1" and a 
hara
teristi
 formu-

lation, ea
h in its preferred region. Normally an astrophysi
al s
enario is approximated as a

�nite inner region 
ontaining all the matter (a neutron star, for example) and the outer va
uum

region with an observer lo
ated at future null in�nity. In CCM a \3+1" s
heme is used for the

evolution of the interior and a 
hara
teristi
 formulation for the evolution of the exterior region.

At a �nite radius an interfa
e fa
ilitates the transfer of information between these two regions.

The method is illustrated in Fig. 10 where the dark shaded area represents the astrophysi
al

sour
e. Gravitational waves emitted from this sour
e travel along null geodesi
s whi
h are given

by straight lines at an angle of 45 degrees in this �gure. In the outer region the null geodesi
s

are used to de�ne the 
hara
teristi
 
oordinate axis.

The feasibility of 
ombining Cau
hy algorithms with 
hara
teristi
 methods in order to evolve

the gravitational �eld was �rst studied by Bishop (1992). The �rst attempts at obtaining nu-

meri
al evolutions have been 
arried out in one spatial dimension. The work of the Southamp-

ton CCM-group in 
ylindri
al symmetry will be dis
ussed in detail in the next se
tion. The

Pittsburgh relativity group studied CCM in spheri
al symmetry by evolving the Einstein-Klein-

Gordon system (G�omez et al. 1996). They have demonstrated se
ond order 
onvergen
e and

found no indi
ations of ba
k re
e
tion or instabilities at the interfa
e. After the demonstration

of the viability of CCM in one dimension attention shifted towards higher-dimensional prob-

lems. The Southampton relativity group fo
used their studies on the axisymmetri
 
ase. After

laying the theoreti
al foundations (d'Inverno and Vi
kers 1996, d'Inverno and Vi
kers 1997) a

great deal of work has gone into the development of an axisymmetri
 CCM 
ode (see Pollney

2000 for details). This 
ode has now been 
ompleted and is 
urrently being evaluated and

tested. In 
ontrast the Pittsburgh group has immediately turned their attention towards the
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general 3-dimensional 
ase. Bishop et al. (1996) and Bishop et al. (1997) have probed the use of

Cau
hy-
hara
teristi
 mat
hing in three dimensions by evolving non-linear s
alar waves in a 
at

spa
e-time. The appli
ation of these ideas to 3-dimensional problems in general relativity has

resulted in a module for the 
ombination of Cau
hy and 
hara
teristi
 
odes for the evolution

of a binary bla
k hole (Bishop et al. 1998). A more 
omprehensive overview of the ongoing

resear
h using Cau
hy-
hara
teristi
 mat
hing 
an be found in Wini
our (2001).

3.2 The Southampton CCM-proje
t

The Southampton CCM-proje
t is a long term proje
t devoted to the study of Cau
hy-
hara
-

teristi
 mat
hing in s
enarios of de
reasing symmetry assumptions (d'Inverno 2000). The �rst

step was to demonstrate the viability of the approa
h. That was done by Clarke and d'Inverno

(1994) by evolving the wave equation in 
at spa
etime. Attention then turned towards gravi-

tational waves in 
ylindri
al symmetry. The theoreti
al foundations were laid by Clarke et al.

(1995) and the resulting 
ode of Dubal et al. (1995) showed good agreement with analyti


solutions 
ontaining one gravitational degree of freedom. Furthermore Dubal et al. demon-

strated the superior performan
e of the CCM-method as 
ompared with the use of arti�
ial

outer boundary 
onditions in \3+1" s
hemes. d'Inverno et al. (2000) presented a generalisa-

tion of this 
ode to also in
lude the rotational degree of freedom. They �nd, however, that the


onvergen
e of the 
ode drops to �rst order level in later stages of the evolutions. In this work

we will present a new 
ode that allows us to in
lude the rotational degree of freedom in terms

of natural geometri
al variables with regular behaviour at null in�nity. This reformulation re-

sulted in improved a

ura
y, long term stability and ensures se
ond order 
onvergen
e over long

evolution times. We will demonstrate the improved quality by 
omparing the numeri
al results

with analyti
 solutions possessing both gravitational degrees of freedom.

The Southampton CCM-proje
t has 
ontinued meanwhile with the development of the axisym-

metri
 
ode mentioned in the previous se
tion.

3.3 The original 
ode

In this se
tion we will des
ribe the 
ylindri
ally symmetri
 Cau
hy 
hara
teristi
 mat
hing


ode developed by the Southampton Relativity Group (Clarke et al. 1995, Dubal et al. 1995).

This 
ode was used to reprodu
e the analyti
 solution by Weber and Wheeler (1957), whi
h

possesses one gravitational degree of freedom, with high a

ura
y and se
ond order 
onvergen
e.

d'Inverno et al. (2000) presented an extension of this 
ode based on the formulation of Clarke
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et al. to also in
lude the rotational degree of freedom. Their diÆ
ulties in obtaining a long term

stable se
ond order 
onvergent 
ode motivated the reinvestigation of the problem des
ribed in

this thesis.

In their derivation of the equations Clarke et al. �nd it ne
essary to de
ompose spa
etime

a

ording to the methods of Gero
h (1970) in order to eliminate irregularities of the equations

in the 
hara
teristi
 region. The Gero
h de
omposition plays a 
ru
ial role in our reformulation

and will also be used in se
tion 4 when we numeri
ally simulate 
osmi
 strings. Before we turn

our attention to the 
ylindri
ally symmetri
 CCM 
ode, we will therefore des
ribe the Gero
h

de
omposition in more detail.

3.3.1 The Gero
h de
omposition

A problem generally fa
ed in 
ylindri
al symmetry is that the spa
etime is not asymptoti
ally


at due to the in�nite extension in the z-dire
tion. The de
omposition of Gero
h (1970) solves

this problem by fa
toring out the Killing dire
tion and reformulating the 4-dimensional problem

in terms of two s
alar �elds on an asymptoti
ally 
at 3-dimensional spa
etime. Suppose, the

spa
etime admits a Killing �eld ξ� whi
h in the 
ase of 
ylindri
al symmetry simply is �
z

. Then

we de�ne the norm of the Killing ve
tor

� = ξ�ξ
�

; (3.1)

and the Gero
h twist

τ
�

= �ε
����

ξ�r�ξ�; (3.2)

where ε
����

is the 
ompletely antisymmetri
 Levi-Cevita tensor. These �elds are well de�ned

on the 3-dimensional spa
e S given by z = 
onst with the resulting metri


h

��

= g

��

�

1

�

ξ
�

ξ
�

: (3.3)

If D

�

denotes the 
ovariant derivative asso
iated with the 3-metri
 h, one 
an show that

D

[�

τ
�℄

= ε
����

ξ�R
�

�

ξ�: (3.4)
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In va
uum the right hand side vanishes so that τ
�

is 
url free and 
an be expressed in terms of

a potential

τ
�

= D

�

�: (3.5)

It is a remarkable fa
t that the right hand side of Eq. (3.4) will also vanish in some non-va
uum


ases. In the dis
ussion of 
osmi
 strings in se
tion 4 we will en
ounter su
h an example.

Gero
h has then shown that the Einstein equations for the metri
 g of the 4-dimensional

spa
etime 
an be written in terms of the two s
alar �elds � and � and the 3-metri
 h

R

ab

=

1

2

�

�2

[(D

a

�)(D

b

�)� h

ab

(D

m

�)(D

m

�)℄ +

1

2

�

�1

D

a

D

b

� �

1

4

�

�2

(D

a

�)(D

b

�)

+8�h

a

�

h

b

�

(T

��

�

1

2

g

��

T); (3.6)

D

2

� =

1

2

�

�1

(D

m

�)(D

m

�)� �

�1

(D

m

�)(D

m

�) + 16�(T

��

�

1

2

g

��

T)ξ�ξ� ; (3.7)

D

2

� =

3

2

�

�1

(D

m

�)(D

m

�); (3.8)

where Latin indi
es run from 0 to 2 and R

ab

is the Ri

i tensor asso
iated with the 3-metri
 h.

Note that even in the 
ase of a vanishing energy-momentum tensor T, the s
alar �elds � and �

present sour
e terms in the �eld equations (3.6) for the 3-metri
 h.

In the va
uum 
ase T

��

= 0, Sj�odin et al. (2000) have shown how it is possible to reformulate

the Einstein-Hilbert Lagrangian in terms of �, � and the 
onformal 3-metri


~

h

ab

= �h

ab

. This

leads dire
tly to the 3-dimensional energy-momentum tensor

T

ab

=

1

2

�

�2

[

~

D

a

�

~

D

b

� �

1

2

~

h

ab

~

h


d

(

~

D




�)(

~

D

d

�) +

~

D

a

�

~

D

b

� �

1

2

~

h

ab

~

h


d

(

~

D




�)(

~

D

d

�)℄; (3.9)

where

~

D

a

is the 
ovariant derivative asso
iated with the 
onformal 3-metri


~

h. Sin
e the Weyl-


urvature vanishes identi
ally in three dimensions, the 
urvature is 
ompletely determined by

the Ri

i tensor R

ab

, i.e. the energy-momentum tensor T

ab

whi
h in turn is determined by �

and � . Thus the gravitational degrees of freedom of the original 4-dimensional spa
etime are

represented by the s
alar �elds � and � . If matter is present in the 4-dimensional spa
etime,

there are extra terms on the right hand side of (3.9).
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3.3.2 The equations of the original 
ode

We will now turn our attention to the original 
ylindri
ally symmetri
 CCM 
ode of the

Southampton relativity group. An extensive des
ription of this 
ode and the derivation of

the equations 
an be found in Clarke et al. (1995) and Dubal et al. (1995). In order to illus-

trate the e�e
ts of our reformulation, we will in
lude here a rather detailed des
ription of their

equations and 
hoi
e of variables. They start with the metri
 in Jordan, Ehlers, Kundt and

Kompaneets (JEKK) form (Jordan et al. 1960, Kompaneets 1958)

ds

2

= e

2(
� )

(�dt

2

+ dr

2

) + r

2

e

�2 

d�

2

+ e

2 

(!d�+ dz)

2

; (3.10)

whi
h des
ribes a general 
ylindri
ally symmetri
 va
uum spa
etime. The metri
 fun
tions  ,

! and 
 are fun
tions of (r; t) only. In terms of the gauge freedom dis
ussed in se
tion 2.1.2

this 
hoi
e implies a vanishing shift ve
tor and the lapse is determined by the requirement that

g

tt

= �g

rr

. As a 
onsequen
e the null geodesi
s are given by the simple relations t�r = 
onst. In

the outer 
hara
teristi
 region, the line element is rewritten by transforming to the 
oordinates

u = t� r; (3.11)

y =

1

p

r

; (3.12)

and the regions are mat
hed at r = 1 = y. Clarke et al. �nd, however, that the 
ompa
ti�ed

�eld equations 
annot be made regular in this way. Therefore they fa
tor out the z-dire
tion

in the outer region a

ording to the Gero
h de
omposition des
ribed above. This leads to a

reformulation of the problem in terms of the variables

m =

� � 1

y

; (3.13)

w =

�

y

; (3.14)

where � is the Gero
h potential and � the norm of the z-Killing ve
tor. These are related to

the metri
 fun
tions  and ! by Eqs. (3.1) and (3.2) whi
h in this parti
ular 
ase be
ome

� = e

2 

; (3.15)

�

;y

= y

2

e

4 

!

;u

: (3.16)
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With this 
hoi
e of variables one obtains two evolution equations for  and ! in the interior

Cau
hy region and a 
onstraint equation for 
. Dubal et al. write this set of equations as a

�rst order system

 

;t

=

1

r

~

L; (3.17)

!

;t

= �2e

�4 

L

�

z

; (3.18)

~

L

;t

=

1

r

[r

2

 

;rr

+ r 

;r

�

1

2

e

4 

!

2

;r

+ 2e

�4 

(L

�

z

)

2

℄; (3.19)

L

�

z;t

=

1

r

e

4 

(

1

2

!

;r

�

1

2

r!

;rr

� 2r 

;r

!

;r

); (3.20)

�

;r

=

1

4r

e

4 

!

2

;r

�  

;r

+ r 

2

;r

+

1

r

[

~

L

2

+ e

�4 

(L

�

z

)

2

℄; (3.21)

where � = 
 �  . The 
orresponding set of equations in the 
hara
teristi
 region is given by

two evolution equations for m and w and a hypersurfa
e equation for 
 whi
h is again written

as a �rst order system

m

;u

= �M; (3.22)

w

;u

= �W; (3.23)

M

;y

=�

1

�

(yw)

;

yW +

1

4�

�

�y(m+ y

2

m

;yy

+ 3ym

;y

)

+

1

�

y

2

(m

2

+ 2ymm

;y

� w

2

� 2yww

;y

+ y

2

m

2

;y

� y

2

w

2

;y

)

�

;

(3.24)

W

;y

=

1

�

(yw)

;y

M +

1

4�

�

�y(w + y

2

w

;yy

+ 3yw

;y

)

+

1

�

2y

2

(mw + ymw

;y

+ ywm

;y

+ y

2

m

;y

+ y

2

m

;y

w

;y

)

�

;

(3.25)




;y

=�

1

8�

2

y[m

2

+w

2

+ 2y(mm

;y

+ ww

;y

) + y

2

(m

2

;y

+ w

2

;y

)℄: (3.26)
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The transformation between the two pairs of variables ( ; !) and (m;w) and their derivatives

is implemented at the interfa
e at r = 1 = y a

ording to the relations

~

L =

M

2y

; (3.27)

!

;r

=

W

y�

; (3.28)

m =

1

y

(e

2 

� 1); (3.29)

(yw)

;y

= �

2

r

L

�

z

: (3.30)

The problemati
 relations are (3.28) and (3.30) whi
h involve the spatial derivative of ! and w.

The presen
e of spatial derivatives in 
ombination with the interpolation te
hniques applied at

the interfa
e make the implementation of these relations a rather subtle issue.

The 
ode of Dubal et al. formed the starting point for our investigation of the problem. This


ode has been well 
he
ked in the non-rotating 
ase but did not in
lude the implementation of

Eqs. (3.28) and (3.30) for the rotational variables ! and w at the interfa
e. In this work we

therefore started with the addition of these missing modules to the original 
ode. In order to

des
ribe our implementation it is ne
essary to �rst dis
uss the numeri
al te
hniques, in par-

ti
ular those underlying the transmission of information from the Cau
hy to the 
hara
teristi


region and vi
e versa.

3.3.3 The numeri
al implementation

We will now dis
uss the numeri
al implementation of Eqs. (3.17)-(3.30). The numeri
al grid

used for the evolution 
onsists of an inner Cau
hy region whi
h 
overs the range 0 � r � 1

and the outer 
hara
teristi
 region extending from r = 1 to in�nity whi
h 
orresponds to the

range 1 � y � 0. The evolution equations in these regions are dis
retized in a straightforward

way using the leapfrog s
heme des
ribed in se
tion 2.3.3 while se
ond order 
entered �nite

di�eren
ing is used for the 
onstraints. If we assume that all fun
tions are known on the time

sli
es n, n� 1 and n� 2, a full evolution 
y
le 
onsists of the following steps.

(1) Evolution of  , !,

~

L and L

�

z

at the interior grid points of the Cau
hy region

a

ording to Eqs. (3.17)-(3.20).

(2) Update of these variables at the origin a

ording to the inner boundary 
onditions

 

;r

= !

;r

=

~

L

;r

= L

�

z;r

= 0.
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(3) Evolution of  and ! at the outer boundary of the Cau
hy grid (r = 1) a

ording

to Eqs. (3.17), (3.18).

(4) Extra
tion of  and ! from the interfa
e at 1 + dr on the Cau
hy grid on time

sli
e n.

(5) Evolution of

~

L, L

�

z

at the outer boundary of the Cau
hy grid (r = 1) a

ording

to Eqs. (3.19), (3.20).

(6) Cal
ulation of � on the Cau
hy grid via quadrature a

ording to Eq. (3.21).

(7) Evolution ofm and w in the 
hara
teristi
 region a

ording to Eqs. (3.22), (3.23).

(8) Extra
tion of m and w from the interfa
e at 1+ dy on the 
hara
teristi
 grid on

time sli
e n+ 1.

(9) Cal
ulation of M , W and 
 on the 
hara
teristi
 grid via quadrature a

ording

to Eqs. (3.24)-(3.26).

The 
ru
ial steps whi
h provide the 
ow of information through the interfa
e are (4) and (8).

These steps together with the start up pro
edure required to get the leap-frog s
heme running

will now be dis
ussed in more detail. We start with the interfa
e.

We �rst note that the interfa
e is �xed at the radial position r = 1 = y. Sin
e we always have the

freedom to res
ale the radial 
oordinate r by a 
onstant fa
tor, this implies no loss of generality.

From a numeri
al point of view the need of an interfa
e arises from the 
al
ulation of spatial

derivatives at r = 1 on the Cau
hy grid and y = 1 on the 
hara
teristi
 grid. The 
entred �nite

di�eren
ing used for the leapfrog s
heme as illustrated in Eq. (2.73) requires knowledge of the

Cau
hy variables at r = 1 + dr and the 
hara
teristi
 variables at y = 1 + dy for this purpose.

In order to obtain these values, they need to be 
al
ulated with interpolation te
hniques using

Eqs. (3.27)-(3.30). We will des
ribe this pro
ess in the 
ase of the dire
tion \
har!Cau
hy"


orresponding to step (4). The reverse dire
tion in step (8) works in 
omplete analogy. The

situation is graphi
ally illustrated in Fig. 11. The derivatives of a fun
tion f at r = 1 
an be


al
ulated to se
ond order a

ura
y by 
entred �nite di�eren
ing

f

;r

j

K

=

f

K+1

� f

K�1

2dr

; (3.31)

f

;rr

j

K

=

f

K+1

� 2f

K

+ f

K�1

dr

2

; (3.32)

if f

K+1

is obtained from interpolation to fourth order a

ura
y in the 
hara
teristi
 region. For

this purpose  , !

;r

,

~

L and L

�

z

are 
al
ulated in terms of the 
hara
teristi
 variables a

ording

to Eqs. (3.27)-(3.30) at the 12 points of the 
hara
teristi
 region (in
luding 3 points at the
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characteristic regionCauchy region

dt

�y

r

K�1

r

K

r = 1 = y

t; u

du

dr

dy

�r

r

K+1

n� 2

n� 1

n

Figure 11: The interfa
e in the dire
tion from the 
hara
teristi
 to the Cau
hy region. See the

text for details.

interfa
e) indi
ated by �lled 
ir
les in Fig. 11. These values 
an then be used to obtain the

fun
tion values  

K+1

and !

K+1

at lo
ation r

K+1

with the required a

ura
y.

An alternative to this method 
onsists in using the same interpolation te
hnique to 
al
ulate

the r-derivatives  

;r

and !

;r

at grid point K + 1 instead of the fun
tion values  and !. We


an then 
al
ulate the r-derivatives at the interfa
e from

f

;r

j

K

=

f

;r

j

K+1

+ f

;r

j

K�1

2

; (3.33)

f

;rr

j

K

=

f

;r

j

K+1

� f

;r

j

K�1

2dr

: (3.34)

Even though this alternative looks natural for the transformation between ! and w be
ause

these variables are related via their derivatives a

ording to Eq. (3.28), it does not lead to any

improvement of the performan
e of the 
ode.

The se
ond point we need to dis
uss is the so-
alled start-up problem. It is an intrinsi
 diÆ
ulty

of 3-level s
hemes su
h as the leap-frog algorithm that the spe
i�
ation of initial data on one

time sli
e will not be suÆ
ient to start the numeri
al engine. Instead di�erent te
hniques need

to be used to obtain data on auxiliary time sli
es. Due to the requirements of the fourth-order

interpolation at the interfa
e we need information on two additional sli
es. The data on these
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auxiliary sli
es are 
al
ulated in three steps.

(1) The �rst order Euler s
heme (see for example Press et al. 1989) is used to


al
ulate data at t = t

0

� dt=2.

(2) This auxiliary time sli
e is then used to determine the variables at t = t

0

� dt

a

ording to the leapfrog s
heme.

(3) In another leapfrog step, this time using the full time step dt, data is 
al
ulated

at t

0

� 2dt.

An alternative treatment at the interfa
e is required for this start-up pro
edure, be
ause the

ne
essary three time-sli
es are not available at this stage. For this purpose the Cau
hy grid

is extended into the 
hara
teristi
 region by 10 grid points. The derivatives of the Cau
hy

variables 
an thus be 
al
ulated at r = 1 using 
entred �nite di�eren
ing and the derivatives of

the 
hara
teristi
 variables follow from 
hain-rule. The treatment of the outer boundary of the

Cau
hy grid is irrelevant for the numeri
al evolution, sin
e the spurious signal 
annot travel

a
ross the additional 10 grid points during the three evolution steps at the start-up pro
edure

and these points are not used in the remaining evolution.

3.3.4 In
luding the rotational degree of freedom !

In our �rst attempt to in
lude the rotational degree of freedom we have made use of the set

of variables of se
tion 3.3.2, namely  , ! and � in the inner and m, w and 
 in the outer

region. For this purpose we have extended the interfa
e of the original 
ode to also in
lude the

transformations between ! and w as des
ribed in the previous se
tion. In order to test the 
ode

we use the analyti
 solution from Xanthopoulos (1986) whi
h we will dis
uss in more detail in

se
tion 3.5.2. In Eqs. (3.55)-(3.68) we give analyti
 expressions for this solution in terms of the

Killing ve
tor �, the Gero
h potential � and the metri
 fun
tion 
. The 
orresponding results

for the variables  , m and w are obtained straightforwardly from their de�nitions (3.13)-(3.15).

The transformation into values for the fun
tion ! is more 
ompli
ated. The result is given by

Sj�odin et al. (2000)

!(t; r) =

p

a

2

+ 1(X +Q� 2)

Z � Y

2aZ

; (3.35)

where the auxiliary fun
tions Q, X, Y and Z are de�ned in Eqs. (3.55)-(3.58). We have not

been able, however, to obtain a long term stable evolution in this formulation of the problem.

For 300 grid points in ea
h region instability set in after less than 1000 time steps and from

the pattern of the noise it is 
lear that the problems originate at the interfa
e. In our attempts
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to over
ome the instability we have varied the obvious parameters su
h as the Courant fa
tor

and the number of grid points over a large range, but no improvement has been a
hieved. We

have also used the alternative implementation of the interfa
e a

ording to Eqs. (3.33), (3.34).

Even though this alternative looks quite natural at least for the transformation between ! and

w whi
h are related via their derivatives a

ording to (3.28), we did not a
hieve a signi�
antly

better performan
e with this method. Finally we have 
hanged the start time of the numeri
al

evolution and, thus, the initial data. The obvious 
hoi
e t = 0 is not possible be
ause some

derivatives of Xanthopoulos' solution are dis
ontinuous at t = 0, but any positive value large

enough to ensure that the start-up pro
edure does not extend to negative times 
an be 
hosen.

Again the 
ode be
ame unstable after less than 1000 time steps. We have therefore de
ided to

restart the investigation of this problem by looking for alternative sets of variables.

3.4 A reformulation of the problem

A striking pe
uliarity of the formulation des
ribed above is the drasti
ally di�erent treatment

of the Cau
hy and the 
hara
teristi
 region. In view of the numeri
al subtleties asso
iated with

the interfa
e one may question the wisdom of fa
toring out the z-dire
tion in one region and

work in the framework of the 4-dimensional spa
etime in the other. It rather seems natural to

look for as homogeneous a des
ription of the whole spa
etime as possible. In this 
ontext it is

worth noting that the restri
tion of the Gero
h de
omposition to the 
hara
teristi
 region was

a voluntary 
hoi
e and not enfor
ed at any stage of the derivation of the equations. We have

therefore de
ided to fa
tor out the z-dire
tion in the Cau
hy region as well and thus Gero
h

de
omposed the whole spa
etime. This enables us to use the same set of fundamental variables

throughout spa
etime and thus obtain almost trivial interfa
e relations. A 
loser investigation

of the equations suggests that aside from the metri
 fun
tion 
 the geometri
 variables � and

� are the natural variables to des
ribe the 
ylindri
ally symmetri
 spa
etime. With this 
hoi
e

the equations in the Cau
hy region 
an be written as

�

;tt

=

1

�

(�

2

;t

� �

2

;r

+ �

2

;r

� �

2

;t

) + �

;rr

+

�

;r

r

; (3.36)

�

;tt

=

2

�

(�

;t

�

;t

� �

;r

�

;r

) + �

;rr

+

1

r

�

;r

; (3.37)




;r

=

r

4�

2

(�

2

;r

+ �

2

;t

+ �

2

;r

+ �

2

;t

): (3.38)

In pra
ti
e we use �

;t

and �

;t

as auxiliary variables in order to write Eqs. (3.36), (3.37) as a �rst

order system. If we transform to the new set of variables the equations in the 
hara
teristi
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region be
ome

�

;u

= y�M; (3.39)

�

;u

= y�W; (3.40)

M

;y

= �

y

4�

h

y�

;yy

+ �

;y

+

y

�

(�

2

;y

� �

2

;y

)

i

�W

�

;y

�

; (3.41)

W

;y

= �

y

4�

�

y�

;yy

+ �

;y

� 2

y

�

�

;y

�

+M

�

;y

�

; (3.42)




;y

= �

y

8�

2

(�

2

;y

+ �

2

;y

): (3.43)

Finally the non-trivial relations at the interfa
e are now given by

�

;t

= y�M; (3.44)

�

;t

= y�W: (3.45)

We have developed a 
ode using the numeri
al te
hniques of se
tion 3.3.3 based on these evo-

lution equations and interfa
e relations.

3.5 Testing the 
ode

In order to test the performan
e of the new 
ode, we will 
he
k it against analyti
 solutions

with one and two gravitational degrees of freedom. Furthermore we will demonstrate its inter-

nal 
onsisten
y with a time dependent 
onvergen
e analysis.

We have already mentioned the va
uum solution by Weber and Wheeler (1957) that was su
-


essfully used by Dubal et al. to test their CCM 
ode. A solution with both gravitational

degrees of freedom was derived by Xanthopoulos (1986). Both these solutions 
an be rewritten

in terms of our variables �, � and 
 and thus 
ompared with the numeri
al results.

3.5.1 The Weber-Wheeler wave

The analyti
 solution by Weber and Wheeler des
ribes a gravitational pulse of the \+" polar-

ization mode that moves in from past null in�nity, implodes on the axis and emanates away to

future null in�nity. The analyti
 expressions in terms of � and 
 have been derived in Sj�odin
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et al. (2000). In the Cau
hy region it is 
onvenient to introdu
e the auxiliary quantities

X = a

2

+ r

2

� t

2

; (3.46)

Y = X

2

+ 4a

2

t

2

; (3.47)

and the Weber-Wheeler wave 
an be written as

� = exp

2

4

2b

s

2(X +

p

Y )

Y

3

5

; (3.48)


 =

b

2

2a

2

�

1� 2a

2

r

2

X

2

� 4a

2

t

2

Y

2

�

a

2

+ t

2

� r

2

p

Y

�

; (3.49)

where a and b are 
onstants representing the width and amplitude of the pulse. The 
orre-

sponding result in terms of the 
hara
teristi
 
oordinates u, y is

~

X = a

2

y

2

� u

2

y

2

� 2u; (3.50)

~

Y =

~

X

2

+ 4a

2

(uy

2

+ 1); (3.51)

� = exp

2

4

2by

s

2(

~

X +

p

~

Y )

~

Y

3

5

; (3.52)


 =

b

2

2a

2

"

1� 2a

2

~

X

2

� 4a

2

(uy

2

+ 1)

2

~

Y

2

�

a

2

y

2

+ u

2

y

2

+ 2u

p

~

Y

#

: (3.53)

The initial values for � and its time derivative are pres
ribed a

ording to these equations

whereas 
 on the initial sli
e is 
al
ulated via quadrature from the 
onstraint equations (3.38)

and (3.43). In order to plot the solution for 0 � r <1 we introdu
e the radial variable

w =

8

<

:

r for 0 � r � 1

3�

2

p

r

for r > 1:

(3.54)

In Fig. 12 we show the numeri
al results for � and 
 and their deviation from the analyti


values obtained for a = 2 and b = 0:5 using 1200 grid points in ea
h region and a Courant

fa
tor of 0.45. As in the 
ase of the original 
ode from Dubal et al. we �nd that a Courant

fa
tor < 0:5 is required for a stable evolution. The plots show the in
oming pulse in � whi
h

is re
e
ted at the origin and then moves outwards to null in�nity. The relatively large number

of grid points is required to a
hieve a high a

ura
y at early times in modelling the steep
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Figure 12: The numeri
al solutions for � and 
 of the Weber-Wheeler wave for a = 0:5, b = 2

obtained with 1200 grid points in ea
h region (left panels). In the right panels the 
orresponding

deviation from the analyti
 result is ampli�ed by 10

5

and 10

6

, respe
tively. For presentation

purposes � and 
 are viewed from di�erent angles.

gradients of the in
oming pulse. If the 
al
ulation starts at a later time or a smaller parameter

a for the width of the pulse is used, the same a

ura
y is obtained with signi�
antly fewer grid

points. We also see that longer runs do not reveal any new features as the metri
 variables

approa
h their Minkowskian values after t � 5. This solution, however, does not provide a test

for the rotational degree of freedom. For that purpose we need an analyti
 solution with both

gravitational degrees of freedom.

3.5.2 Xanthopoulos' rotating solution

The next solution we 
onsider is one due to Xanthopoulos (1986) whi
h has a 
oni
al singularity

on the z-axis and therefore des
ribes a rotating va
uum solution with a 
osmi
 string type

singularity. The solution has been rewritten in terms of our variables by Sj�odin et al. (2000).
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Again it is 
onvenient to introdu
e auxiliary quantities

Q = r

2

� t

2

+ 1; (3.55)

X =

p

Q

2

+ 4t

2

; (3.56)

Y =

1

2

[(2a

2

+ 1)X +Q℄ + 1� a

p

2(X �Q); (3.57)

Z =

1

2

[(2a

2

+ 1)X +Q℄� 1; (3.58)

where a is a free parameter whi
h 
an take on any non-zero value. The solution derived by

Xanthopoulos then be
omes

�(t; �) =

Z

Y

; (3.59)

�(t; �) = �

p

2(a

2

+ 1)

p

X +Q

Y

; (3.60)


(t; �) =

1

2

ln

Z

a

2

X

: (3.61)

In the outer region where we use the 
oordinates (u; y) the result is

~

Q = y

2

� u

2

y

2

� 2u; (3.62)

~

X =

q

~

Q

2

+ 4(uy

2

+ 1)

2

; (3.63)

~

Y =

1

2

[(2a

2

+ 1)

~

X +

~

Q℄ + y

2

� ay

q

2(

~

X �

~

Q); (3.64)

~

Z =

1

2

[(2a

2

+ 1)

~

X +

~

Q℄� y

2

; (3.65)

�(u; y) =

~

Z

~

Y

; (3.66)

�(u; y) = �

p

2(a

2

+ 1)

q

~

X +

~

Q

~

Y

; (3.67)


(u; y) =

1

2

ln

~

Z

a

2

~

X

: (3.68)

In Fig. 13 we show the numeri
al results and the deviation from the analyti
 values obtained

for a = 1 and a Courant fa
tor of 0.45. In this solution no steep gradients are present and 300
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Figure 13: The numeri
al solutions for �, � and 
 of Xanthopoulos' spa
etime for a = 1 obtained

with 300 grid points in ea
h region (left panels). In the right panels the 
orresponding deviation

from the analyti
 result is ampli�ed by 10

5

and 10

6

, respe
tively. The spatial 
oordinate w is

de�ned in Eq. (3.54).

grid points in ea
h region are suÆ
ient to reprodu
e the analyti
 values to within a relative

error of about 10

�5

. Again longer runs do not reveal any further features as the metri
 settles

down into Minkowskian values. We 
on
lude that the 
ode reprodu
es analyti
 solutions with

one or two gravitational degrees of freedom with high a

ura
y over the dynami
ally relevant
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Figure 14: The 
onvergen
e fa
tor `

2

[	

300

℄=`

2

[	

600

℄ is plotted as a fun
tion of time for the

variables �, � and 
. For our se
ond order s
heme we obtain a 
onstant 
onvergen
e fa
tor of

4 expe
ted for doubling the grid resolution.

time intervals.

3.5.3 Time dependent 
onvergen
e analysis

Even though the a

ura
y and long term stability of the 
ode has been demonstrated in the

previous se
tions, we still have to make sure that it is also se
ond order 
onvergent. In parti
ular

the start-up pro
edure des
ribed in se
tion 3.3.3 and the use therein of the Euler s
heme to


al
ulate the auxiliary time sli
e at �dt=2 might raise questions in this respe
t.

For the 
onvergen
e analysis we de�ne the `

2

-norm of the deviation of a numeri
al solution 	

K

as a fun
tion of time

�	

K

k

= 	

K

k

�	(x

k

); (3.69)

`

2

[�	

K

℄(t) =

s

P

k

�

�	

K

k

(t)

�

2

K

: (3.70)

Here 	

k

is the exa
t and 	

K

k

the numeri
al value at grid point k obtained for a total of K

grid points. We have 
al
ulated the `

2

norm for the Xanthopoulos solution of the previous
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se
tion using 300 and 600 grid points in ea
h region. In Fig. 14 we plot the quotient as a

fun
tion of time. Corresponding to the in
rease of the grid resolution by a fa
tor of 2 we expe
t

a 
onvergen
e fa
tor of 4 for the se
ond order s
heme. In spite of the use of the �rst order

Euler method for the start-up, se
ond order 
onvergen
e is 
learly maintained throughout the

dynami
ally relevant evolution.
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4 Numeri
al evolution of ex
ited 
osmi


strings

4.1 Introdu
tion

A

ording to the standard \big bang" model of 
osmology, the universe is 
ontinuously ex-

panding and 
ooling and was extremely hot and dense in its early stages. The grand uni�ed

theories (GUT) of elementary parti
le physi
s predi
t phase transitions to o

ur as a result of

this 
ooling pro
ess in the early universe. These result in topologi
al defe
ts, regions with the

\old symmetry" surrounded by \new symmetry". The topology of the defe
ts depends on the

symmetry groups 
hara
terising the involved �elds before and after the symmetry breaking.

Cosmi
 strings are a 1-dimensional, \string-like" version of these topologi
al defe
ts. The type

of strings usually 
onsidered from the astrophysi
al point of view has a mass per unit length

� � 10

�6

in natural units (~ = G = 
 = 1). The 
orresponding phase transitions are predi
ted

to have o

urred at the GUT energy s
ale 10

15

GeV. Strings with signi�
antly higher mass


reated at higher energy s
ales 
annot be ruled out, however, and their treatment 
an no longer

be a
hieved in the weak-�eld limit.

Numeri
al simulations by Va
haspati and Vilenkin (1984) show that 
osmi
 strings are 
reated

in the form of a network of in�nitely long or loop like strings. In this work we will fo
us on

in�nitely long strings whi
h are modelled in the framework of 
ylindri
al symmetry.

Cosmi
 strings have 
aught the interest of astrophysi
ists and relativists for several reasons.

Most importantly the suggestion that 
osmi
 strings be seeds for galaxy formation by Zel'dovi
h

(1980) has given rise to intense e�orts to understand the evolution of the resulting density per-

turbations (see e.g. Turok and Brandenburger 1986). Cosmi
 strings are also thought to be

sour
es of gravitational radiation (Vilenkin and Shellard 1994). Below we will study the in-

tera
tion of an in�nitely long 
osmi
 string with a wave pulse with one gravitational degree of

freedom. Cosmi
 strings have also been 
onsidered of astrophysi
al relevan
e be
ause of the

bending of light rays that arises from the 
oni
al stru
ture of the resulting spa
etime. It has been

shown by Vilenkin (1981) that the geometry around an isolated 
osmi
 string is Minkowskian

minus a wedge, the \de�
it angle", and 
onsequently 
osmi
 strings may a
t as gravitational

lenses.

Even though stati
 
osmi
 strings in 
ylindri
al symmetry have been studied extensively in the

past either in Minkowskian or 
urved spa
etime (see e.g. Laguna-Castillo and Matzner 1987,

Gar�nkle 1985), no solution has been obtained, to our knowledge, for a dynami
 
osmi
 string
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oupled to gravity via the fully non-linear Einstein equations. Below we will present a numeri
al

solution of this s
enario and investigate the behaviour of a 
osmi
 string ex
ited by gravitational

radiation. After presenting the mathemati
al des
ription of a 
osmi
 string in the next se
tion

we will derive the equations of a dynami
 
osmi
 string 
oupled to gravity. In se
tion 4.4 we

will des
ribe the numeri
al treatment of these equations. The simple s
enario of a stati
 
osmi


string in Minkowski spa
etime presents already most of the subtleties involved in solving the

general problem and is therefore suitable for illustrating our numeri
al methods. Subsequently

we address a stati
 string in 
urved spa
etime and �nally present the dynami
 
ode. This 
ode

is extensively tested in se
tion 4.5 before we investigate the time evolution in se
tion 4.6.

The results and te
hniques presented in this se
tion 
an also be found in Sperhake et al. (2000).

We 
on
lude this introdu
tion with some 
omments on the numeri
al formulations used in this

se
tion. We have seen above how the 
ombination of an interior Cau
hy evolution with a 
har-

a
teristi
 evolution in the exterior region leads to a stable a

urate simulation of 
ylindri
ally

symmetry va
uum spa
etimes. In a natural extension of this proje
t we studied the in
lusion of

matter in the form of a 
ylindri
ally symmetri
 
osmi
 string. Su
h an extension of the CCM-


ode of the previous se
tion has been developed, but no long term stable evolutions have been

a
hieved with that 
ode. Consequently we have restarted the investigation. For 
onvenien
e

this has been done in a purely 
hara
teristi
 framework and �nally resulted in the long-term

stable, a

urate 
ode des
ribed below. In the 
ourse of this work we have isolated the existen
e

of exponentially diverging solutions and the 
orresponding diÆ
ulties at the outer boundary as

the sour
e of the problems. We will des
ribe how these diÆ
ulties 
an be naturally 
ontrolled

with the use of impli
it numeri
al te
hniques. The use of su
h te
hniques, however, is by no

means restri
ted to 
hara
teristi
 methods and we have no reason to believe that an impli
it

Cau
hy-
hara
teristi
 mat
hing 
ode would perform less satisfa
torily. Su
h an impli
it CCM


ode has been tested in the simple 
ase of a 
ylindri
ally symmetri
 va
uum spa
etime with

vanishing rotation and has lead to an a

urate long-term stable evolution of the Weber-Wheeler

wave. From this point of view the 
hoi
e of a 
hara
teristi
 formulation for the work des
ribed

in this se
tion is merely a 
onsequen
e of the 
hronology in whi
h progress has been a
hieved.

4.2 Mathemati
al des
ription of a 
osmi
 string

In the following work we will use 
ylindri
al 
oordinates r, �, z. Here z is the Killing dire
tion


orresponding to 
ylindri
al symmetry and r, � are standard polar 
oordinates. In 4-dimensional

spa
etime the time 
oordinate is t, but we will apply a 
hara
teristi
 formalism for the numeri
al
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solution and therefore also use the retarded time u = t � r. The simplest model of a 
osmi


string 
onsists of a s
alar �eld � 
oupled to a U(1)-gauge �eld A

�

. The Lagrangian for these


oupled �elds is given by

L

M

= �j(r

�

+ ieA

�

)�j

2

� V (�)�

1

4

F

��

F

��

: (4.1)

Here e is a 
onstant, whi
h des
ribes the 
oupling between the s
alar and the ve
tor �eld. The

self-
oupling potential V (�) has the \Mexi
an-hat" shape predi
ted by the standard model of

elementary parti
le physi
s and F

��

is the �eld tensor

F

��

= r

�

A

�

�r

�

A

�

; (4.2)

V (�) = 2�(�

2

� h�i

2

)

2

; (4.3)

where � is the self-
oupling 
onstant of the s
alar �eld. It turns out to be useful to introdu
e

the Higgs va
uum expe
tation value of the s
alar �eld as a parameter � = 2h�i

2

. Generalizing

the notation of Gar�nkle (1985) we write the �elds as

� =

S

p

2

e

i 

; (4.4)

A

�

=

1

e

(P � 1)r

�

�; (4.5)

where P , S and  are fun
tions of u, r, �. From now on, however, we will make the simplifying

assumption of 
ylindri
al symmetry. Then P and S are fun
tions of u, r only and  = n�,

where n is the winding number. In this work we will only 
onsider the 
ase n = 1, so  = �.

We 
an 
al
ulate the energy momentum tensor T

��

from the Lagrangian a

ording to

T

��

=

2

p

�g

ÆL

M

Æg

��

; (4.6)

where L

M

=

p

�gL

M

is the Lagrange density. Summarising the variables and parameters, we

have

(1) the amplitude of the s
alar �eld S(u; r),

(2) the amplitude of the U(1) gauge �eld P (u; r),

(3) the 
onstant e whi
h des
ribes the 
oupling between the s
alar and ve
tor �eld,

(4) the self-
oupling 
onstant � of the s
alar �eld,
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(5) the va
uum expe
tation value of the s
alar �eld �.

If we substitute Eqs. (4.4), (4.5) in (4.1) we obtain the Lagrangian and the energy momentum

tensor in terms of these quantities

L

M

= �

1

2

g

��

(r

�

S)(r

�

S)�

1

2

S

2

g

��

(r

�

�+ eA

�

)(r

�

�+ eA

�

)� �(S

2

� �

2

)

2

�

1

4

F

��

F

��

;

(4.7)

T

��

= (r

�

S)(r

�

S) + S

2

(r

�

�+ eA

�

)(r

�

�+ eA

�

) + g

��

L

M

: (4.8)

4.3 The �eld equations

We start again with the line element in Jordan, Ehlers, Kundt and Kompaneets (JEKK) form

(3.10) for a 
ylindri
ally symmetri
 spa
etime. This form of the metri
, however, is not 
ompat-

ible with the 
osmi
 string energy momentum tensor so we follow Marder (1958) by introdu
ing

an extra variable � into the metri


ds

2

= e

2(
� )

(�d

~

t

2

+ d~r

2

) + ~r

2

e

�2 

d�

2

+ e

2( +�)

(!d�+ dz)

2

; (4.9)

where the tilde is used to reserve the names t and r for res
aled 
oordinates below. This 
hoi
e

enables us to 
ompare our numeri
al solutions with the results of the Cau
hy-
hara
teristi


mat
hing 
ode des
ribed in se
tion 3. We have already noted that this metri
 has a zero shift

ve
tor and the lapse is determined by the requirement g

~

t

~

t

= g

~r~r

. The fun
tion �, however,

introdu
es the extra gauge freedom of relabelling the radial null surfa
es: ~u ! f(~u) and ~v !

g(~v). We may �x this by spe
ifying the initial values for � and either its time derivative in a

\3+1" formalism or its boundary 
onditions in a 
hara
teristi
 formalism. We will follow the

se
ond approa
h and below we will see that the fun
tion � is uniquely determined in the stati



ase and the boundary 
onditions follow from regularity assumptions of the metri
. The further

requirement that the dynami
 results redu
e to the stati
 ones in the 
ase of vanishing time

dependen
e therefore �xes the gauge.

It turns out that we 
an eliminate one of the free parameters and simplify the equations if we
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introdu
e res
aled quantities a

ording to

t =

p

��

~

t; (4.10)

r =

p

��~r; (4.11)

X =

S

�

; (4.12)

� =

e

2

�

: (4.13)

Thus � represents the relative strength of the 
oupling between s
alar and ve
tor �eld 
ompared

to the self-
oupling. Furthermore we use the retarded time u = t� r so that the line element

be
omes

ds

2

=

e

2(
� )

��

2

(�du

2

� 2dudr) + r

2

e

�2 

��

2

d�

2

+ e

2( +�)

(!d�+ dz)

2

: (4.14)

In se
tion 3.3.1 we have des
ribed the Gero
h de
omposition whi
h 
an be used to fa
tor out the

Killing dire
tion �

z

even if the Killing �eld is not hypersurfa
e-orthogonal. It is a remarkable

fa
t that the right hand side of equation (3.4) still vanishes for spa
etimes with a 
osmi
 string

energy-momentum tensor (4.8) (Sj�odin et al. 2000), so that the Gero
h twist 
an be des
ribed

by a potential a

ording to Eq. (3.5). The other geometri
al variable, the norm of the z-Killing

ve
tor (3.1) be
omes

� = e

2( +�)

; (4.15)

and the 3-dimensional line element (3.3) is

ds

2

=

1

��

2

�

h

e

2(
� )

(�du

2

� 2dudr) + r

2

e

2�

d�

2

i

: (4.16)

With the energy momentum tensor given by (4.8) and the 3-dimensional line element (4.16)

we are now in a position to 
al
ulate the �eld equations a

ording to equations (3.6)-(3.8). We
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obtain

�� = �

;r

�

;r

+

�

2

;r

� �

2

;r

�

� �

;u

�

;r

� �
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where we have introdu
ed the 
at-spa
e d'Alembert operator

� = 2

�

2

�u�r

�

�

2

�r

2

�

1

r

�

�

�r

�

�

�u

�

: (4.21)

This set of equations is supplemented by the matter evolution equations obtained either from


onservation of energy-momentum r

�

T

��

= 0 or variation of the Lagrange density L

M

with

respe
t to the matter �elds P and X. The result is

�P = 2
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;u

� P

;r

r

� P

;r

�

;r
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�
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�
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�
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�
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� 4�
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+�)
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2
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: (4.23)

Note that in equations (4.17)-(4.20) the matter terms ex
lusively appear with a fa
tor �

2

.

Consequently � des
ribes the e�e
t of the string on the spa
etime geometry and, thus, represents

the string's mass. There are two further Einstein equations whi
h 
an be shown to be a dire
t


onsequen
e of (4.17)-(4.23) and their derivatives. These equations have only been used to

provide a 
he
k on the a

ura
y of the 
ode. Finally we have to supplement the equations by

boundary 
onditions on the axis. For the 4-dimensional metri
 variables the simplest 
ondition

is to require the metri
 to be C

2

on the axis so that we have a well de�ned 
urvature tensor.
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The resulting boundary 
onditions are (Sj�odin 2001)

�(t; r) = a

1

(t) +O(r

2

); (4.24)

�(t; r) = O(r

2

); (4.25)

�(t; r) = a

2

(t) +O(r

2

); (4.26)


(t; r) = O(r): (4.27)

The boundary 
onditions for S and P are (Gar�nkle 1985)

P (t; r) = 1 +O(r

2

); (4.28)

X(t; r) = O(r): (4.29)

The numeri
al implementation of these boundary 
onditions as well as regularity requirements

at null in�nity will be dis
ussed in se
tion 4.4.3.

4.4 Numeri
al methods

In order to solve the above �eld equations we have developed two independent 
odes. The

�rst is based on the Cau
hy 
hara
teristi
 mat
hing 
ode des
ribed in se
tion 3. This 
ode

performs well in the absen
e of matter and has been used to study several 
ylindri
ally sym-

metri
 va
uum solutions (see also Sj�odin et al. 2000). However, this CCM 
ode performed less

satisfa
torily in the evolution of the 
osmi
 string. This is due to the existen
e of unphysi
al

solutions to the evolution equations (4.17)-(4.23) whi
h diverge exponentially as r !1. Con-

trolling the time evolution near null in�nity by means of a sponge fun
tion enabled us to sele
t

the physi
al solutions with regular behaviour at I

+

, but the sponge fun
tion itself introdu
ed

noise whi
h eventually gave rise to instabilities. We therefore implemented a se
ond impli
it,

purely 
hara
teristi
, 
ode whi
h allows us to dire
tly 
ontrol the behaviour of the solutions at

the boundaries and thus suppress diverging solutions. The main problem with the system of

di�erential equations is the irregularity of the equations at both the origin and null in�nity. It

is the impli
it nature of the s
heme that provides a simple way of implementing the boundary


onditions and thus 
ir
umventing all problems with these irregularities. A purely 
hara
teristi


formulation has been used for the se
ond 
ode for 
onvenien
e rather than numeri
al ne
essity

and we believe that an impli
it CCM s
heme would produ
e similar a

ura
y, 
onvergen
e and
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long term stability. It is interesting that the irregularity problems are already present in the


al
ulation of the stati
 
osmi
 string in Minkowski spa
etime. We will, therefore, �rst des
ribe

the numeri
al s
heme used in the stati
 Minkowskian 
ase where the equations are fairly sim-

ple. We then present the modi�
ations ne
essary for the stati
 and dynami
 
ase 
oupled to

the gravitational �eld.

4.4.1 The stati
 
osmi
 string in Minkowski spa
etime

In Eqs. (4.17)-(4.23) we set the metri
 variables to their Minkowskian values and all time deriva-

tives to zero to obtain the equations for the stati
 
osmi
 string in Minkowski spa
etime (
f.

Gar�nkle 1985)

r

d

dr

�

r

�1

dP

dr

�

= �X

2

P; (4.30)

r

d

dr

�

r

dX

dr

�

= X

�

P

2

+ 4r

2

(X

2

� 1)

�

: (4.31)

The boundary 
onditions are (see Gar�nkle 1985)

P (0) = 1; lim

r!1

P (r)= 0;

X(0) = 0; lim

r!1

X(r) = 1: (4.32)

In order to 
over the whole spa
etime with a �nite 
oordinate range, we divide the 
omputational

domain into two regions in the same way as in se
tion 3.3.3. In the inner region (0 � r � 1) we

use the 
oordinate r, while in the outer region we introdu
e the 
ompa
ti�ed radius y de�ned

by equation (3.12) whi
h 
overs the range 1 � y � 0. This 
orresponds to the region 1 � r <1

with in�nity mapped to y = 0. Again we 
ombine r and y into the single radial variable w

de�ned by (3.54). In terms of the 
oordinate y Eqs. (4.30), (4.31) take the form

d

dy

�

y

5

dP

dy

�

= 4�

X

2

P

y

; (4.33)

d

dy

�

y

dX

dy

�

= 4X

�

P

2

y

+ 4

(X

2

� 1)

y

5

�

: (4.34)

The number of grid points in ea
h region may di�er, but ea
h half-grid is uniform. Thus we use

a total of K := K

1

+K

2

grid points where the points labelled K

1

and K

1

+ 1 both 
orrespond

to the position r = 1 = y. The points K

1

, K

1

+ 1 form the interfa
e between the two regions

(see Fig. 15). One point will 
ontain the variables in terms of r, the other in terms of y. With
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...32k=1

r=0

K

1

+1

K

1

r=1

y=1

K

1

+2 K

1

+3

outer regioninner region

K

1

+K

2

y=0

...

Figure 15: The 
ombined grid of the inner and the outer region. Note that both grid points,

K

1

and K

1

+ 1, 
orrespond to the position r = 1 , y = 1. These points form the interfa
e of

the 
ode and fa
ilitate transformation of the variables from the 
oordinate system using r into

that using y.

the 
omputational grid 
overing the whole spa
etime, we now fa
e a two point boundary value

problem. Due to the existen
e of unphysi
al solutions diverging at y = 0 we have 
hosen to solve

the equations with a numeri
al relaxation s
heme as des
ribed in se
tion 2.3.5 whi
h allows us

to dire
tly 
ontrol the behaviour of P and X at in�nity. The form of Eqs. (4.30), (4.31) suggests

that in order to write them as a �rst order system we should introdu
e the auxiliary variables

Q = r

�1

P

;r

and R = rX

;r

. The equations may then be written in the form

P

;r

= rQ; (4.35)

X

;r

=

R

r

; (4.36)

Q

;r

= �

PX

2

r

; (4.37)

R

;r

= X

�

P

2

r

+ 4r(X

2

� 1)

�

: (4.38)

The 
orresponding equations in the outer region are given by

P

;y

= �2

Q

y

5

; (4.39)

X

;y

= �2

R

y

; (4.40)

Q

;y

= �2�

X

2

P

y

; (4.41)

R

;y

= �2X

�

P

2

y

+ 4

X

2

� 1

y

5

�

: (4.42)
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Standard se
ond order 
entred �nite di�eren
ing a

ording to Eqs. (2.78), (2.79) results in

4(K � 2) non-linear algebrai
 equations whi
h are supplemented by the 4 boundary 
onditions

(4.32) and 4 interfa
e relations

P

K

1

+1

= P

K

1

; (4.43)

X

K

1

+1

= X

K

1

; (4.44)

Q

K

1

+1

= Q

K

1

; (4.45)

R

K

1

+1

= R

K

1

: (4.46)

We then start with pie
ewise linear initial guesses for P and X (and the 
orresponding deriva-

tives Q and R) and solve the 4K algebrai
 equations as des
ribed in se
tion 2.3.5.

In order to 
he
k the 
ode for 
onvergen
e, we vary the grid resolution K (using K

1

= K

2

points in both regions) from 150 to 2400, halving the grid spa
ing ea
h time. Sin
e we do not

have an analyti
 solution, the results are 
ompared against the high-resolution 
ase (K = 2400).

For doing this we 
al
ulate the `

2

norm a

ording to Eq. (3.70). In this 
ase the fun
tion 	

in Eq. (3.70) stands for P , X, Q or R and the norm does not depend on time be
ause of the

stati
 nature of the problem. For se
ond order 
onvergen
e we expe
t the `

2

norm to de
rease

by a fa
tor of 4 ea
h time we in
rease the grid resolution by a fa
tor of 2. However, we do not


ompare our results against the exa
t solution but against a high resolution result whi
h itself

has a �nite trun
ation error, so that

`

2

[	

K

℄ =

 

X

k

	

K

k

�	

2400

k

!

1=2

: (4.47)

Therefore we do not expe
t the fa
tor to be exa
tly 4. Using a grid resolution K the trun
ation

error is given by

	

K

= 	+O

�

1

K

2

�

; (4.48)

where 	 is the exa
t and 	

K

the numeri
al solution. For simpli
ity we will assume that the

trun
ation error is either �1=K

2

or +1=K

2

. If we use a referen
e solution obtained for 4K grid
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Table 1: Convergen
e test for the 
osmi
 string in Minkowski spa
e-time for � = 1. The norm of

the deviation `

2

[�	

K

℄ is de�ned by Eq. (4.47). As the grid resolution is in
reased, the deviation

from the high resolution result de
reases quadrati
ally to a good approximation (see text for

details).

P X Q R

`

2

(�	

1200

) 5:77 � 10

�7

2:84 � 10

�7

5:86 � 10

�7

8:89 � 10

�7

`

2

(�	

150

)=`

2

(�	

300

) 4.05 4.05 4.04 4.05

`

2

(�	

300

)=`

2

(�	

600

) 4.20 4.20 4.20 4.20

`

2

(�	

600

)=`

2

(�	

1200

) 5.00 5.00 5.00 5.00

points and 
ompare solutions 	

K

and 	

2K

the ratio of the 
orresponding `

2

-norms be
omes

�

P

(	

K

i

�	

4K

i

)

2

P

(	

2K

i

�	

4K

i

)

2

�

1=2

=

 

P

(�

1

K

2

�

1

16K

2

)

2

P

(�

1

4K

2

�

1

16K

2

)

2

!

1=2

=

�

�

�

�

�16� 1

�4� 1

�

�

�

�

: (4.49)

Considering the extreme 
ases, we expe
t a 
onvergen
e fa
tor between 3 and 5

2

3

. The trun
a-

tion error of the high resolution result will have signi�
antly less in
uen
e on the 
omparison

of lower resolution results and the fa
tors should be 
loser to 4. Table 1 shows our results for

the 
osmi
 string in Minkowski spa
e-time and 
learly indi
ates se
ond order 
onvergen
e. In

Fig. 16 we show the string variables P and X for various values of � as a fun
tion of w. Due

to the res
aling (4.10)-(4.12) the equations for the 
osmi
 string in Minkowski spa
etime (4.30)

and (4.31) do not expli
itly 
ontain the parameter �, so the shape of the 
osmi
 string �elds

Figure 16: The 
osmi
 string variables P and X are plotted for � = 10, 1, 0.1, 0.01 (from \left

to right"). The two families are labelled in the plot. As � in
reases, both, P and X be
ome

more 
on
entrated towards the origin. Note that w = 3 
orresponds to r !1 [
f. Eq. (3.54)℄.
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expressed in terms of the res
aled variables is independent of �. Below we will see that this is

no longer true in 
urved spa
etime where �, representing the mass of the string, determines the

strength of its 
oupling to gravity. Fig. 16 does, however, reveal a signi�
ant variation of the

pro�les of the s
alar and ve
tor �eld with the 
oupling ratio �. As the s
alar-ve
tor 
oupling

be
omes more dominant with respe
t to the self 
oupling of the s
alar �eld (larger �), both P

and X be
ome more 
on
entrated towards the origin.

4.4.2 The stati
 
osmi
 string 
oupled to gravity

The equations governing a stati
 
osmi
 string in 
urved spa
etime are obtained from the

general equations (4.17)-(4.23) by setting all time derivatives to zero. If we 
ombine �rst and

se
ond spatial derivatives in a single operator as in equations (4.30), (4.31), we 
an write these

equations as

(r�

;r
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= � r�

;r
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� �
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; (4.50)
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r(X

2

� 1)

�

: (4.55)

After 
ompleting the 
ode, we realised that in the 
ase of vanishing rotation � the �eld equations

(4.50)-(4.55) imply a simple relation between �, � and 
. An appropriate linear 
ombination of

these equations and their spatial derivatives 
an be written as

(
 + �� ln�)

;rr

+

�

1

r

+ �

;r

�

(
 + �� ln �)

;r

= 0; (4.56)

whi
h after some manipulation be
omes

(
 + �� ln �)

;r

= C

e

��

r

: (4.57)
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Here C is a 
onstant that has to vanish in order to ensure �nite derivatives at the origin. In

the stati
 
ase we adjust the fun
tions a

1

and a

2

in the boundary 
onditions (4.24), (4.26) so

that � = 1 and � = 0 at the origin and 
onsequently


 + �� ln � = 0; (4.58)

for all values of r. Even though � will be zero in the analysis in this se
tion, we will numeri
ally

solve the original system of equations (4.50)-(4.55) and use (4.58) as a test for the 
ode.

In order to numeri
ally solve the equations of a 
osmi
 string 
oupled to gravity, we rewrite

them again as a �rst order system. The di�erential operators appearing on the right hand side

suggest that we introdu
e the auxiliary quantities N = r�

;r

, T = r�

;r

, M = r

2

�

;r

, Q = r

�1

P

;r

and R = rX

;r

. The system 
an then be written in the form

�

;r

=

N

r

; (4.59)

�
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T

r

; (4.60)

�
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M

r

2

; (4.61)
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= rQ; (4.62)
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; (4.63)
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; (4.65)
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; (4.66)
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+ 4e
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rX(X

2

� 1) + e
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2

r

: (4.69)
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The 
orresponding equations in terms of the 
ompa
ti�ed radial 
oordinate y are

�

;y

=

N

y

; (4.70)

�

;y

=

T

y

; (4.71)

�

;y

= yM; (4.72)

P

;y

=

Q

y

5

; (4.73)

X
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=

R

y

; (4.74)
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T

;y

= 2

TN

y�

� yTM; (4.76)
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+ 16e
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�1

X(X

2

� 1)

y

5

: (4.80)

From the numeri
al point of view, the problem of solving these equations is virtually identi
al

to that of a stati
 string in Minkowski spa
etime. The only di�eren
e is the mu
h higher degree

of 
omplexity of the equations due to the appearan
e of �, � , � and 
 as extra variables. We will

dis
uss the numeri
al implementation of the boundary 
onditions at the origin and at in�nity

in the next se
tion when we 
onsider the 
ase of a dynami
 
osmi
 string. The boundary


onditions are given by equations (4.104), (4.105). In the stati
 
ase we repla
e the 
onditions
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Table 2: Convergen
e test for the stati
 
osmi
 string in 
urved spa
e-time for � = 1. The

norm of the deviation `

2

[�	

K

℄ is de�ned by Eq. (4.47). As the grid resolution is in
reased, the

deviation from the high resolution result de
reases quadrati
ally to a good approximation (see

text for details).

� � 
 P X

`

2

(�	

1200

) 1:28 � 10

�7

2:51 � 10

�6

2:39 � 10

�6

5:95 � 10

�7

4:16 � 10

�7

`

2

(�	

150

)=`

2

(�	

300

) 3.56 3.59 3.58 4.04 3.37

`

2

(�	

300

)=`

2

(�	

600

) 3.76 3.79 3.78 4.19 3.60

`

2

(�	

600

)=`

2

(�	

1200

) 4.58 4.61 4.60 4.98 4.44

for N , T and M in (4.104) by

� = 1;

� = 0;

� = 0;

(4.81)

but otherwise use the same boundary 
onditions. The solution is then obtained using the relax-

ation method des
ribed in the previous se
tion. As our initial guess for the metri
 variables we

use Minkowskian values, and for the string variables X and P we use the previously 
al
ulated

values for a Minkowskian string with the same string parameters. Due to the appearan
e of

� or its derivatives in all terms of (4.51) the Gero
h potential will stay zero in the relaxation

pro
ess and our solution has no rotation.

We have 
he
ked the 
ode for 
onvergen
e in the way des
ribed in se
tion 4.4.1. We have 
ho-

sen the unphysi
ally large value � = 0:2 here in order to guarantee 
onvergen
e even for strong


oupling between matter and geometry. � is set to 1 as in the Minkowski 
ase. The results are

given in Table 2. For 
onvenien
e we only display the results for the fundamental variables �,

�, 
, P and X. Sin
e we do not in
orporate rotation, the result for � is, as expe
ted, exa
tly 0

and we do not in
lude it in Table 2. Again the 
ode is shown to be se
ond order 
onvergent.

In Fig. 17 and 18 we plot the results obtained for N = 2400 grid points. In all these plots the

relative 
oupling strength is � = 1, but qualitatively similar results are obtained for di�erent

values of �. We have already mentioned that the e�e
t of the string on the spa
etime geometry

is determined by �. Therefore we have 
ompared the deviation of both the string variables and

the metri
 from the Minkowskian 
ase for � = 0.001, 0.01, 0.1 and 0.2. In Fig. 17 we plot the

string variables P and X for the two extreme values and the deviation from the Minkowskian

string res
aled by �

2

for all four values. For small � we see that �P=�

2

and �X=�

2

is essentially
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Figure 17: a) In the upper two panels we plot the string variables for � = 0.001 (dotted) and

0.2 (solid) as a fun
tion of the radial variable w. b) In the lower panels we have plotted the

deviation from the Minkowskian values res
aled by �

2

for � = 0.001 (dotted), 0.01 (dashed), 0.1

(long dashed) and 0.2 (solid). Note that the 
urves for 0.001 and 0.01 almost exa
tly 
oin
ide,

whi
h indi
ates the validity of the linear regime. For larger �, however, the deviation shows a

more 
ompli
ated behaviour.

independent of �. In this 
ase the deviation from Minkowskian values 
an be treated as a small

perturbation and a linear dependen
e of �P and �X on �

2

is to be expe
ted. In the range

� = 0:1 : : : 0:2 on the other hand, we 
learly leave the linear regime and the deviation depends

on � in a mu
h more 
ompli
ated way. These values, however, are 2 orders of magnitude larger

than the value 10

�3

predi
ted in 
urrent GUT theories (Vilenkin and Shellard 1994). The de-

viation of the metri
 variables �, � and 
 is plotted in the �rst three panels of Fig. 18. Again

we see the linear behaviour for small � and the transition to the non-linear regime at � � 0:1.

In the fourth panel of Fig. 18 we 
he
k Eq. (4.58) for � = 0:1. We 
learly see that 
 + �+ ln �

is approximately zero. Indeed (4.58) is satis�ed to within � 10

�8

as 
ompared with the order

of magnitude of the individual terms 10

�1

.

4.4.3 The dynami
 
osmi
 string

In the dynami
 
ase all variables �, � , �, 
, P and X are fun
tions of u; r and we have to solve

the system (4.17)-(4.23) of partial di�erential equations. In order to 
ontrol the behaviour of
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Figure 18: The deviation of the metri
 variables �, � and 
 from Minkowskian values res
aled by

�

2

is plotted as a fun
tion of w for � = 0.001 (dotted), 0.01 (dashed), 0.1 (long dashed) and 0.2

(solid). The dotted and the dashed 
urves almost exa
tly 
oin
ide indi
ating the linear regime.

As in the 
ase of the string variables we �nd a more 
ompli
ated dependen
e for � � 0:1. In

the lower right panel we plot 
 �, ln � and their sum for � = 0:1 whi
h vanishes in a

ordan
e

with Eq. (4.58) to high a

ura
y.

the solution at in�nity, we need a generalisation for PDEs of the relaxation s
heme applied to

ordinary di�erential equations. In view of the 
hara
teristi
 feature of the relaxation s
heme,

namely the simultaneous 
al
ulation of new fun
tion values at all grid points, this generalisation

leads dire
tly to impli
it evolution s
hemes as used for hyperboli
 or paraboli
 PDEs. Therefore,

the dynami
 
ode is based on the impli
it, se
ond order in spa
e and time Crank-Ni
holson

s
heme des
ribed in se
tion 2.3.6. For this purpose we rewrite the dynami
 equations (4.17)-

(4.23) as a �rst order system. These equations involve radial derivatives whi
h may be written

in terms of se
ond order operators exa
tly as in the stati
 
ase (4.50)-(4.55). This naturally

leads to the auxiliary quantities introdu
ed in Eqs. (4.59)-(4.63). In terms of these variables the
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equations for the dynami
 
osmi
 string be
ome

�

;r

=

N

r

; (4.82)

�

;r

=

T

r

; (4.83)

�

;r

=

M

r

2

; (4.84)

P

;r

=rQ; (4.85)

X

;r

=

R

r

; (4.86)
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� �
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+ 8��
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�

2e

2(
+�)
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2

� 1)
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+

1

�

e

�2�

�

2

(2P

;u

Q� rQ

2

)

�

;
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2T

;u
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� 2
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�

;u

N + �

;u
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�

+
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r

2

� �

;u

�

�

;u

M

r

� T�
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� 2�

;u

M � 2r�

;u

+ 8��

2

"

e

2


X

2

P

2

+ 2

e

2(
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�
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2
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�

�
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;u

N
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2

�

+

QN
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;u

r

2

+

P
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3
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e

2(
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�
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2R

;u

=R

;r

�X

;u

�

X

;u

M

r

+

RM

r

2

�R�

;u

� 4

e

2(
+�)

�

rX(X

2

� 1)� e

2


XP

2

r

: (4.92)
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The 
orresponding �rst order system in the outer region is given by

�

;y

=� 2

N

y

; (4.93)

�

;y

=� 2

T

y

; (4.94)

�

;y

=� 2yM; (4.95)

P

;y

=� 2

Q

y

5

; (4.96)

X

;y

=� 2

R

y

; (4.97)
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�
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(4.103)

The derivation of these equations and a number of other 
al
ulations in this work have been


arried out with the algebrai
 
omputing pa
kage GRTensorII (Musgrave, Pollney, and Lake
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1996). In order to solve these equations we must supplement them by appropriate initial and

boundary 
onditions. We have already mentioned the boundary 
onditions on the axis (4.24)-

(4.29). In general we �nd that the dynami
 
ode performs better if one imposes boundary


onditions on the radial derivatives rather than the variables themselves. For the variables

�, �, � , P and X we therefore impose the required boundary 
onditions on the initial data

a

ording to (4.32) and (4.81). In the subsequent evolution we impose the weaker 
ondition

that the radial derivatives N , T and R are �nite on the axis. This ensures that the evolution

equations propagate the axial 
onditions given on the initial data. For the variable � we impose

the 
ondition that M is zero on the axis whi
h is equivalent to the rather weak 
ondition that

r

2

�

r

vanishes there. The inverse power of r in the de�nition of Q makes it unsuitable to spe
ify

the value of this quantity at r = 0 so in this 
ase we work with the variable dire
tly and require

that P = 1 on the axis. Finally the variable 
 is given by a purely radial equation and in this


ase we spe
ify the value on the axis where 
 vanishes by virtue of Eq. (4.27). Therefore at

r = 0 we require

N = 0;

T = 0;

M = 0;


 = 0;

P = 1;

R = 0:

(4.104)

For the boundary 
onditions at null in�nity we know that regular solutions of the 
ylindri
al

wave equation have radial derivatives that de
ay faster than 1=r so that we may take the

variables N , T , and R, whi
h satisfy a wave type equation, to vanish at y = 0. The asymptoti
s

of � are slightly di�erent due to the additional power of r in the radial derivative (similar to

the spheri
ally symmetri
 wave equation) but for a regular solution �

;y

vanishes at null in�nity.

The equation for P does not satisfy a wave type equation due to the inverse power of r but

has asymptoti
 behaviour given by a modi�ed Bessel fun
tion. The physi
ally relevant �nite

solution has exponential de
ay so in this 
ase one may impose the 
ondition that Q = 0 at
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y = 0. Hen
e we require the solution to satisfy the following boundary 
onditions at y = 0

N = 0;

T = 0;

�

;y

= 0;

Q = 0;

R = 0:

(4.105)

These boundary 
onditions are suÆ
ient to determine the solution of the �rst order system

(4.82)-(4.103) while suppressing the unphysi
al solutions whi
h are singular on the axis or null

in�nity. Note that 
 is determined by the 
onstraint equation (4.20), whi
h is a �rst order

ODE, and thus only needs one boundary 
ondition.

We �nally note that all variables are related at the interfa
e in the form f

K

1

+1

= f

K

analogous

to Eqs. (4.43)-(4.46) in the 
ase of a stati
 string in Minkowski spa
etime.

4.5 Testing the dynami
 
ode

In this se
tion we will des
ribe four independent tests of the impli
it 
ode for the dynami



osmi
 string, namely

(1) reprodu
ing the non-rotating va
uum solution of Weber and Wheeler (1957),

(2) reprodu
ing the rotating va
uum solution of Xanthopoulos (1986),

(3) using the results for the stati
 
osmi
 string as initial data and verifying that

the system stays in its stati
 
on�guration,

(4) 
onvergen
e analysis for the string hit by a Weber-Wheeler wave.

Two additional tests arise in a natural way from the �eld equations and the numeri
al s
heme.

As des
ribed above there are two additional �eld equations whi
h are 
onsequen
es of the

other equations. We have veri�ed that these equations are satis�ed to se
ond order a

ura
y

(� �r

2

). Furthermore the numeri
al s
heme 
al
ulates the residuals of the algebrai
 equations

to be solved, whi
h have thus been monitored in test runs. They are satis�ed to a mu
h higher

a

ura
y (double pre
ision ma
hine a

ura
y), so the total error is dominated by the trun
ation

error of the se
ond order di�eren
ing s
heme. Another independent test is the 
omparison with

the expli
it CCM 
ode whi
h yields good agreement as long as the latter remains stable. The

four main tests are now des
ribed in more detail.
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Figure 19: The deviation of the numeri
al � and 
 from the Weber-Wheeler solution as a

fun
tion of u and w obtained for 1920 grid points (K

1

= 320, K

2

= 1600). The wave parameters

are a = 2, b = 0:5. Note that the error is ampli�ed by 10

5

and 10

7

respe
tively.

4.5.1 The Weber-Wheeler wave

In the �rst test we evolve the analyti
 solution given by Weber and Wheeler (1957), whi
h

des
ribes a gravitational pulse of the \+" polarisation mode. We have given the analyti


expressions in se
tion 3.5.1 in terms of t, r [Eqs. (3.46)-(3.49)℄ and in terms of u, y [Eqs. (3.50)-

(3.53)℄. The 
orresponding equations in 
hara
teristi
 
oordinates u, r in the inner region are

easily obtained from the 
oordinate transformation t = u + r. We pres
ribe � as initial data

a

ording to the analyti
 expressions obtained for a = 2 and b = 0:5 and set the other free

variables to zero, while 
 is 
al
ulated via quadrature from the 
onstraint equation (4.20). In

Fig. 19 we show the deviation of the numeri
al results from the analyti
 one for K = 1920 grid

points (320 points in the inner, 1600 points in the outer region) and a Courant fa
tor of 0.5 with

respe
t to the inner region. The 
onvergen
e analysis (see below) shows that this number of

points provides suÆ
ient resolution in the outer region while still keeping 
omputation times at

a tolerable level. All 
omputations presented in the remainder of se
tion 4 have been obtained

with these grid parameters, unless stated otherwise. The 
ode stays stable for mu
h longer time

intervals than shown in the �gure, but does not reveal any further interesting features as the

analyti
 solution approa
hes its Minkowskian values and the error goes to zero.

4.5.2 The rotating solution of Xanthopoulos

Xanthopoulos (1986) has derived an analyti
 va
uum solution for Einstein's �eld equations

in 
ylindri
al symmetry 
ontaining both the \+" and \�" polarisation mode. Its analyti


form in terms of our metri
 variables is given by Eqs. (3.55)-(3.68) in se
tion 3.5.2. Again the



4 NUMERICAL EVOLUTION OF EXCITED COSMIC STRINGS 83

Figure 20: The deviation of the numeri
al �, � , 
 from Xanthopoulos' analyti
 solution as a

fun
tion of u and w obtained for 1920 grid points (K

1

= 320, K

2

= 1600). Note that the error

is ampli�ed by 10

5

and 10

6

respe
tively.

transformation to 
oordinates u, r in the inner region results straightforwardly from t = u+ r.

The solution has one free parameter a set to one in this 
al
ulation. The error of our numeri
al

results is displayed in Fig. 20, where we have used the same grid parameters as in the Weber-

Wheeler 
ase. Again we have run the 
ode for longer times and found that the error approa
hes

zero. We 
on
lude that the 
ode reprodu
es both analyti
 va
uum solutions with ex
ellent

a

ura
y 
omparable to that of the CCM 
ode and exhibits long term stability.

4.5.3 Evolution of the stati
 
osmi
 string

The tests des
ribed above only involve va
uum solutions, so the matter part of the 
ode and the

intera
tion between matter and geometry has not been tested. An obvious test involving matter

and geometry is to use the result for the stati
 
osmi
 string in 
urved spa
etime as initial data

and evolve this s
enario. All variables should, of 
ourse, remain at their initial values. We have

evolved the stati
 string data for our standard grid and the parameter set, � = 1 and � = 0:2,

whi
h 
orresponds to a strong ba
k-rea
tion of the string on the metri
. The results are shown
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Figure 21: The deviation of the metri
 and matter variables from the initial data in the 
ase

of evolving a stati
 
osmi
 string with � = 1, � = 0:2. For our standard grid with 1920 points,

the 
on�guration stays stati
 to an a

ura
y of � 10

�5

over a range of more than 30000 time

steps.

in Fig. 21. The system stays in its stati
 
on�guration with high a

ura
y over a time interval

whi
h is signi�
antly longer than the dynami
ally relevant times
ale of the va
uum solutions

dis
ussed above.
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Figure 22: The 
onvergen
e fa
tor `

2

[	

1920

℄=`

2

[	

2880

℄ is plotted as a fun
tion of u. We expe
t a


onvergen
e fa
tor of 2.25 sin
e the number of grid points is multiplied by 1.5. Even though our

results show weak variability at later times, se
ond order 
onvergen
e is maintained throughout

long runs (more than 30000 time steps with K = 1920).

4.5.4 Convergen
e analysis

Our investigation of the intera
tion between the 
osmi
 string and gravitational waves will fo
us

on the string being hit by a wave of the Weber-Wheeler type. In order to 
he
k this s
enario

for 
onvergen
e we have run the 
ode for the parameter set � = 0:2, � = 1, a = 2, b = 0:5

for di�erent grid resolutions, where a and b are again the width and amplitude of the Weber-

Wheeler wave. In our 
ase it is of parti
ular interest to investigate the time dependen
e of the


onvergen
e to see what resolution we need in order to obtain reliable results for long runs. We


al
ulate the 
onvergen
e rate again a

ording to equation (3.70). The high resolution referen
e

solution has been 
al
ulated forK = 4320 grid points. In Fig. 22 we show the 
onvergen
e fa
tor
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Figure 23: The initial data for �, P and X at u

0

= �20 for the standard parameters � = 1,

� = 0:001, a = 2, b = 0:5. The gravitational wave pulse is lo
ated in a region where the string

�elds P and X have almost fallen o� to their asymptoti
 values.

`

2

[	

1920

℄=`

2

[	

2880

℄ as a fun
tion of u for �, �, 
, P and X. The initial data for � is identi
ally

zero for this s
enario and stays zero during the evolution. The number of grid points is in
reased

by a fa
tor of 1.5 here (instead of the more 
ommonly used 2) to redu
e the 
omputation time.

Only points 
ommon to all grids have been used in the sum in equation (3.70). For se
ond

order 
onvergen
e we would expe
t a 
onvergen
e fa
tor of 1:5

2

. Although the results in Fig. 22

show weak variations with u, se
ond order 
onvergen
e is 
learly maintained for long runs.

In ea
h 
ase the outer region 
ontains 5 times as many grid points as the inner region (e.g.

K

1

= 320, K

2

= 1600 for the K = 1920 
ase). The reason for this is that in the dynami


evolutions X and espe
ially P exhibit signi�
ant spatial variations out to large radii. Due to

the 
ompa
ti�
ation, the spatial resolution of our grid de
reases towards null in�nity and in

order to resolve the spatial variations of the string variables out to suÆ
iently large radii we

therefore have to introdu
e a large number of grid points in the outer region. No su
h problems

o

ur in the inner region. If signi�
antly fewer grid points are used in the outer region for this

analysis, the 
onvergen
e properties of the string variables 
an deteriorate to roughly �rst order

level.

4.6 Time dependen
e of the string variables

4.6.1 Stati
 
osmi
 strings ex
ited by gravitational waves

The s
enario we are going to investigate in this se
tion is an initially stati
 
osmi
 string hit

by a gravitational wave of Weber-Wheeler type. For this purpose we use the stati
 results
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Figure 24: The metri
 and string variables are plotted as fun
tions of w at u = �20 (dotted),

u = �10 (long dotted), u = 0 (dashed), u = 2 (long dashed) and u = 10 (solid line). For


larity the graphs of P are distributed over two panels. The wave pulse (in �) initially moves

inwards. It ex
ites the string, is re
e
ted at the origin and travels outwards. After u = 10

only P di�ers signi�
antly from the stati
 
on�guration as the os
illations slowly de
ay and

propagate towards larger radii (
f. Fig. 25).

with two modi�
ations as initial data. Firstly the stati
 metri
 fun
tion �

0

is multiplied by

the exa
t Weber-Wheeler solution to simulate the gravitational wave pulse. Thus we guarantee

that initially the 
osmi
 string is indeed in an equilibrium 
on�guration provided the wave pulse

is lo
ated suÆ
iently far away from the origin and its intera
tion with the string is negligible.

Ideally the numeri
al 
al
ulation would start with the in
oming wave lo
ated at past null in�nity.

In order to approximate this s
enario, we found it was suÆ
ient to use the large negative initial

time u

0

= �20. The se
ond modi�
ation is to 
al
ulate 
 from the 
onstraint equation (4.20)
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Figure 25: The 
osmi
 string variable P is shown as a fun
tion of radius and time for � = 0:2

(left) and � = 1 (right) (all other parameters have standard values). Note that we use the radial

variable r out to r = 50 here. The ringing 
an 
learly be seen and shows a lower frequen
y for

smaller �.

to preserve 
onsisten
y with the Einstein �eld equations. In Fig. 23 the 
orresponding initial

data for �, P and X are shown for the parameter set � = 0:001, � = 1, a = 2 and b = 0:5. From

now on we will refer to these values as \standard parameters" and only spe
ify parameters if

they take on non-standard values. The time evolution of the \standard 
on�guration" is shown

in Fig. 24 where we plot �, �, 
, P and X as fun
tions of w at times �20, �10, 0, 2 and 10.

While the wave pulse is still far away from the origin, its intera
tion with the 
osmi
 string is

negligible (dotted lines). When it rea
hes the 
ore region it ex
ites the 
osmi
 string and the

s
alar and ve
tor �eld start os
illating (dashed 
urves). After being re
e
ted at the origin, the

wave pulse travels along the outgoing 
hara
teristi
s and the metri
 variables �, � and 
 qui
kly

settle down into their stati
 
on�guration whi
h is 
lose to Minkowskian values for � = 10

�3

.

The ve
tor and s
alar �eld of the 
osmi
 string, on the other hand, 
ontinue ringing albeit

with a di�erent 
hara
ter. Whereas the os
illations of the s
alar �eld X are dominant in the

range r � 2 and have signi�
antly de
ayed at u = 10 as shown in the �gure, the ve
tor �eld

os
illations propagate to large radii and fall o� very slowly (solid 
urves). This behaviour is

also illustrated in the right panel of Fig. 25 whi
h shows a 
ontour plot of P as a fun
tion of

(u; r) out to r = 50. We shall see below, that the os
illations of P will also de
ay eventually

and the 
osmi
 string will asymptoti
ally settle ba
k into its equilibrium 
on�guration.
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4.6.2 Frequen
y analysis

We will now quantitatively analyse the os
illations of the s
alar and ve
tor �eld of the 
osmi


string. Sin
e we are working in res
aled 
oordinates, physi
al time and distan
e are measured

in units of 1=

p

�� and frequen
y in its inverse. To avoid 
ompli
ated notation, however, we will

omit the units from now on unless the meaning is un
lear. In order to measure frequen
ies, we

Fourier analyse the time evolution of the s
alar and ve
tor �eld for �xed radius r. Fig. 26 shows

P and X for standard parameters as fun
tions of time at r = 1 together with the 
orresponding

power spe
tra. In ea
h Fourier spe
trum we 
an see three peaks. Those very 
lose to f = 0

are merely due to the o�set of the data and the gradual 
hange of the �elds over long times.

We therefore do not attribute these peaks to the os
illations of the �elds and will not 
onsider

them in the ensuing dis
ussion. We have 
al
ulated similar power spe
tra for a large 
lass of

parameter sets and in most 
ases found two peaks at non-zero frequen
ies. In order to interprete

the frequen
ies, it is 
onvenient to plot them as fun
tions of the relative 
oupling strength �.

The result is shown in Fig. 27. In this �gure the solid lines show the frequen
y values 
al
ulated

for the s
alar and ve
tor �eld from the linearised equations (see Sj�odin and Vi
kers 2001)

f

X

=

p

2

�

; (4.106)

f

P

=

p

�

2�

: (4.107)

We 
an thus asso
iate the 
onstant frequen
y f = 0:45 with the s
alar �eld X and the �

dependent frequen
y with the ve
tor �eld P . We will refer to these frequen
ies as f

X

and f

P

from now on. The �-dependen
y of f

P

is also illustrated in Fig. 25 where we show 
ontour plots

of P obtained for � = 0:2 and � = 1. The os
illation frequen
y is signi�
antly larger for � = 1.

In Fig. 27 we 
an see that the frequen
ies asso
iated with the s
alar and ve
tor �eld be
ome

similar near � = 8. For this value it 
an be shown that the masses asso
iated with the s
alar

and ve
tor �eld be
ome equal (see for example Sj�odin and Vi
kers 2001). The frequen
ies are

diÆ
ult to resolve in these 
ases and we have only found one peak in the Fourier spe
tra. The

resulting values are shown as �lled lozenges in the �gure. In this 
ontext it is worth mentioning

that the a

ura
y of the measurements of the frequen
ies is limited by the resolution of the

Fourier spe
tra whi
h again is limited by the time interval 
overed in the evolution. In Fig. 26

we 
an see however, that the os
illations of both P and X gradually die out in later stages of

the evolutions, so that it be
omes in
reasingly diÆ
ult to extra
t more information about the

frequen
ies by using larger integration times. The evolutions used for this analysis provide an

a

ura
y �f � 0:01 whi
h 
orresponds approximately to one bin in the frequen
y spe
tra.
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Figure 26: Upper panels: The variables P and X at r = 1 are plotted as fun
tions of u for

� = 1, � = 0:001, a = 2 and b = 0:5. Lower panels: The 
orresponding power spe
tra show

three peaks ea
h. That near f = 0 is merely due to a 
onstant o�set and the variation of

the �elds on long time s
ales and thus not asso
iated with the os
illations. From the linear

equations one 
an infer that the peaks at f = 0:45 
an be identi�ed with the os
illation of the

s
alar �eld, the peaks at f = 0:16 with those of the ve
tor �eld. Note that due to our res
aling

of the 
oordinates, u is measured in units of 1=

p

��.

It is interesting to see that in the non-linear evolution the distin
tion between the os
illations of

the ve
tor and the s
alar �eld is not as 
lear as in the linear 
ase whi
h is demonstrated by the

presen
e of two peaks in the Fourier spe
tra. We attribute this feature to the intera
tion between

the s
alar and ve
tor 
omponent of the 
osmi
 string. Con
erning the radial dependen
e of the

spe
tra we have in general found that the 
hara
teristi
 mode of X resulted in stronger peaks

at smaller radius, that of P was stronger at larger radii. This variation of the relative strength

of the os
illations with radius 
on�rms the 
orresponding observation in Fig. 24. In order to

investigate the dependen
y of the os
illations on �, a, b and the radial position r, we have varied

ea
h parameter over at least two orders of magnitude while keeping the other parameters at

standard values. We have found the following dependen
ies:

(1) The frequen
ies of both X and P do not show any variations with � for � < 0:1.

(Note that � does, however, appear in the units). For larger values of �, the

non-linear intera
tion between string and geometry be
omes dominant and we

did not dete
t a simple relation between frequen
y maxima and parameters.
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Figure 27: The frequen
ies obtained from the Fourier analysis of the os
illations of the s
alar

and ve
tor �elds are plotted as fun
tions of �. The 
urves show the frequen
ies of the s
alar and

ve
tor �eld predi
ted by an analysis of the linearised equations. For 5 � � � 8 the predi
ted

values for P and X are similar and we �nd only one frequen
y. These values are plotted as

�lled lozenges.

(2) The variation of the parameters a and b, the width and amplitude of the Weber-

Wheeler pulse, has no measurable e�e
t on the frequen
ies of X and P , but only

determined the amplitude of the os
illations. A narrow, strong pulse leads to

larger amplitudes.

(3) For small r the os
illations in X are stronger, whereas those for P dominate at

large r. The frequen
y values, however, do not depend on the radius. For radii

greater than 10 the os
illations in X had de
ayed so strongly that we 
ould no

longer measure its frequen
y.

We have also 
he
ked the empiri
al relation between the 
oupling 
onstant � and the frequen
ies

f

X

and f

P

. For this purpose we have performed a linear regression analysis of the double

logarithmi
 data of Fig. 27 ex
luding the 
ases where only one frequen
y is observed. We

obtain power law indi
es �

X

= 0:00 and �

P

= 0:50, so that

f

X

� 
onst; (4.108)

f

P

�

p

�; (4.109)
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whi
h agrees with Eqs. (4.106), (4.107). If we transform this result ba
k into physi
al units

using � = e

2

=�, we arrive at the following relations for the physi
al variables

f

X

�

p

��; (4.110)

f

P

� e�: (4.111)

As shown in Shellard and Vilenkin (1994) up to 
onstant fa
tors

p

�� and e� are the masses of

the s
alar and the ve
tor �eld, m

X

and m

P

, so that X and P have 
hara
teristi
 frequen
ies

f

X

� m

X

; (4.112)

f

P

� m

P

: (4.113)

Sin
e the frequen
ies for X and P seem only to depend upon the respe
tive masses we have

attempted to 
on�rm these results by 
onsidering the os
illations of a 
osmi
 string in two

further s
enarios. Firstly sin
e the frequen
ies do not depend upon the shape of the Weber-

Wheeler pulse we take as initial data the stati
 values for the metri
 variables but ex
ite the

string by adding a Gaussian perturbation to either the X or P stati
 initial values. The

evolution is then 
omputed using the fully 
oupled system. Se
ondly sin
e the frequen
ies

do not seem to depend upon the strength of the 
oupling to the gravitational �eld we have


ompletely de
oupled the gravitational �eld and 
onsidered the evolution of a 
osmi
 string

in Minkowski spa
etime. The initial data is taken to be that for a stati
 string in Minkowski

spa
etime with a Gaussian perturbation to either the X or P values. The evolution is then


omputed using the equations for a dynami
al string in a Minkowskian ba
kground [equations

(4.22) and (4.23) with the metri
 variables set to Minkowskian values℄. In both 
ases we obtain

the same frequen
ies, to within an amount �f = 0:01, that we �nd in the original 
ase of the

fully 
oupled system ex
ited by a Weber-Wheeler pulse. Furthermore the frequen
ies did not

depend on the lo
ation or shape of the �eld perturbation nor upon the 
hoi
e of X or P as the

perturbed �eld.

4.6.3 The long term behaviour of the dynami
 string

The time evolution shown in Figs. 24 and 25 indi
ates that the os
illations of the 
osmi
 string

ex
ited by gravitational waves gradually de
ay and metri
 and string settle down into an equi-

librium state. In order to investigate the long term behaviour in detail we have evolved the

variables for a mu
h longer time (�20 � u � 410) than in the numeri
al evolutions dis
ussed
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Figure 28: The upper four plots show the di�eren
e between the evolved fun
tions �, �, 
 and

X and their 
orresponding stati
 results. For P a similar 3-dimensional plot is not suitable sin
e

it fails to resolve the os
illations of the ve
tor �eld. Therefore we plot the `

2

-norm (dashed line)

and the maximum (solid line) of �P as a fun
tion of time. �, �, 
 and X qui
kly settle down in

their equilibrium 
on�guration to numeri
al a

ura
y. The de
ay of the os
illations of P takes

signi�
antly more time but eventually P also approa
hes its equilibrium state.

above. The unphysi
ally large value of � = 0:1 is 
hosen for this 
al
ulation in order to guar-

antee a strong intera
tion between spa
etime geometry and the 
osmi
 string. In Fig. 28 we

show the di�eren
e �f := f

evol

� f

stat

between the time-dependent �, �, 
 and X and their


orresponding stati
 results obtained for the same parameters. For the ve
tor �eld P a similar
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3-dimensional plot would require an extreme resolution to properly display the os
illations of

the ve
tor �eld (
f. Fig. 24). For this reason we pro
eed di�erently and 
al
ulate the `

2

-norm

and the maximum of �P for ea
h sli
e u = 
onst. Both fun
tions are plotted versus time in

Fig. 28. The in
oming wave pulse 
an 
learly be seen as a strong deviation of � from the stati


fun
tion. The pulse ex
ites the 
osmi
 string and is re
e
ted at the origin at u = 0. The metri


variables and the s
alar �eld X then qui
kly rea
h their equilibrium values. The os
illations

in P de
ay on a signi�
antly longer time s
ale whi
h is also evident in Figs. 24 and 25 and the

`

2

-norm of �P slowly approa
hes 0. Signi�
antly longer runs than shown here are prohibited

by the required 
omputation time, but the results indi
ate that P will also eventually rea
h its

equilibrium 
on�guration.

4.7 Dis
ussion

In the previous two se
tions we have studied numeri
al problems in 
ylindri
al symmetry with

parti
ular emphasis on the use of 
hara
teristi
 methods and the 
ompa
ti�
ation of spa
etime.

This work has 
ompleted the 1-dimensional stage of the Southampton Cau
hy-
hara
teristi


mat
hing proje
t by presenting for the �rst time a long-term stable se
ond order 
onvergent


ode for general 
ylindri
ally symmetri
 va
uum spa
etimes with both the + and � polarisation

mode. In order to obtain long-term stability it was 
ru
ial to formulate the problem in a

way that simpli�es the relations at the interfa
e where information is transferred between the

interior Cau
hy and the exterior 
hara
teristi
 region. In this parti
ular 
ase we a
hieved the

simpli�
ation by applying the Gero
h de
omposition to both regions whi
h 
ontrasts with the

less su

essful previous attempts where the Killing dire
tion was fa
tored out in the exterior

region only. In view of the numeri
al subtleties involved with the interpolation te
hniques

at the interfa
e the importan
e of a suitable 
hoi
e of variables may not be too surprising.

Nevertheless we stress the signi�
an
e of this result 
on
erning Cau
hy-
hara
teristi
 mat
hing


odes in higher dimensions. The stru
ture of the null geodesi
s will inevitably be
ome mu
h

more 
ompli
ated if the restri
tion of 
ylindri
al symmetry is dropped and the physi
al variables

are allowed to depend on the angular 
oordinates. Correspondingly the transformation between

variables at the interfa
e will also be more 
ompli
ated. In view of our results it seems important

to 
arefully 
hoose the variables des
ribing the spa
etime in both regions and aim for \simple"

transformation laws.

The in
lusion of matter in the form of 
osmi
 strings resulted in qualitatively new numeri
al

problems that �nally were solved by the use of spe
ially adapted numeri
al methods. The

in
orporation of null in�nity proved to be important here for the spe
i�
ation of outer boundary
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onditions on the matter variables. It was the existen
e of unphysi
al exponentially diverging

solutions of the equations for a 
osmi
 string that required a spe
ial numeri
al treatment. We

were able to suppress the unphysi
al diverging solutions by solving the equations for a 
osmi


string with a relaxation s
heme in the stati
 
ase and an impli
it evolution s
heme in the

dynami
 
ase. We have thus been able to develop the �rst fully non-linear simulation of a stati


and a dynami
 
osmi
 string 
oupled to gravity whi
h implements the exa
t boundary 
onditions

at both the origin and in�nity. The resulting 
odes have been used to study the intera
tion

between a 
osmi
 string and a gravitational wave pulse. We have found that the gravitational

wave pulse ex
ites the 
osmi
 string whi
h then starts os
illating with frequen
ies proportional

to the parti
le masses asso
iated with the s
alar and ve
tor �eld. The same frequen
ies have

been observed if we ex
ite the 
osmi
 string with a Gaussian perturbation to the s
alar or ve
tor

�eld.

From a numeri
al point of view an interesting result of the numeri
al solution of the equations

for a dynami
 
osmi
 string 
on
erns the transfer of information at the interfa
e. We have

illustrated this in Fig. 15 where two grid points K

1

, K

1

+ 1 have been used for the spatial

position r = 1. The grid point K

1


ontains the variables of the interior region at r = 1,

whereas the variables of the exterior region are spe
i�ed at the same position on grid point

K

1

+ 1. The 
orresponding implementation of the interfa
e is remarkably simple as illustrated

by Eqs. (4.43)-(4.46) whi
h represent the interfa
e for the stati
 
osmi
 string in Minkowski

spa
etime. The 
orresponding equations in the dynami
 
ase 
oupled to gravity are equally

trivial. Even if di�erent variables are used in the interior and exterior region, one is still able

to transform the variables lo
ally at the grid points K

1

and K

1

+1 and there is no need to use

interpolation te
hniques as in the 
ase of the expli
it numeri
al methods used in se
tion 3. We

attribute the possibility of using this simple implementation of the interfa
e to the fa
t that all

fun
tion values are 
al
ulated simultaneously on the new time sli
e in an impli
it s
heme, so

that there is no hierar
hi
al order a

ording to whi
h the fun
tion values have to be 
al
ulated.

We have probed su
h a \lo
al interfa
e" in an impli
it Cau
hy-
hara
teristi
 mat
hing 
ode

for 
ylindri
ally symmetri
, non-rotating va
uum spa
etimes and a
hieved a long term stable

evolution with an a

ura
y 
omparable to the expli
it 
ode des
ribed in se
tion 3. Even though

an interfa
e based on interpolation performs satisfa
torily in 
ylindri
al symmetry this may no

longer be the 
ase in higher dimensional problems where the interpolation te
hniques will be

signi�
antly more 
ompli
ated. On the other hand we 
an see no obvious reason why a \lo
al

interfa
e" in 
ombination with an impli
it numeri
al s
heme should di�er signi�
antly from

that used in the 1-dimensional 
ase.
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5 Non-linear os
illations of spheri
ally

symmetri
 stars

5.1 Introdu
tion

In this se
tion we will turn our attention towards the study of 
ompa
t stars in the framework

of general relativity. The dis
overy of stars signi�
antly more 
ompa
t than the sun goes ba
k

to observations of the binary star Sirius in the middle of the 19th 
entury. Sirius is the brightest

star in the sky as viewed from the earth. From an astrophysi
al point of view, however, the faint


ompanion of the bright main star, Sirius B has provoked mu
h more interest. The astronomer

Bessel was the �rst to infer the existen
e of an unseen 
ompanion of Sirius from a wobble in

the motion of the main star. It took another twenty years before Alvin Clark managed to

opti
ally resolve Sirius B. By the early twentieth 
entury it be
ame 
lear from the analysis

of its ele
tromagneti
 spe
trum that Sirius B has a rather high surfa
e temperature of about

25,000K. In view of this result the extraordinarily low luminosity of Sirius B lead to the


on
lusion that the star is very small, about the size of the earth. This type of high density star

was 
onsequently named a white dwarf. It was understood at the time that white dwarfs mark

the �nal stage in the evolution of stars, but it remained a puzzle how su
h 
ompa
t obje
ts were

able to support themselves against gravitational 
ontra
tion. The answer was �rst provided by

Eddington and Fowler who suggested that the star is supported by the degenerate ele
tron

pressure, a quantum e�e
t arising from the Pauli-ex
lusion prin
iple. When Chandrasekhar

worked out the 
orresponding theory for a relativisti
 ele
tron gas he made the remarkable

dis
overy that the degenerate ele
tron pressure will never be suÆ
ient to support white dwarfs

above a mass of about 1:4M

�

. In his words: \For a star of small mass the natural white dwarf

stage is an initial step towards 
omplete extin
tion. A star of large mass 
annot pass into the

white dwarf stage and one is left spe
ulating on other possibilities." It did not take long before

su
h spe
ulations were dire
ted towards the existen
e of neutron stars.

The �rst suggestion that stars made up of nu
leons may exist 
ame from Landau in 1932 just

two years after the dis
overy of the neutron. Two years later Baade and Zwi
ky proposed

the idea that neutron stars may be the produ
t of supernova explosions and thus mark the

�nal stage in the evolution of stars of large mass. The �rst theoreti
al models of neutron

stars were 
al
ulated in 1939 by Tolman, Oppenheimer and Volko�. It took another thirty

years, however, before neutron stars were a
tually dis
overed observationally. Furthermore

this dis
overy 
ame in a 
ompletely unexpe
ted way. In 1967 the then Cambridge graduate
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student Jo
elyne Bell and her supervisor Antony Hewish were looking for s
intillations of radio

sour
es produ
ed by the interstellar medium. On the 28th of November 1967 they dis
overed

a sour
e with an ex
eptionally regular pattern of radio pulses whi
h at the time even gave rise

to the spe
ulation of an extra-terrestrial, intelligent origin. These spe
ulations were qui
kly

abandoned, however, when three more \pulsars" were found within the next few weeks. The

extremely short duration of the pulses and the high pulse frequen
ies lead to the 
on
lusion

that these sour
es must be signi�
antly smaller than white dwarfs. An explanation for this

phenomenon was �nally found when a pulsar was dete
ted at the 
entre of the 
rab nebula.

From histori
al re
ords it is known that the 
rab nebula marks a supernova explosion that was

observed in the year 1054. Pulsars are therefore identi�ed with neutron stars, the remnants of

supernova explosions. In the same way that the degenera
y pressure of the ele
trons supports

white dwarfs against gravitational 
ollapse, the internal pressure in neutron stars arises from

the degenerate nu
leons. A great deal of work has gone into the observational and theoreti
al

study of these 
ompa
t obje
ts. From these studies it is known that neutron stars have masses

of about 1:4 solar masses and radii of about 10 km. Neutron stars are believed to have a solid


rust in whi
h the density in
reases from about 10

4

g=
m

3

to a few times 10

11

g=
m

3

. In this

density range the matter is assumed to 
onsist of a degenerate ele
tron gas and atomi
 nu
lei

that form a 
rystal-like stru
ture. At larger densities the atomi
 nu
lei gradually dissolve and

at about 2 � 10

14

g=
m

3

the matter largely 
onsists of a highly in
ompressible neutron 
uid with

small amounts of protons and ele
trons. An interesting property of this 
uid arises from the

thermal temperature whi
h is 
ommonly believed to be smaller than 10

8

K. Compared with

the Fermi-temperature of the nu
leons of about 3 � 10

11

K this implies that the matter behaves

like a 
uid at zero temperature and be
omes super
uid and, in the 
ase of the protons, super-


ondu
tive. The stru
ture of matter and the resulting equations of state at higher densities

be
ome in
reasingly un
lear and are subje
t to ongoing resear
h. Near the 
entre of a neutron

star the density is assumed to be of the order of 10

15

g=
m

3

and the matter may at least partly


onsist of hyperons, pions or quarks, so-
alled strange matter.

The extreme 
ompa
tness of neutron stars makes them parti
ularly interesting from a relativisti


point of view. We have already mentioned the signi�
an
e of neutron stars in the 
ontext of the

sear
h for gravitational waves. In this respe
t the importan
e of neutron star os
illations arises

from the dis
overy of se
ularly unstable os
illation modes that in
rease in amplitude due to the

spin down of the neutron star while energy is radiated away in the from of gravitational waves.

If the attempts to measure gravitational waves are indeed su

essful, a whole new window

for astrophysi
al observations may be opened and fa
ilitate a unique opportunity to dire
tly



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 98

observe the interior of astrophysi
al obje
ts su
h as neutron stars. In this work, however,

we will not dire
tly study neutron star os
illations in the 
ontext of gravitational radiation.

Instead we use the simpler 
ase of spheri
ally symmetri
 dynami
 neutron stars in order to

probe a new numeri
al approa
h whi
h enables us to numeri
ally evolve non-linear os
illations of

arbitrary amplitude with high a

ura
y. While these evolutions will not lead to the generation of

gravitational waves be
ause of the spheri
al symmetry, the numeri
al results, the new te
hniques

and the dis
ussion of numeri
al diÆ
ulties en
ountered in the 
ourse of this work may still be

relevant for numeri
al simulations of more general types of neutron star os
illations.

The use of os
illations as a diagnosti
 tool to obtain information about the interior stru
ture of

an obje
t is an old idea and by no means restri
ted to the realm of distant stars. For example the

same te
hnique has been applied to the earth where the study of arti�
ially indu
ed os
illations

and, in parti
ular, earthquakes has lead to invaluable insight into the internal stru
ture of our

planet. In the same way a great deal of knowledge has been obtained about the sun and more

distant stars by investigating their os
illations whi
h reveal themselves in the ele
tromagneti


spe
tra of these obje
ts. Whereas Newtonian theory is perfe
tly adequate for studying \normal"

stars, i.e. stars that gain their energy from 
ontinuous nu
lear burning of hydrogen and other

light elements, a

urate modelling of 
ompa
t obje
ts like neutron stars requires a general

relativisti
 des
ription.

The �rst type of neutron star os
illations to be studied extensively were linear radial os
illations

(see for example Chandrasekhar 1964a, 1964b) whi
h today represent a well understood problem

that is des
ribed in the standard literature. The same is not true, however, for nonlinear

radial os
illations whi
h lead to qualitatively new problems. We have already mentioned that

spheri
ally symmetri
 spa
etimes do not admit radiative solutions. Instead the generation of

gravitational waves requires a time varying quadrupole or higher multi-pole (l � 2) moment

of the neutron star inertia. From that point of view, the study of radial os
illations is not

immediately interesting. There are, however, several other important aspe
ts asso
iated with

radial os
illations. In the work mentioned above, Chandrasekhar �rst revealed the existen
e

of relativisti
 instability. In the framework of radial os
illations this instability manifests itself

in the instability of the fundamental radial os
illation mode. If the frequen
y of this mode

be
omes imaginary, an exponential growth of physi
al quantities results and the star 
ollapses

or evaporates. A fully non-linear evolution 
ode based on spe
tral methods has been developed

by Gourgoulhon (1991) and has been used to study various aspe
ts of the stability of neutron

stars and their 
ollapse into bla
k holes (Gourgoulhon and Haensel 1993, Gourgoulhon et al.

1994). Radial os
illations have also been 
onsidered from the point of view of astrophysi
al
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observations. The dis
overy of quasi-periodi
 radio sub-pulses in the spe
tra of pulsars and

periodi
ities in X-ray sour
es has lead to the suggestion that radial os
illations of neutron stars

may give rise to these features (Boriako� 1976, van Horn 1980), whi
h in turn has stimulated

further resear
h in this dire
tion (see for example Mart�� et al. 1988, V�ath and Chanmugam

1992). Furthermore the in
uen
e of radial os
illations on the ele
tromagneti
 spe
trum of

neutron stars and their dependen
e on the stru
ture of matter at super-nu
lear densities may

provide valuable information about the equation of state in the high density range (Glass and

Lindblom 1983). The study of radial os
illations is frequently 
arried out in the linear regime,

where all physi
al quantities have a harmoni
 time dependen
e f = f(r)e

i!t

and the radial

pro�les f(r) are determined by an eigenvalue problem. In this work we will present expli
it time

evolutions of the physi
al variables in the fully non-linear 
ase. These evolutions will serve two

purposes. First we will be able to study deviations from the known linearized behaviour, su
h

as mode 
oupling and sho
k formation. Se
ondly the spheri
ally symmetri
 
ase 
an be used to

investigate numeri
al diÆ
ulties that are also expe
ted in the more 
ompli
ated time evolutions

in two or three spatial dimensions. A detailed analysis in the 
omputationally less expensive

1-dimensional 
ase may lead to the development of new advantageous numeri
al te
hniques or

other types of solutions to these problems. The work of Gourgoulhon (1991) for example has

shown among other results that the use of momentum densities as fundamental variables may

lead to 
omputation errors in passing from the momentum densities to the velo
ity �elds whi
h


an be avoided if velo
ity variables are used in the �rst pla
e.

In our dis
ussion we will start with a stati
 spheri
ally symmetri
 star whi
h is governed by

the Tolman-Oppenheimer-Volko� equations (Tolman 1939, Oppenheimer and Volko� 1939). In

se
tion 5.2 we will investigate these equations and des
ribe the numeri
al methods we use to


al
ulate the resulting neutron star models. In se
tion 5.3 we will use the stati
 results in

order to obtain a fully non-linear perturbative formulation of dynami
 spheri
ally symmetri


stars. As a sub
lass we will dis
uss the linearized limit of these equations in se
tion 5.3.3 and

numeri
ally 
al
ulate the 
orresponding eigenmode solutions. It is interesting to see that the

surfa
e of the star turns out to be a problemati
 area even in this 
omparatively simple 
ase.

After a more detailed dis
ussion of the general problems one fa
es at the surfa
e in an Eulerian

formulation we des
ribe the numeri
al implementation of the 
ode. Even though the 
ode is

shown to perform well in the linear regime for a large variety of neutron star models in se
tion

5.3.6, the surfa
e problem is shown to give rise to spurious results in some spe
ial 
ases. In order

to 
ir
umvent these problems we use a simpli�ed neutron star model in se
tion 5.3.9 to test

the 
ode in the non-linear regime and to investigate the non-linear 
oupling of eigenmodes. We
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on
lude this work with the development of a fully non-linear perturbative Lagrangian 
ode in

se
tion 5.4. We demonstrate how the diÆ
ulties at the surfa
e are resolved in su
h a formulation

and extensively test this 
ode in the linear and non-linear regime. We use this 
ode to address

the question whether non-linear e�e
ts are present near the surfa
e of the neutron star models

in the 
ase of low amplitude os
illations.

5.2 Spheri
ally symmetri
 stati
 stars

In the fully non-linear perturbative approa
h to the study of radial os
illations we will de-


ompose the time dependent physi
al quantities into stati
 ba
kground 
ontributions and time

dependent perturbations. The ba
kground quantities will obey the 
orresponding stati
 set of

equations whi
h will then be used to remove terms of zero order from the fully non-linear evolu-

tion equations in the time dependent 
ase. In our studies we have two prin
ipal 
hoi
es for the

stati
 ba
kground: va
uum 
at spa
e in whi
h 
ase we re
over the standard non-perturbative

formulation of the problem and a stati
 self-gravitating perfe
t 
uid in spheri
al symmetry whi
h

is des
ribed by the Tolman-Oppenheimer-Volko� equations. It is the se
ond 
ase whi
h enables

us to obtain highly a

urate numeri
al solutions for any given amplitude of the os
illations. We

will therefore �rst dis
uss in detail the Tolman-Oppenheimer-Volko� (TOV) equations as well

as their numeri
al solution.

5.2.1 The Tolman Oppenheimer Volko� equations

In the framework of the \3+1" formalism des
ribed in se
tion 2.1, we start by 
hoosing 
oor-

dinates r, �, � on ea
h spatial hypersurfa
e �. � and � are standard angular 
oordinates and

the radius r is de�ned by the radial gauge 
ondition, so that the area of a surfa
e r = 
onst is

4�r

2

. The 3-dimensional line element is then given by

ds

2

= �

2

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

); (5.1)

where in spheri
al symmetry � is a fun
tion of r only. If we label the hypersurfa
es � by the


oordinate t we 
an apply the polar sli
ing 
ondition whi
h 
ombined with radial gauge 
an

be shown to imply a vanishing shift ve
tor in spheri
al symmetry. The 4-dimensional metri
 is

then given by

ds

2

= ��

2

dt

2

+ �

2

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

): (5.2)
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Here the lapse fun
tion � is also a fun
tion of r. Alternatively this metri
 
an be des
ribed by

the variables m and � de�ned by

�

2

=

�

1�

2m

r

�

�1

; (5.3)

�

2

= e

2�

: (5.4)

In the Newtonian limit � be
omes the gravitational potential and m the gravitating mass.

Our des
ription of the matter is based on three simplifying assumptions, whi
h we will dis
uss

in order.

1) We will des
ribe the matter as a single 
omponent perfe
t 
uid. This means that the 
uid

is seen as isotropi
 by a 
omoving observer. In parti
ular no heat 
ondu
tion, no shear

stresses, anisotropi
 pressures or vis
osity must be present. The deviation from the perfe
t


uid equilibrium due to anisotropi
 stresses resulting from the solid 
rust are found to be

< 10

�5

even for rotating stars (Friedman and Ipser 1992). It is, however, not entirely 
lear

to what extent the treatment of the neutron star matter as a single perfe
t 
uid is too

restri
tive. It was suggested as early as 1959 by Migdal that nu
leons might be present in

the form of super
uids in the interior of neutron stars. In order to obtain more realisti


des
riptions of neutron stars it might therefore be ne
essary to des
ribe the matter as

a multi
omponent 
uid. These issues are subje
t to ongoing resear
h (see for example

Andersson and Comer 2001) and their investigation would ex
eed the s
ope of this work.

We will therefore fo
us our dis
ussion on single 
omponent perfe
t 
uids in whi
h 
ase we


an write the energy-momentum tensor in the form

T

��

= (�+ P )u

�

u

�

+ Pg

��

; (5.5)

where � is the energy density and P the pressure measured by a 
omoving observer. In the

stati
 spheri
ally symmetri
 
ase � and P are fun
tions of the radius r and the 4-velo
ity

has a non-vanishing time 
omponent only. The normalisation 
ondition u

�

u

�

= �1 then

implies

u

�

=

�

�

�1

; 0; 0; 0

�

: (5.6)
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2) The neutron star matter is assumed to be at zero temperature. This is justi�ed by 
ompar-

ing the thermal temperature of the stellar interior, whi
h is assumed to be smaller than

10

8

K in mature neutron stars, with the relevant temperature s
ale given by the Fermi

temperature of the matter. Even though the thermal temperature is large 
ompared with

terrestrial standards, it is orders of magnitude below the Fermi temperature of matter at

nu
lear density (� 3 � 10

11

K), so that the thermal degrees of freedom are frozen out. As

a 
onsequen
e the single 
omponent perfe
t 
uid is des
ribed by a 1-parameter equation

of state whi
h is 
ommonly 
hosen to be of the form P = P (�).

3) The equation of state (EOS) is assumed to be given by a polytropi
 law

P = K�




; (5.7)

where K and 
 are 
onstants. Instead of the polytropi
 exponent 
 sometimes the poly-

tropi
 index n is used whi
h is de�ned by


 = 1 +

1

n

: (5.8)

The suitability of su
h an EOS is 
ertainly a debatable issue and the determination of

realisti
 equations of state of matter at super-nu
lear densities represents an entire bran
h

of physi
al resear
h. Con
lusive answers have yet to be obtained, however, and by using

polytropes with di�erent indi
es n one is able to study the qualitative di�eren
es in the

behaviour of neutron stars with equations of state of varying sti�ness. Furthermore poly-

tropes are given in analyti
 form so that no additional numeri
al error arises from their

use.

We have got all ingredients now to derive the equations governing the stati
 spheri
ally sym-

metri
 neutron star model. Starting with the metri
 (5.2) and the energy-momentum tensor

given by Eq. (5.5) with the 4-velo
ity (5.6) the Einstein �eld equations G

��

= 8�T

��

result in

two independent equations

�

;r

�

=

�

2

� 1

2r

+ 4�r�

2

P; (5.9)

�

;r

�

= �

�

2

� 1

2r

+ 4�r�

2

�: (5.10)

All other �eld equations are 
onsequen
es of these two equations, their derivatives and the
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matter equation (5.12). In terms of the alternative variable m(r) de�ned by Eq. (5.3), the

equation for � 
an be rewritten as

m

;r

= 4�r

2

�: (5.11)

From now on we will therefore refer to m as the \mass" or \mass fun
tion" of the neutron star.

Conservation of energy and momentum r

�

T

��

= 0 results in a single equation des
ribing the

hydrostati
 equilibrium

P

;r

= �

�

;r

�

(�+ P ): (5.12)

The system of ODEs (5.9), (5.10), (5.12) was �rst derived by Tolman (1939) and Oppenheimer

and Volko� (1939) and is thus known as the Tolman-Oppenheimer-Volko� or TOV equations.

Together with an equation of state whi
h we 
hoose to be the polytropi
 law (5.7) they des
ribe

a self-gravitating perfe
t 
uid in spheri
al symmetry.

We �nally need to spe
ify appropriate boundary 
onditions for these equations. The 
ondition

for the radial 
omponent of the metri
 is � = 1 at the origin r = 0 in order to avoid a 
oni
al

singularity. This is also illustrated by the requirement of a �nite energy density � at the


entre whi
h a

ording to Eq. (5.11) implies that m

;r

= O(r

2

) near the 
entre. Consequently

M = O(r

3

) and Eq. (5.3) leads to � = 1. The lapse fun
tion � on the other hand appears in the

equations in the form �

;r

=� and is therefore only de�ned up to a 
onstant fa
tor. Normally this

fa
tor is 
hosen so that � takes on the value

p

1� 2m=r at the stellar surfa
e whi
h mat
hes

the interior metri
 (5.2) to an exterior S
hwarzs
hild metri


ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

+ r

2

d�

2

+ r

2

sin

2

�d�

2

; (5.13)

where M = m(R) and R is the radius of the star. Finally the surfa
e of the star is de�ned

by the vanishing of the pressure P whi
h for the polytropi
 equation of state is equivalent to

� = 0. We note that for some equations of state the 
uid extends to in�nity and the energy

density will vanish nowhere. In this work, however, we will restri
t ourselves to equations of

state whi
h lead to stars of �nite size. We therefore summarise the boundary 
onditions as

� = 1 (5.14)
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at the origin r = 0 and

� =

r

1�

2m

r

=

1

�

; (5.15)

� = 0 (5.16)

at the surfa
e r = R, i.e. three boundary 
onditions for the three �rst order ODEs (5.9), (5.10),

(5.12). At �rst glan
e this seems to 
ompletely spe
ify the physi
al s
enario. We have to note

one subtlety however: the lo
ation of the stellar surfa
e, i.e. the extension of the numeri
al

grid, is not determined at this stage. For any given equation of state we therefore expe
t a

1-parameter family of solutions parameterised by the radius R. As we will see below we 
an

alternatively parameterise the family of solutions by the 
entral density �




of the star. Whi
h of

these parameters we 
hoose and therefore have to spe
ify in addition to the boundary 
onditions

(5.14)-(5.16) depends on the numeri
al approa
h we take towards solving the TOV-equations.

There are two main approa
hes to this problem.

5.2.2 The numeri
al treatment of the TOV-equations

The problem we have to solve numeri
ally is given by the TOV equations (5.9), (5.10), (5.12), the

boundary 
onditions (5.14)-(5.16) and the pres
ription of the free parameter. From a numeri
al

point of view this is a two-point boundary value problem and should be solved a

ordingly with

shooting or relaxation methods. This is the �rst of the two approa
hes we mentioned in the

previous se
tion. Here we will dis
uss a relaxation algorithm. In this 
ase we set up a numeri
al

grid, thus spe
ifying the free parameter in the form of the stellar radius, and �nite di�eren
e

the equations as des
ribed in se
tion 2.3.5. The three boundary 
onditions then provide the

remaining three algebrai
 equations and having spe
i�ed an initial guess the 
ode relaxes to the

solution of the TOV-equations. The main advantages of this approa
h are:

(1) all boundary 
onditions are exa
tly satis�ed,

(2) a neutron star model with a spe
i�ed radius is obtained straightforwardly by

appropriately setting up the numeri
al grid.

This 
ode su�ers from some drawba
ks, however, whi
h 
an be summarized as follows:

(1) the spe
i�
ation of initial data is non-trivial and the 
onvergen
e of the 
ode

depends on a \good" initial guess,

(2) obtaining high a

ura
y via a higher (> 2

nd

) order �nite di�eren
ing s
heme

results in more 
ompli
ated 
oeÆ
ient matri
es and inversion routines,
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(3) it is not 
lear how to obtain a neutron star model with a spe
i�ed 
entral density,

It is quite remarkable that the se
ond numeri
al approa
h has exa
tly the opposite properties in

that the advantages and drawba
ks are reversed. In this approa
h the outer boundary 
onditions

are ignored initially and instead one starts with three boundary 
onditions at the 
entre

� = 1; (5.17)

� = 1; (5.18)

� = �




: (5.19)

The TOV-equations 
an then be integrated outwards straightforwardly until the energy density

be
omes negative and the out-most grid point will de�ne the surfa
e of the star. Even though

the energy density will not vanish exa
tly at this point but take on a small positive value, the

a

ura
y thus obtained is good enough for most pra
ti
al purposes. The remaining freedom

to multiply the lapse fun
tion � with an arbitrary 
onstant is used to enfor
e the boundary


ondition (5.15). Alternatively one 
an �rst integrate Eqs. (5.10), (5.12) for � and P whi
h

de
ouple from � and afterwards obtains � from inward integration of Eq. (5.9).

In a sense the two methods 
omplement ea
h other and for example we use the quadrature

approa
h to obtain an initial guess for the relaxation s
heme. Throughout this work we will

use both numeri
al methods and spe
ify in ea
h 
ase how the TOV solutions were 
al
ulated.

Before we investigate the solutions thus obtained, however, we have to dis
uss two te
hni
al

issues, the 
hoi
e of physi
al units and a transformation to a new radial 
oordinate whi
h will

provide higher resolution near the surfa
e of the star. Below we will see that suÆ
ient resolution

in this region 
an be 
ru
ial for an a

urate numeri
al evolution in the time dependent 
ase.

5.2.3 Physi
al units

Throughout this work we have worked with natural units, i.e. 
 = 1 = G. This 
hoi
e 
an be

written in the form

1 s = 2:9979 � 10

10


m; (5.20)

1 g = 7:4237 � 10

�29


m: (5.21)

In astrophysi
s energy density is 
ommonly measured in g/
m

3

and pressure in dyne/
m

2

, where

1 dyne=1 erg/
m. However, we prefer to measure all quantities in km or 
orresponding powers
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thereof. Using Eqs. (5.20) and (5.21) we 
an 
al
ulate that

1 km

�2

= 1:3477 � 10

18

g


m

3

; (5.22)

1 km

�2

= 1:2106 � 10

30

dyne


m

2

= 1:2106 � 10

30

g


m s

2

: (5.23)

The metri
 variables � and � are dimensionless and it is obvious then from Eqs. (5.3) and (5.10)

that radius r and massm are measured in km. For example a typi
al 
entral density for neutron

stars is 10

15

g/
m

3

whi
h in our units be
omes 0.000742 km

�2

. We 
an also 
ompare our results

for radius and mass with the solar values

M

�

= 1:4766 km; (5.24)

R

�

= 6:960 � 10

5

km: (5.25)

In 
ontrast to these values typi
al radii and masses of neutron stars are given by

M

NS

� 2 km; (5.26)

R

NS

� 10 km: (5.27)

It is a well known result that relativisti
 
orre
tion terms to a Newtonian des
ription of stars

generally appear in terms of the ratio M=R, so that this quotient des
ribes the importan
e of

relativisti
 e�e
ts. In view of this result and the quotient M

�

=R

�

= 2:1 �10

�6

it is immediately

obvious why a Newtonian des
ription of the sun and other \normal" stars is perfe
tly adequate.

In 
ontrast we �ndM=R � 0:2 for neutron stars, so that relativisti
 e�e
ts will play an important

role in their behaviour and a

urate models need to be developed in the framework of general

relativity.

5.2.4 Transformation to a new radial 
oordinate

We have already mentioned that the surfa
e of the star is de�ned by the vanishing of the pressure

whi
h in the 
ase of a polytropi
 equation of state is equivalent to a zero energy density. A

dependent quantity frequently introdu
ed in the study of neutron stars is the speed of sound

de�ned by

C

2

=

�P

��

; (5.28)
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whi
h in the polytropi
 
ase (5.7) be
omes

C

2

= K
�


�1

: (5.29)

Consequently the speed of sound will also vanish at the surfa
e if 
 > 1 as will always be the


ase for a star of �nite mass. In parti
ular we will show below that the asymptoti
 behaviour

of the speed of sound near the surfa
e is given by

C �

p

R� r: (5.30)

Taking into a

ount the vanishing of the propagation speed of sound waves at r = R we now


onsider the qualitative behaviour of a lo
alized pulse travelling towards the surfa
e. As a

result of the de
reasing sound speed C the front of the pulse will in general travel more slowly

than its tail and we would expe
t the pulse to narrow. In parti
ular the numeri
al resolution

near the surfa
e might be inadequate to a

urately evolve the pulse in this region and it might

be bene�
ial to work with a radial 
oordinate in terms of whi
h the propagation speed is by

and large independent of the position within the star. In order to study the impli
ations of a

lo
ally vanishing propagation speed we 
onsider the simpler s
enario of the 1-dimensional wave

equation with variable propagation speed

u

;tt

= 
(r)

2

u

;rr

; (5.31)

on a physi
al domain 0 � r � R. Without loss of generality we will set R = 1 for the rest of

this dis
ussion. Eq. (5.30) then suggests to 
hoose a propagation speed of the form


(r) =

p

1� r: (5.32)

For the numeri
al implementation we introdu
e the auxiliary variables F = u

;t

and G = u

;r

and rewrite Eq. (5.31) as a system of two �rst order PDEs

F

;t

= 


2

G

;r

; (5.33)

G

;t

= F

;r

; (5.34)
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and impose the boundary 
onditions u = 0, F = 0 at both boundaries. The system (5.33),

(5.34) is linear and 
an be written in ve
torial form

v

;t

+Av

;r

= 0; (5.35)

v =

0

�

F

G

1

A

; (5.36)

A =

0

�

0 �


2

�1 0

1

A

: (5.37)

The 
hara
teristi
s of the PDE are then given by

dr

dt

= �

i

; (5.38)

where �

1

= 
, �

2

= �
 are the eigenvalues of the matrix A. At the outer boundary the slopes

of the 
hara
teristi
s 
ollapse be
ause of the vanishing of the wave speed 
.

This system has been evolved with the se
ond order in spa
e and time M
Corma
k �nite

di�eren
ing s
heme des
ribed in se
tion 2.3.4 using a grid of 500 points. In Fig. 29 we show

the time evolution of u obtained for initial data in the form of a Gaussian pulse. Snapshots

of u are plotted at t

1

= 0:00, t

2

= 0:48, t

3

= 0:72, t

4

= 1:44, t

5

= 2:52, t

6

= 3:40, t

7

= 4:44,

t

8

= 4:60, t

9

= 5:60, t

10

= 6:56, t

11

= 7:20 and t

12

= 8:00. In order to shed light on the

quality of the numeri
al evolution we analyse the 
onvergen
e properties of the 
ode. For this

purpose we have performed the same runs using 1000 and 2000 grid points and 
al
ulated the

time dependent 
onvergen
e fa
tor a

ording to the method des
ribed in se
tion 3.5.3. Again

we use a high resolution referen
e solution obtained for 2000 grid points in pla
e of the analyti


solution. The results shown in Fig. 30 demonstrate that the 
onvergen
e of the 
ode drops to

�rst order at about t = 2:5 whi
h 
oin
ides with the snapshot at t

5

when the pulse is re
e
ted

at the outer boundary for the �rst time. This result is 
on�rmed by high resolution runs in

whi
h no broadening of the pulse similar to that shown in Fig. 29 is observed after re
e
tions

at either boundary. We 
on
lude that a naive numeri
al evolution 
an lead to spurious results

in regions with a vanishing propagation speed and that this problem is due to an insuÆ
ient

spatial resolution.

A solution to this problem is obtained by transforming to a new spatial 
oordinate y in terms of

whi
h the slopes of the 
hara
teristi
s do not vary as drasti
ally over the numeri
al domain and

in parti
ular do not vanish at the boundary. A simple re
ipe is to de�ne this new 
oordinate
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Figure 29: The numeri
al evolution of an initial Gaussian pulse a

ording to the wave equation

in terms of the 
oordinate r as obtained for the varying propagation speed given by Eq. (5.32)

whi
h vanishes at r = 1. The Snapshots are shown for the times t

1

; : : : ; t

12

.

0 2 4 6 8
t

0

2

4

6

8

l2(u
500

)/l2(u
1000

)

Figure 30: The 
onvergen
e fa
tor obtained for 500 and 1000 grid points as a fun
tion of time.

At t � 2:5 the 
onvergen
e drops to �rst order.

by

y =

Z

r

0

1


(~r)

d~r; (5.39)
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whi
h implies

�

�r

=

1




�

�y

; (5.40)

dr = 
 dy: (5.41)

In the spe
ial 
ase where the propagation speed is given by Eq. (5.32) the 
oordinates r and y

are related by

y = 2� 2

p

1� r; (5.42)

r = y �

y

2

4

; (5.43)

so that the interval r 2 [0; 1℄ is mapped to y 2 [0; 2℄. In terms of the new 
oordinate y the

system (5.33), (5.34) 
an be rewritten as

F

;t

= 
G

;y

; (5.44)

G

;t

=

1




F

;y

; (5.45)

and the 
hara
teristi
 
urves are given by

dy

dt

= �1: (5.46)

In order to 
ompare the new s
heme with the original approa
h, we evolve the same initial

data as above using the system (5.44), (5.45) on a y-grid again with 500 grid points and the

same boundary 
onditions. The result is shown in Fig. 31 where we plot the same snapshots

as in Fig. 29. For 
omparison purposes the plots show u as a fun
tion of the 
oordinate r

but as a result of the 
omputation on the y-grid, the density of grid points is higher towards

r = 1 in Fig. 31 whereas the grid points are distributed homogeneously in Fig. 29. In 
ontrast

to the above evolution no broadening of the pulse after re
e
tion at the outer boundary is

observed. The time dependent 
onvergen
e analysis shown in Fig. 32 demonstrates se
ond

order 
onvergen
e throughout the run even though small variations in the 
onvergen
e fa
tor

are visible when the pulse is re
e
ted at either boundary. We 
on
lude that a transformation

of the type (5.39) provides the ne
essary resolution in a region of vanishing propagation speed

and leads to satisfa
tory results at reasonable grid resolutions.

We now have to apply this idea to the 
ase of a stati
, spheri
ally symmetri
 neutron star. The
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Figure 31: The same evolution as in Fig. 29, but obtained with the new 
oordinate y whi
h

results in a higher density of grid points near the outer boundary r = 1.

0 2 4 6 8
t

0

2

4

6

8

l2(u
500
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)

Figure 32: The time dependent 
onvergen
e fa
tor obtained for the numeri
al evolution of the

wave equation on a y-grid with 500 and 1000 grid points. Se
ond order 
onvergen
e is 
learly

maintained throughout the evolution.

role of the wave speed 
 is now assumed by the speed of sound C de�ned in Eq. (5.28) and we

introdu
e the new radial 
oordinate

y =

Z

r

0

1

C(~r)

d~r: (5.47)
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This transformation has also been su

essfully used by Ruo� (2000) in the linearized time

evolution of radial os
illations for more realisti
 equations of state. The asymptoti
 behaviour

of the sound speed in the Tolman-Oppenheimer-Volko� 
ase given by Eq. (5.30) is identi
al to

that of the wave speed in the toy problem. Consequently the radial interval r 2 [0; R℄ of the star

will be mapped to a �nite interval y 2 [0; Y ℄. In order to obtain a formulation whi
h in
ludes

both possible 
hoi
es of the radial 
oordinate, we introdu
e the variable x in terms of whi
h

the TOV equations are written as

r

;x

=

(

1 if x = r

C if x = y,

(5.48)

�

;x

�

= r

;x

�

�

2

� 1

2r

+ 4�r�

2

P

�

; (5.49)

�

;x

�

= r

;x

�

�

�

2

� 1

2r

+ 4�r�

2

�

�

; (5.50)

P

;x

= �

�

;x

�

(�+ P ): (5.51)

In the numeri
al 
ode we are thus able to swit
h between the two alternative modes of 
al
ulation

by assigning the derivative r

;x

a

ording to either possibility of Eq. (5.48). In either 
ase the

boundary 
onditions are given by Eqs. (5.14)-(5.16) supplemented with the requirement that r

and x vanish simultaneously at the origin

r = 0 at x = 0: (5.52)

One subtlety 
on
erning the relaxation method of 
al
ulating TOV solutions has to be men-

tioned. In this 
ase we need to spe
ify the radius of the star. If we use the res
aled radial


oordinate, however, the surfa
e value x

s

is not a priori known. In pra
ti
e we therefore spe
ify

the free parameter in the form of the 
entral density and solve the TOV equations via the

quadrature method �rst. This provides us with the outer boundary value of the 
oordinate x

for the stellar model in question and we 
an solve the TOV equations in a se
ond step with the

relaxation method.

5.2.5 Asymptoti
 properties of the TOV equations

The asymptoti
 behaviour of the solutions of the TOV equations (5.48)-(5.51) at the surfa
e

of the star has serious impli
ations for the simulation of dynami
 neutron stars with 
ertain

equations of state in a stri
tly Eulerian framework. We will therefore dis
uss the asymptoti
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behaviour �rst and then 
ompare the results with the numeri
ally obtained solutions. Sin
e

the introdu
tion of the res
aled radial 
oordinate resulted from numeri
al requirements only,

we use r

;x

= 1 i.e. the original system (5.9)-(5.12) for the asymptoti
 analysis. We start with

the behaviour at the origin, where we assume that

(1) the energy density and thus the pressure are �nite and positive,

(2) the lapse fun
tion � is �nite and positive.

We have already seen that the 
entral value of the energy density is a free parameter and the

pressure follows from the equation of state. The 
entral value of the lapse fun
tion, on the other

hand, is determined by mat
hing � to an exterior S
hwarzs
hild metri
. We also know from

se
tion 5.2.1 that our assumptions imply � = 1 and m = O(r

3

) at the origin. From Eq. (5.3) we

therefore 
on
lude that � = 1+O(r

2

). Inserting this result into Eq. (5.9) and using the se
ond

assumption we �nd that �

;r

=� � r and thus � = �




+ O(r

2

). Using this result in Eq. (5.12)

leads to P

;r

� r, i.e. P = P




+ O(r

2

) and the equation of state then shows that the energy

density has the same behaviour. In summary the results near the origin are

�(r) = �




+O(r

2

); (5.53)

�(r) = 1 +O(r

2

); (5.54)

�(r) = �




+O(r

2

); (5.55)

P (r) = K�







+O(r

2

): (5.56)

The 
orresponding analysis for the surfa
e is more 
ompli
ated and the results will later prove

to be of more signi�
an
e. For this analysis it is 
onvenient to work with the radial variable

z := R� r: (5.57)

We start with the following assumptions.

(1) The metri
 fun
tion � is �nite at the surfa
e and also satis�es the inequality

� > 1. This follows from Eq. (5.3) and the requirement that the mass satis�es

the 
ondition 0 < 2m(R) < R. The �rst inequality follows from Eq. (5.11) for

any non va
uum model and the se
ond implies that the neutron star extends

beyond its S
hwarzs
hild radius.

(2) The lapse � is �nite and positive at the surfa
e.
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(3) The energy density and the pressure vanish at the surfa
e and their leading order

terms are given by some positive powers of z.

We write these assumptions as

� = �

s

+O(z

�

1

); (5.58)

� = �

s

+O(z

�

2

); (5.59)

� = �

s

z

�

+O(z

�+�

3

); (5.60)

P = P

s

z

�

+O(z

�+�

4

); (5.61)

where �, � and �

1

; : : : ; �

4

are positive 
onstants we have yet to determine and �

s

, �

s

, �

s

and

P

s

are non vanishing 
onstants subje
t to the restri
tions mentioned above. We �rst insert the

expressions for � and P into the equation of state (5.7). Comparison of the leading order terms

then leads to

� = �
; (5.62)

�

3

= �

4

; (5.63)

where 
 is the polytropi
 exponent. Similarly the leading order in Eq. (5.10) results in

�

1

= 1: (5.64)

We then 
ombine Eqs. (5.9) and (5.12) to eliminate the lapse fun
tion and insert (5.58)-(5.61).

The result of 
omparing the two leading orders is

�+ 1 = �; (5.65)

�

4

= 1: (5.66)

This provides a se
ond 
ondition for � and � and with Eq. (5.62) we 
on
lude that

� =

1

1� 


= n; (5.67)

� = n+ 1; (5.68)
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where n is the polytropi
 index de�ned in (5.8). Finally we use these results in Eq. (5.9) for the

lapse fun
tion and obtain

�

2

= 1: (5.69)

We summarise the asymptoti
 behaviour at the surfa
e:

� = �

s

+O(z); (5.70)

� = �

s

+O(z); (5.71)

� = �

s

z

n

+O(z

n+1

); (5.72)

P = P

s

z

n+1

+O(z

n+2

): (5.73)

As a 
onsequen
e we will not be able to Taylor expand � and P about the surfa
e z = 0

unless a polytropi
 equation of state with integer index n is 
hosen. Indeed a more extensive

analysis 
arried out with the algebrai
 
omputing pa
kage GRTensor II shows that higher order

terms 
ontaining the polytropi
 index n also appear in the expansions of � and � so that these

fun
tions are subje
t to the same limitations regarding Taylor expansion.

The most important result of the asymptoti
 analysis 
on
erns the behaviour of the energy

density � near the surfa
e given by Eq. (5.72). In parti
ular we note that for a polytropi
 index

n < 1 or exponent 
 > 2 the gradient of � with respe
t to the areal radius r will be in�nite at

the surfa
e. The 
ase n = 1, i.e. 
 = 2 is the limiting 
ase where � has a �nite gradient. This

spe
ial 
ase also implies that no fra
tional powers appear in the series expansions of �, �, � and

P . 
 = 2 is 
onsidered to provide a qualitatively good des
ription of the average sti�ness of the

equation of state of neutron stars and thus a popular 
hoi
e for the polytropi
 exponent. For

n > 1 or 
 < 2 the energy density will have a vanishing gradient at the surfa
e.

It remains to 
he
k the asymptoti
 behaviour in terms of the res
aled radial 
oordinate y.

From the de�nition of the speed of sound (5.28) and the results above we 
on
lude that near

the surfa
e

C(z) = O(z

1=2

); (5.74)
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Table 3: The parameters for �ve di�erent neutron star models. We will refer to these as models

1-5 in this work.

model 
 K �




[km

�2

℄ M [M

�

℄ R [km℄

1 1:75 25 km

1:5

0:00125 1.506 12.593

2 2:00 100 km

2

0:0015 1.130 9.653

3 2:00 150 km

2

0:0015 1.554 10.828

4 2:00 200 km

2

0:0015 1.878 11.646

5 2:30 1800 km

2:6

0:0010 1.756 11.710

whi
h implies that

��

�y

= C

��

�r

= O(z

n�1=2

): (5.75)

All other fun
tions have vanishing gradients with respe
t to y near the surfa
e. Consequently

the res
aled 
oordinate allows us to 
al
ulate neutron star models for polytropi
 exponents up

to 
 = 3 without en
ountering in�nite gradients and the 
orresponding numeri
al ina

ura
ies.

5.2.6 Solutions of the TOV equations

In view of the results of the asymptoti
 analysis we have numeri
ally solved the TOV-equations

for neutron star models with di�erent polytropi
 exponents 
 < 2, 
 = 2 and 
 > 2. The


orresponding models are listed in Table 3 where we have in
luded two further models with


 = 2 but di�erent polytropi
 fa
tor K, whi
h we will use to also study the variation of the

solutions with K. In the remainder of this work we will refer to these stellar models as models

1-5. The 
ode we have used for the 
al
ulation is based on the quadrature method des
ribed in

se
tion 5.2.2 and uses a fourth order Runge-Kutta s
heme for the integration (see for example

Press et al. 1989). We note, however, that the results of the relaxation method agree with those

of the quadrature s
heme with high pre
ision and the 
orresponding plots are indistinguishable

from those we show in this se
tion. For the 
al
ulations in this se
tion we use the res
aled


oordinate y and set r

;x

= C in Eq. (5.48). The 
ode has been 
he
ked for 
onvergen
e by


al
ulating models 1-5 for di�erent grid resolutions starting with 250 grid points. The resulting


onvergen
e fa
tors Q for the variables �, � and � obtained for doubling the grid resolution is

shown in Table 4 for all 5 models. The high resolution referen
e solution has been 
al
ulated

for 2000 grid points in all 
ases. For the fourth order Runge-Kutta s
heme we would expe
t a


onvergen
e fa
tor of 16. Even though the results show some variation around this value they

are 
ompatible with fourth order 
onvergen
e.
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Table 4: The 
onvergen
e fa
tors obtained for doubling the grid resolution in a fourth or-

der Runge-Kutta s
heme for solving the TOV-equations via quadrature. The high resolution

referen
e solution has been 
al
ulated for 2000 grid points.

model Q

�

Q� Q

�

1 14.23 15.55 9.69

2 12.85 13.72 16.23

3 17.98 18.40 18.76

4 17.81 18.14 17.94

5 11.64 16.51 21.13

The numeri
al results obtained for the 5 stellar models we will now dis
uss have all been


al
ulated by using about 600 grid points. In Fig. 33 we plot the metri
 fun
tions �, �, the

energy density �, the pressure P , the mass m and the sound speed C as fun
tions of the areal

radius r for models 1, 3 and 5. We note that the di�erent 
entral densities of these models have

no impa
t on the qualitative behaviour of the solutions and have only been 
hosen to obtain

neutron star models of similar size. The results demonstrate the dependen
e of the behaviour

of the star near its surfa
e on the polytropi
 exponent 
. A

ording to the asymptoti
 analysis

we expe
t the gradient of the energy density to be zero for 
 = 1:75 in model 1, �nite for the


riti
al 
ase 
 = 2 in model 3 and in�nite for model 5 where 
 = 2:3. This result is 
ompatible

with the plots of �(r) in the middle left panel of Fig. 33. The pressure gradient on the other

hand vanishes at the surfa
es for any equation of state with positive n a

ording to Eq. (5.73)

whi
h agrees with the numeri
al results in the middle right panel. The speed of sound shows

the opposite behaviour and has an in�nite gradient independent of the polytropi
 index whi
h

is in agreement with the asymptoti
 result given by Eq. (5.74). With respe
t to the metri
 we

note that the radial 
omponent � has a lo
al maximum, while the lapse � is monotoni
ally

in
reasing in the stellar interior. This behaviour be
omes 
lear if we look at the 
orresponding

equations for � and �. We already know that �

;r

vanishes at the 
entre. If we di�erentiate

Eq. (5.10) with respe
t to r only one term on the right hand side is non zero at the 
entre, so

that

�

;rr

j

r=0

= 4��




; (5.76)

and �

;r

will be
ome positive as r in
reases. At some point in the star, however, the negative

�rst term on the right hand side of Eq. (5.10) will dominate the positive se
ond term whi
h goes

to zero at the surfa
e and �

;r

will be
ome negative. Sin
e Eq. (5.10) admits only one positive

solution for � if �

;r

= 0, � will monotoni
ally de
rease beyond this point. We have already
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Figure 33: The metri
 fun
tions �, �, the energy density �, the pressure P , the mass m and

the speed of sound C are plotted as fun
tions of radius for di�erent polytropi
 indi
es 
 = 1:75

(model 1), 
 = 2:00 (model 3) and 
 = 2:3 (model 5).

seen, however, that it 
annot de
rease to 1 or below inside the star sin
e this 
on
i
ts with the

nonzero mass m in Eq. (5.3). Consequently � > 1 inside the star and the right hand side of

Eq. (5.9) will be positive throughout the star whi
h explains the monotoni
 behaviour of �.

In order to study the dependen
e of the solutions on the polytropi
 fa
tor K we 
ompare the

numeri
al results for models 2, 3 and 4 in Fig. 34. In 
ontrast to the polytropi
 exponent, a

variation of K does not qualitatively 
hange the results. A larger fa
tor K leads to a larger

mass and radius of the neutron star model if all other parameters are kept �xed. This behaviour
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Figure 34: The metri
 fun
tions �, �, the energy density �, the pressure P , the mass m and

the speed of sound C are plotted as fun
tions of r for di�erent polytropi
 fa
tors K = 100 km

2

(model 2), K = 150 km

2

(model 3) and K = 200 km

2

(model 4).

has been observed for various polytropi
 models and 
entral densities and 
an be attributed to

the larger pressure that follows from a larger K a

ording to Eq. (5.7). The star will thus be

able to support more mass against self gravitation and extend to larger radii.

We 
on
lude the analysis of the TOV equations by studying the 1-parameter families of solutions


orresponding to the �ve stellar models. For this purpose numerous solutions of the TOV

equations with equations of state as given in Table 3 have been 
al
ulated for various 
entral

densities. In Fig. 35 we plot the results in the form of relations between 
entral density �




, total
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Figure 35: The 1-parameter families of stati
 spheri
ally symmetri
 neutron star models 
orre-

sponding to models 1, 3 and 5 are graphi
ally illustrated by plotting the relations between the

total mass, the 
entral energy density and the radius of the star. The lo
ations of neutron star

models 1, 3 and 5 are indi
ated by 
rosses.

radius R, and total mass M of the star. One obvious result is the maximum of the mass 
urves

M(R) andM(�




) in the upper panels of the �gure. It is a well known result that these maxima

separate the stable and unstable bran
hes of the neutron star families for a given equation of

state (see for example Shapiro and Teukolsky 1983). The stable bran
hes 
onsist of models with


entral densities below the 
riti
al value i.e. larger radii and the unstable bran
hes 
orrespond

to larger 
entral densities and smaller radii. In this 
ontext instability means that the frequen
y

of the fundamental radial os
illation mode of the neutron star be
omes imaginary and thus its

amplitude will grow exponentially in time and the neutron star is unstable against arbitrarily

small radial perturbations. The eigenmode spe
trum of radial os
illations will be dis
ussed in

the next se
tion when we look at dynami
 spheri
ally symmetri
 stars.

Another interesting result is shown in the lower panel of Fig. 35 where we plot the radius as a

fun
tion of the 
entral density. The polytropi
 exponent 
 = 2 again appears as a 
riti
al value

for whi
h the radius 
onverges to a �nite value as the 
entral density goes to zero. For smaller

exponents the radius diverges in this limit whereas it goes to zero for exponents 
 > 2. We

also dis
over this behaviour in the upper right panel where the mass is plotted as a fun
tion
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of radius. For 
 < 2 a unique value of M 
an be assigned to any suÆ
iently large radius R.

In the 
riti
al 
ase 
 = 2 equilibrium models are only found for radii below a maximal value,

but the relation M(R) is still one to one near this maximum. For 
 > 2 this is no longer the


ase and for radii just below the maximal equilibrium radius we �nd two models with di�erent

mass. No su
h qualitatively di�erent behaviour has been found when the polytropi
 fa
tor K

is varied instead of 
. It is interesting to 
ompare the mass-radius relation for 
 = 2 with the

Newtonian 
ase, where 
 = 2 is also a 
riti
al value and leads to the relation R �M

0

= 
onst

(Shapiro and Teukolsky 1983). The results in Fig. 35 indi
ate that relativisti
 e�e
ts break this

kind of degenera
y.

This 
ompletes our analysis of stati
 spheri
ally symmetri
 stars and in the next se
tion we

turn our attention to the dynami
 
ase. The equations and results of this se
tion will then be

used to derive a fully non-linear perturbative formulation of radial os
illations on a stati
 TOV

ba
kground.

5.3 Spheri
ally symmetri
 dynami
 stars in Eulerian 
oordi-

nates

In this se
tion we will develop an Eulerian formulation of a dynami
 spheri
ally symmetri
 neu-

tron star. For 
ode testing purposes it is interesting to also look at the 
orresponding s
enario

in the Cowling approximation, i.e. with the metri
 frozen at its equilibrium values. We will

then use the results of the previous se
tion to obtain a fully non-linear perturbative formula-

tion of the problem. In this new approa
h to studying non-linear neutron star os
illations we

eliminate terms of zero order in the perturbations but keep all higher order terms and thus

obtain a formulation of the dynami
 star whi
h is equivalent to the original non-perturbative

set of equations. From the non-linear perturbative formulation it is easy to derive the linearized

equations whi
h we will use to investigate the eigenmode spe
trum of radial neutron star os
il-

lations. After des
ribing the numeri
al methods used to evolve the dynami
 neutron star in the

non-linear 
ase we have to dis
uss the \surfa
e problem" whi
h is intrinsi
 to any Eulerian for-

mulation of non-linear os
illations that involve a radial displa
ement of the stellar surfa
e. The

numeri
al methods we have used to 
ir
umvent this problem will then be tested by 
omparing

the numeri
al results obtained in the linear regime with the analyti
 solution of the linearized

equations. By using va
uum 
at spa
e as the ba
kground, we 
an emulate a non-perturbative

\standard" approa
h to the numeri
al evolution and 
ompare the results with the perturbative

s
heme using the TOV ba
kground. Even though the perturbative s
heme leads to highly a
-
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urate results for most stellar models, we have not been able to �nd a perfe
tly satisfa
tory

solution to the surfa
e problem. We have therefore de
ided to follow a more 
autious approa
h

and use a simpli�ed neutron star model to investigate non-linear e�e
ts in the evolution of

radial os
illations. This model has also been used to further test the performan
e of the 
ode.

The surfa
e problem will be re-addressed with a Lagrangian approa
h in se
tion 5.4.

5.3.1 The equations in the dynami
 
ase

We start the Eulerian formulation of the dynami
 
ase with the line element in radial gauge

and polar sli
ing

ds

2

= �

^

�

2

dt

2

+ �̂

2

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

); (5.77)

where

^

� and �̂ are now fun
tions of t and r and the \hat" has been introdu
ed to distinguish

them from their stati
 
ounterparts. As in the stati
 
ase we des
ribe the matter as a perfe
t


uid at zero temperature with a polytropi
 equation of state. As we have seen in se
tion 5.2.1

this enables us to write the energy momentum tensor in the form

T

��

= (�̂+

^

P )u

�

u

�

+

^

Pg

��

; (5.78)

where again the \hat" on the fun
tions �̂,

^

P means that they are fun
tions of t and r. The time

dependent pressure and energy density are related by the polytropi
 law

^

P = K�̂




; (5.79)

where the polytropi
 parameters 
 andK are the same as in the stati
 
ase. The time dependent

speed of sound is de�ned in analogy to Eq. (5.28) by

^

C

2

=

�

^

P

��̂

: (5.80)

In 
ontrast to the stati
 
ase the 4-velo
ity will now have a non-vanishing radial 
omponent

u

�

= (v; w; 0; 0); (5.81)

where v = v(r; t) and w = w(r; t). We have not denoted these quantities by a \hat" sin
e we do

not use stati
 
ounterparts in their 
ase. The normalisation 
ondition u

�

u

�

= �1 relates these
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fun
tions by

^

�

2

v

2

= 1 + �̂

2

w

2

: (5.82)

With the line element (5.77) and the energy momentum tensor (5.78) the Einstein �eld equations

G

��

= 8�T

��

result in two independent 
onstraint equations

^

�

;r

^

�

=

�̂

2

� 1

2r

+ 4�r�̂

2

h

^

P + (�̂+

^

P ) �̂

2

w

2

i

; (5.83)

�̂

;r

�̂

= �

�̂

2

� 1

2r

+ 4�r�̂

2

h

�̂+ (�̂+

^

P )�̂

2

w

2

i

: (5.84)

It is a well known result that there are no gravitational degrees of freedom in spheri
al symmetry

and we therefore expe
t to be able to determine the metri
 fun
tions on ea
h time sli
e without

knowledge of their history. This is 
ompatible with the result that the �eld equations 
an be

given in the form of 
onstraint equations only. The degrees of freedom of the s
enario are thus

entirely 
ontained in the matter variables, whose evolution is determined by the equations of

hydrodynami
s r

�

T

��

= 0. In our 
ase we 
an write these equations as a quasi linear system

of PDEs

�̂

;t

+ ~�

11

�̂

;r

+ ~�

12

w

;r

=

~

b

1

; (5.85)

w

;t

+ ~�

21

�̂

;r

+ ~�

11

w

;r

=

~

b

2

; (5.86)
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where the 
oeÆ
ients are given by

D = v

�

1�

^

C

2

�̂

2

w

2

1 + �̂

2

w

2

�

; (5.87)

~�

11

=

w(1 �

^

C

2

)

D

; (5.88)

~�

12

=

�̂+

^

P

(1 + �̂

2

w

2

)D

; (5.89)

~�

21

=

^

C

2

(�̂+

^

P )�̂

2

D

; (5.90)

~

b

1

= �

1

D

(�̂+

^

P )

�

w�̂

;r

=�̂+ v�̂

;t

=�̂

1 + �̂

2

w

2

+ 2

w

r

�

; (5.91)

~

b

2

= �

1

D

"

w

2

 

�̂

;r

�̂

+

^

�

;r

^

�

�

2

r

^

C

2

+ 2

v

w

�̂

;t

�̂

!

+

^

�

;r

=

^

�

�̂

2

#

: (5.92)

In pra
ti
e we 
al
ulate the derivatives of the metri
 fun
tions that appear in these 
oeÆ
ients

from the 
onstraint equations (5.83), (5.84) and a third �eld equation

�̂

;t

�̂

= �4�r�̂

2

^

�

2

vw(�̂+

^

P ); (5.93)

whi
h is an automati
 
onsequen
e of the two 
onstraints, their derivatives and the matter

equations. We therefore 
al
ulate the 
oeÆ
ients ~�

ij

and b

i

without approximating any deriva-

tives with �nite di�eren
e expressions.

We have already mentioned in the dis
ussion of the stati
 
ase that a numeri
ally superior

performan
e is obtained if we transform to a new radial 
oordinate y de�ned by Eq. (5.47).

We note however that we need to 
al
ulate the 
orresponding stati
 model �rst to obtain the

stati
 sound speed C. In the perturbative approa
h whi
h we will dis
uss below that is done

as a matter of 
ourse. There we will provide a formulation of the perturbative equations that

in
ludes both 
hoi
es for the radial 
oordinate analogous to Eqs. (5.48)-(5.51). In the Cowling

approximation the set of equations 
orresponding to (5.85)-(5.92) des
ribes a dynami
, spher-

i
ally symmetri
 perfe
t 
uid in a �xed gravitational potential. We obtain these equations by

the following modi�
ations:

(1) the 
onstraint equations for the dynami
 metri
 fun
tions (5.83), (5.84) are repla
ed

by the 
orresponding TOV equations (5.9), (5.10) whi
h have to be solved only at the

start of the evolution,
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(2) in the 
oeÆ
ients ~�

11

, ~�

12

, ~�

21

and

~

b

1

all o

urren
es of �̂,

^

�,

^

�

;r

/

^

� and �̂

;r

=�̂ are

repla
ed with their stati
 analogues �, �, �

;r

=� and �

;r

=� respe
tively and �̂

;t

=�̂ is set

to zero,

(3) the 
oeÆ
ient fun
tion

~

b

2

is repla
ed with the slightly modi�ed version

�

b

2

= �

1

D

�

w

2

��

�

;r

�

+

�

;r

�

�

�

1�

^

C

2

�

�

2

r

^

C

2

�

+

�

;r

=�

�

2

�

: (5.94)

These modi�
ations are rather simple so that we in
orporate both options, the evolution with

time dependent metri
 and the Cowling approximation in one 
ode. A user spe
i�ed initial

parameter determines whi
h version is to be run. Before we des
ribe the numeri
al implemen-

tation, we need to rewrite the equations of this subse
tion in a perturbative form.

5.3.2 A fully non-linear perturbative formulation

In this se
tion we will de
ompose the time dependent quantities

^

�, �̂ and �̂ into stati
 ba
k-

ground 
ontributions and time dependent perturbations. We will see that the TOV equations

are still present in the dynami
 equations, for example in the terms �

21

�̂

;r

� b

2

in Eq. (5.86).

It is the elimination of these zero order terms and the ensuing numeri
al ina

ura
ies whi
h

provides the motivation for our perturbative formulation. We start by de
omposing the time

dependent fun
tions into a stati
 ba
kground plus a time dependent perturbation

^

�(t; r) = �(r) + Æ�(t; r); (5.95)

�̂(t; r) = �(r) + Æ�(t; r); (5.96)

�̂(t; r) = �(r) + Æ�(t; r); (5.97)

^

P (t; r) = P (r) + ÆP (t; r): (5.98)

The radial velo
ity 
omponent w vanishes in the stati
 limit and therefore represents a pertur-

bation in itself. The time dependent fun
tions

^

P ,

^

C and v are dependent variables and thus


onsidered fun
tions of the fundamental variables

^

�, �̂, �̂ and w a

ording to Eqs. (5.79), (5.80)

and (5.82). We stress that the perturbations are �nite and that no assumption with regard to

their size has been made.

We start rewriting the dynami
 equations with the 
onstraint equation for

^

�. If we insert
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Eqs. (5.95)-(5.97) into (5.83) and multiply with

^

� we obtain

�

;r

+ Æ�

;r

= �

�

2

� 1

2r

+ 4�r��

2

P + 4�r��

2

h

ÆP + (�+ Æ�+

^

P )�̂

2

w

2

i

+ �

2�Æ�+ Æ�

2

2r

+ Æ�

�̂

2

� 1

2r

+ 4�r

�

�(2�Æ�+ Æ�

2

) + Æ��̂

2

�

h

^

P + (�+ Æ�+

^

P )�̂

2

w

2

i

:

(5.99)

The 
ru
ial terms are the �rst on the left and the �rst two terms on the right hand side. We know

that these terms will 
an
el ea
h other identi
ally a

ording to Eq. (5.9) if a solution of the stati


equations is 
hosen as a ba
kground. Numeri
ally, however, this will not be the 
ase be
ause

of trun
ation errors. This residual error will inevitably 
ontaminate the numeri
al evolution

of the dynami
 s
enario. In other words the numeri
al a

ura
y we will obtain is limited by

the numeri
al a

ura
y of the stati
 ba
kground and not by that of the dynami
 signal we are

interested in. The severeness of this e�e
t will depend on the relative size of the perturbations

with respe
t to the ba
kground. For very large perturbations the numeri
al 
ontamination will

be less signi�
ant and for very small perturbations we may satisfy ourselves with a linearized


ode. For perturbations of intermediate strength, however, whi
h are still smaller than the

ba
kground but are large enough to give rise to non-linear e�e
ts, the numeri
al 
ontamination

will severely a�e
t the evolution and may give rise to spurious phenomena.

We return to Eq. (5.99) and 
ontinue the perturbative formulation of the dynami
 
ase. Sin
e

we know that the zero order terms 
an
el ea
h other, we 
an simply subtra
t them from the

equation. The perturbative equation for

^

� then be
omes

Æ�

;x

r

;x

= �

2�Æ�+ Æ�

2

2r

+ Æ�

�̂

2

� 1

2r

+ 4�r��

2

h

ÆP + (�+ Æ�+

^

P )�̂

2

w

2

i

+ 4�r

�

�(2�Æ�+ Æ�

2

) + Æ��̂

2

�

h

^

P + (�+ Æ�+

^

P )�̂

2

w

2

i

;

(5.100)

where we have also implemented the transformation to the generalised radial 
oordinate x.

Pro
eeding in the same way we rewrite the 
onstraint equation for �̂

Æ�

;x

r

;x

= � �

2�Æ�+ Æ�

2

2r

� Æ�

�̂

2

� 1

2r

+ 4�r�

3

h

Æ�+ (�+ Æ�+

^

P )�̂

2

w

2

i

+ 4�r(3�

2

Æ�+ 3�Æ�

2

+ Æ�

3

)

h

�̂+ (�+ Æ�+

^

P )�̂

2

w

2

i

:

(5.101)
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The reformulation of the matter equations (5.85) and (5.86) is parti
ularly simple due to their

quasi linear nature. We obtain

Æ�

;t

+ �

11

Æ�

;x

+ �

12

w

;x

= b

1

; (5.102)

w

;t

+ �

21

Æ�

;x

+ �

11

w

;x

= b

2

; (5.103)

with the 
oeÆ
ient fun
tions

D = v

�

1�

^

C

2

�̂

2

w

2

1 + �̂

2

w

2

�

; (5.104)

�

11

=

w(1�

^

C

2

)

r

;x

D

; (5.105)

�

12

=

�+ Æ�+

^

P

(1 + �̂

2

w

2

)r

;x

D

; (5.106)

�

21

=

^

C

2

(�+ Æ�+

^

P )�̂

2

r

;x

D

; (5.107)

b

1

= �

1

D

�

(�+ Æ�+

^

P )

�

w�̂

;r

=�̂+ v�̂

;t

=�̂

1 + �̂

2

w

2

+ 2

w

r

�

+ �

;r

w(1 �C

2

)

�

; (5.108)

b

2

= �

1

D

(

w

2

 

�̂

;r

�̂

+

^

�

;r

^

�

�

2

r

^

C

2

+ 2

v

w

�̂

;t

�̂

!

+

1

�̂

2

(�+ Æ�+

^

P )

"

(

^

C

2

� C

2

)�

r

+

Æ�

^

�

C

2

�

r

+

Æ�

r

^

�

(�+ P ) +

^

�

r

^

�

(Æ�+ ÆP )

#)

:

(5.109)

Ex
ept for the 
oeÆ
ient b

2

where ba
kground terms have been eliminated by using the TOV-

equations we note the similarity with the 
oeÆ
ients given in Eqs. (5.87)-(5.92) in the non-

perturbative formulation.

In order to derive the equations in the Cowling approximation we have to pro
eed in analogy

to the previous se
tion.

(1) The metri
 perturbations Æ� and Æ� are set to zero.

(2) All o

urren
es of

^

�

;r

=

^

� and �̂

;r

=�̂ are repla
ed with �

;r

=� and �

;r

=� whi
h are given

by the TOV equations (5.9), (5.10).

(3) �̂

;t

=�̂ is set to zero.
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(4) The 
oeÆ
ient b

2

is repla
ed by

b

2

= �

1

D

(

w

2

" 

�̂

;r

�̂

+

^

�

;r

^

�

!

(1�

^

C

2

)�

2

r

^

C

2

+ 2

v

w

�̂

;t

�̂

#

+

1

�̂

2

(�+ Æ�+

^

P )

"

(

^

C

2

� C

2

)�

r

+

Æ�

^

�

C

2

�

r

+

Æ�

r

^

�

(�+ P ) +

^

�

r

^

�

(Æ�+ ÆP )

#)

:

(5.110)

This 
ompletes our derivation of the equations for a dynami
al spheri
ally symmetri
 neutron

star. In later se
tions we will numeri
ally investigate the system of partial di�erential equations

(5.100)-(5.103) with the 
oeÆ
ient fun
tions (5.104)-(5.109) and the 
orresponding system in

the Cowling approximation. Before that, we will turn our attention towards the linearized

equations and the resulting eigenmode spe
trum. These results will not only be used as initial

data, but also provide one of the fundamental test beds for the 
ode.

5.3.3 The linearized equations and the eigenmode spe
trum

(a) The equations

In this se
tion we will dis
uss the linearized equations for a dynami
 spheri
ally symmetri


neutron star. For this purpose we will expli
itly assume that the ba
kground is given by a non-

va
uum solution of the TOV equations. If we further assume that all perturbations are small


ompared with their ba
kground values and the radial velo
ity w is small 
ompared with the

speed of light, i.e. w � 1, the higher order terms in Eqs. (5.100)-(5.109) be
ome negligible and


an be omitted from the equations. It is 
onvenient to follow e.g. Misner, Thorne, and Wheeler

(1973) and introdu
e the variable � whi
h measures the displa
ement of the 
uid elements. An

observer who is 
omoving with the 
uid and is lo
ated at r

0

in the equilibrium 
ase will �nd

herself at position r

0

+ �(t; r

0

) during the evolution. The displa
ement ve
tor � is therefore

related to our variables by

�

;t

= �w: (5.111)

We note that the ba
kground value of the lapse fun
tion is used in this equation be
ause

higher order terms have been negle
ted. Another variable whi
h fa
ilitates a parti
ularly simple

formulation of the resulting equations is the res
aled displa
ement � de�ned by

� =

r

2

�

�: (5.112)
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If we insert this de�nition into the linearized form of equation (5.103) and use the linearized

versions of Eqs. (5.100)-(5.102) to eliminate the perturbations Æ�, Æ� and Æ� we obtain the

se
ond order in time and spa
e di�erential equation

W�

;tt

=

1

r

;x

�

�

r

;x

�

;x

�

;x

+Q�; (5.113)

where the auxiliary fun
tions W , � and Q are de�ned by

� = C

2

(�+ P )

��

3

r

2

; (5.114)

W = (�+ P )

�

3

�

r

2

; (5.115)

Q =

��

3

r

2

(�+ P )

"

�

�

;r

�

�

2

+ 4

�

;r

r�

� 8��

2

P

#

: (5.116)

These equations des
ribe the dynami
s of a spheri
ally symmetri
 neutron star in the linearized

limit. If we insert the ansatz �(t; x) = �(x)f(t) into Eq. (5.113) we �nd that the solution has

harmoni
 time dependen
e

�(t; x) = �(x)e

i!t

: (5.117)

and the spatial pro�le is determined by the ordinary di�erential equation

1

r

;x

�

�

r

;x

�

x

�

x

+ (!

2

W +Q)� = 0: (5.118)

For the ensuing dis
ussion it is 
onvenient to work with the areal radius r and therefore set

r

;x

= 1. The ordinary di�erential equation (5.118) 
an then be written in the form

L� = �!

2

�; (5.119)

where the di�erential operator L is de�ned by

L =

1

W

�

d

dr

�

�

d

dr

�

�Q

�

: (5.120)

This type of ODE is 
alled an eigenvalue problem and the parti
ular stru
ture of the di�er-

ential operator L 
lassi�es it as a Sturm-Liouville problem if the fun
tion � satis�es so-
alled

homogeneous boundary 
onditions (see for example Simmons 1991). Due to the asymptoti
 be-
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haviour of the ba
kground solutions the fun
tions �, W and Q will either diverge or vanish at

the boundaries, however, and the problem we are fa
ing is a singular Sturm-Liouville problem.

An important sub
lass of this type of problems is the self-adjoint eigenvalue problem whi
h is

de�ned by the requirement that

hLu; vi = hLv; ui; (5.121)

for all solutions u, v. Here the inner produ
t is de�ned by the weighting fun
tion W (r)

hf; gi =

Z

b

a

W (r) f(r) g(r) dr; (5.122)

where a and b are the boundaries, i.e. the 
entre and surfa
e of the star in our 
ase. A

short 
al
ulation shows that 
ondition (5.121) is ensured if the solutions satisfy the self-adjoint

boundary 
ondition

�

�(vu

;r

� uv

;r

)

�

b

a

= 0: (5.123)

Below we shall see that any solution � of the eigenvalue problem (5.118) will be O(r

3

) at

the origin and be �nite at the surfa
e. In 
ombination with the asymptoti
 behaviour of the

TOV solutions determined in se
tion 5.2.5 we 
an see that Eq. (5.123) is satis�ed so that the

di�erential equation (5.118) represents a self-adjoined eigenvalue problem. For this type of

equations one 
an show the following properties (see for example Coddington and Levinson

1955)

(1) There exist an in�nite number of solutions �

1

(r), �

2

(r), �

3

(r); : : : whi
h are 
alled

eigenfun
tions and the 
orresponding eigenvalues are real and 
an be ordered

(!

2

)

1

< (!

2

)

2

< (!

2

)

3

< : : : : (5.124)

We note that in our 
ase the real eigenvalues are !

2

and the 
orresponding frequen
ies

will be imaginary if !

2

< 0.

(2) After appropriate normalisation the eigenfun
tions form an orthonormal set, i.e.

h�

i

; �

j

i = Æ

i;j

: (5.125)

(3) The eigenfun
tions �

i

form a 
omplete set, i.e. any fun
tion f(r) whi
h satis�es the
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self-adjoint boundary 
onditions (5.121) 
an be expanded in a series of eigenmodes

f(r) =

X

i

A

i

�

i

(r); (5.126)

where the eigenmode 
oeÆ
ients of the fun
tion f are given by

A

i

= hf; �

i

i: (5.127)

Before we investigate Eq. (5.118) numeri
ally, we 
onsider the asymptoti
 behaviour of the

solutions. At the origin the displa
ement ve
tors � and � have to vanish be
ause of the spheri
al

symmetry. If we therefore assume �(r) � r

�

near the origin where � > 0, insert this ansatz into

Eq. (5.118) and use the asymptoti
 behaviour of the TOV solution, we obtain the leading order

�(r) � O(r

3

): (5.128)

At the surfa
e we only require � and � to be �nite but allow for non-zero displa
ements

�(z) � O(z

0

): (5.129)

It is of parti
ular interest to 
onsider the impa
t of these results on the asymptoti
 behaviour

of the energy density perturbation Æ� whi
h is related to the displa
ement by the linearized

version of Eq. (5.102)

Æ� = �

�

r

2

[(�+ P )�

;r

+ �

;r

�℄ : (5.130)

At the 
entre the r

3

behaviour of the displa
ement � results in

Æ� � O(r

0

); (5.131)

so that the 
ondition we imposed on � also guarantees a �nite energy density perturbation at

the origin. At the surfa
e, however, the leading term on the right hand side of Eq. (5.130) is

the term involving the derivative of the ba
kground energy density. This term is responsible

for the asymptoti
 behaviour of Æ� at the surfa
e

Æ� � O(z

n�1

): (5.132)
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Consequently the energy density perturbation is zero at the surfa
e for n > 1, �nite for n = 1

and it diverges for n < 1 i.e. 
 > 2. Even worse we also obtain the result

Æ�

�

� O(z

�1

) (5.133)

independent of the polytropi
 index. The energy density perturbation will therefore ne
essarily

be larger than the ba
kground � in a �nite interval around the surfa
e. This is in obvious 
on
i
t

with the initial assumption Æ�� � we used in the linearisation pro
ess and raises doubts about

the validity of the results. Below we will see, however, that the linearized equations 
an be

derived without any impli
it 
ontradi
tion from the fully non-linear Lagrangian formulation of

the problem. This is already illustrated by a 
loser investigation of Eq. (5.130) whi
h 
an be

rewritten as

Æ� = ��� ��

;r

: (5.134)

Here �� is the Lagrangian energy density perturbation measured by an observer moving with

the 
uid and is given by

�� = �

�

r

2

(�+ P )�

;r

: (5.135)

[
f. Eq. (5.217)℄. The asymptoti
 behaviour of �� is perfe
tly regular �� � x

n

and the diÆ
ul-

ties purely originate from the term ��

;r

on the right hand side of Eq. (5.134). This 
orre
tion

term whi
h fa
ilitates the transformation between the Eulerian and Lagrangian perturbations

is based on a Taylor expansion of � whi
h, as we have already seen above, is not generally per-

missible. For polytropi
 indi
es n < 1 the derivative of � does indeed diverge and Eq. (5.134) is

not a valid relation between the Eulerian and Lagrangian quantities. This is the �rst indi
ation

that a Lagrangian formulation is a somewhat more natural way of des
ribing radial os
illations

of neutron stars. From this point of view it is a remarkable fa
t that the linearisation of the

Eulerian 
ase leads to the \
orre
t" equations in spite of the internal in
onsisten
y of the deriva-

tion. Finally it is worth pointing out that the irregular behaviour of Æ� is not merely down

to a poor 
hoi
e of dependent variables. It is 
ertainly possible to formulate the problem in

Eulerian 
oordinates in terms of regular variables su
h as � or �. We have seen, however, that

su
h a regular formulation of the problem still leads to the unphysi
al result of a diverging total

energy density �+ Æ� if the equations of state has an asymptoti
 power law behaviour P � �

n

with n < 1. In view of these diÆ
ulties one may ask the question why we have de
ided to use
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an Eulerian rather than a Lagrangian formulation in the �rst pla
e. Our main motivation for

studying Eulerian s
hemes is to probe a method in spheri
al symmetry whi
h enables one to

a

urately model a wide range of di�erent types of non-linear neutron star os
illations. Below

we shall see that the Lagrangian approa
h is a very powerful tool for the study of dynami


stars in spheri
al symmetry. However, it is a generi
 problem of Lagrangian methods that it is

not 
lear how to generalise them to two or three spatial dimensions, where the paths of 
uid

elements may interse
t and give rise to 
austi
s. The vast majority of neutron star os
illations

on the other hand will only be present if one drops the assumption of spheri
al symmetry, so

that their numeri
al simulation requires the use of two or three spatial dimensions. In default

of higher dimensional generalisations of Lagrangian te
hniques these simulations are generally

performed in an Eulerian framework.

We will now turn our attention towards the numeri
al solution of the linearized equations. From

the asymptoti
 behaviour, we expe
t, however, that the results we obtain for n < 1 will diverge

at the surfa
e and thus not represent a physi
al solution. From a numeri
al point of view it

turns out to be bene�
ial to reformulate Eq. (5.118) in terms of the displa
ement ve
tor �. This

is due to the asymptoti
 behaviour of � at the origin given by Eq. (5.128). Below we will use

the numeri
ally 
al
ulated eigenmodes as initial data for the fully non-linear evolutions and for

that purpose the solution for � would have to be 
onverted into data for w or in the Lagrangian


ode dis
ussed in se
tion 5.4 for �. The 
orresponding division by r

2


ombined with the se
ond

order a

ura
y of the numeri
al eigenmode solutions results in poor a

ura
y of these initial

data near the origin. We therefore rewrite Eq. (5.118) in terms of � and introdu
e the auxiliary

variable A to write the result as a �rst order system

��

;x

�A = 0; (5.136)

A

;x

+ (r

;x

)

2

�

2

r

4

�

r

2

�r

;x

�

;r

A+ (r

;x

)

2

8

<

:

�

r

2

"

�

�

r

2

�

�

;r

#

;r

+ !

2

W +Q

9

=

;

� = 0: (5.137)

We note that the o

urren
e of r-derivatives in equation (5.136) is purely a 
onvenient notation.

In pra
ti
e all these derivatives are eliminated via the TOV equations. If we use the res
aled

radial 
oordinate, we have r

;x

= C and the r-derivative of r

;x


an be 
al
ulated from the relation

C

2

;r

= (
 � 1)

P

;r

�

; (5.138)

whi
h is a 
onsequen
e of the equation of state and the de�nition of the sound speed. The

only derivatives in Eqs. (5.136), (5.137) that have to be represented by �nite di�eren
ing are
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the x-derivatives of � and A.

In the Cowling approximation all these results remain un
hanged ex
ept for the fun
tion Q

whi
h has to be repla
ed by

~

Q = �

2

(�+ P )

��

�

;r

C

2

�

r

2

�

r

� �

�

�

;r

r

2

�

r

+ ��

�

C

2

�

r

r

2

�

�

r

�

: (5.139)

and the relation between displa
ement and energy density perturbation whi
h be
omes

Æ� = �(�+ P )

�

r

2

��

�

;r

�

+

�

;r

�

�

� + �

;r

�

�

�

r

2

�

;r

�: (5.140)

It is an interesting fa
t that in both 
ases the results are simpler due to the 
an
ellation of

terms if gravity is in
luded.

(b) The numeri
al implementation

We have numeri
ally 
al
ulated solutions of the eigenvalue problem (5.136), (5.137) using a

relaxation method. For this purpose we introdu
e an additional di�erential equation for the

eigenvalues

(!

2

)

;x

= 0; (5.141)

whi
h states that the eigenmode frequen
y is 
onstant throughout the star. The value of ! is

not known at this stage but will result from the relaxation algorithm. In order to solve the

system (5.136), (5.137), (5.141) we need to supply three boundary 
onditions. At the 
entre we

require that

�(0) = 0; (5.142)

A(0) = 
onst 6= 0: (5.143)

The vanishing of the displa
ement � at the origin is a ne
essary 
ondition in spheri
al symmetry.

The value of A at the origin is allowed to take on any non-zero value be
ause an eigenfun
tion

is only de�ned up to a 
onstant fa
tor. At the outer boundary we have the 
ondition

A = 0; (5.144)
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Table 5: The 
onvergen
e fa
tors obtained for doubling the grid resolution in the relaxation


ode for 
al
ulating the eigenmodes of the neutron star models 1 - 5. Grid resolutions of 500,

1000 and 2000 points have been used.

model fundamental mode 10

th

eigenmode

1 4.75 5.05

2 4.76 4.85

3 4.80 3.97

4 4.75 4.82

5 4.75 4.82

Table 6: Radius, mass and frequen
ies of the lowest three eigenmodes for three randomly 
hosen

models of Kokkotas and Ruo� have been re
al
ulated with our 
odes and agree well with their

values.


 K �




R M �

1

�

2

�

3

[10

15

g=
m

3

℄ [km℄ [M

�

℄ [kHz℄ [kHz℄ [kHz℄

Kokkotas & Ruo� 2.00 100 km

2

5.000 7.787 1.348 1.129 7.475 11.365

this work 2.00 100 km

2

5.000 7.788 1.348 1.128 7.470 11.355

Kokkotas & Ruo� 2.25 700 km

2:5

4.000 8.199 1.600 1.455 7.610 11.573

this work 2.25 700 km

2:5

4.000 8.200 1.600 1.443 7.594 11.544

Kokkotas & Ruo� 3.00 2 � 10

5

km

4

2.200 9.419 1.988 2.716 8.305 12.516

this work 3.00 2 � 10

5

km

4

2.200 9.419 1.988 2.637 8.215 12.389

whi
h follows from the de�nition of A and the vanishing of the energy density at the surfa
e of

the star. An initial guess for ! enables us to 
al
ulate the initial fun
tions � and A by integrat-

ing Eqs. (5.136), (5.137) outwards. The solution in
luding the eigenvalue !

2

is then obtained

by relaxation as des
ribed in se
tion 2.3.5.

(
) Testing the 
ode

For suÆ
iently low eigenmodes both alternative 
hoi
es of the radial 
oordinate lead to good

agreement between the predi
ted frequen
ies up to the fourth signi�
ant digit. As we will see

below high order eigenmode pro�les show rapid os
illations near the surfa
e of the star whi
h

may not be well resolved if we work with the areal radius r. The frequen
ies deviate more

signi�
antly in these 
ases. In the rest of this se
tion we will therefore work with the res
aled


oordinate and set r

;x

= C. The resulting 
ode has been 
he
ked in four independent ways.

First we have 
omputed the eigenfun
tions of the fundamental and the tenth mode for the

neutron star models listed in Table 3 and 
he
ked for 
onvergen
e using 500, 1000 and 2000
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Table 7: The 
riti
al 
entral densities 
orresponding to the neutron star models 1-5 are given to

four signi�
ant digits together with the frequen
y of the fundamental mode just below and above

the 
riti
al point. Above the 
riti
al density the frequen
ies be
ome imaginary as expe
ted.

model �


;
rit

�(�


;
rit

� 10

�6

) km

�2

�(�


;
rit

+ 10

�6

) km

�2

[km

�2

℄ [kHz℄ [kHz℄

1 0.002179 0.0294 0.0477 i

2 0.004205 0.0578 0.0429 i

3 0.002804 0.0629 0.0350 i

4 0.002103 0.0409 0.0592 i

5 0.002233 0.0591 0.0627 i

grid points. The results shown in Table 5 
learly demonstrate se
ond order 
onvergen
e as

expe
ted for the se
ond order �nite di�eren
ing s
heme applied in the relaxation algorithm.

Next we have randomly 
hosen three of the stellar models listed in Kokkotas and Ruo� (2001)

and re
al
ulated radius, mass of the neutron stars as well as the frequen
ies of the lowest three

eigenmodes. The results are 
ompared in Table 6 and show good agreement.

For the third test we re
all the 1-parameter families of neutron stars shown in Fig. 35. We

have already mentioned that the maxima in the mass vs. 
entral density plots separate the

stable and unstable bran
hes of neutron star models and that the frequen
y of the fundamental

eigenmode be
omes zero at the 
riti
al point and imaginary on the unstable bran
h. We have

therefore determined the 
riti
al 
entral densities for the �ve neutron star models of Table 3 and


al
ulated the frequen
y of the fundamental modes just below and above the 
riti
al densities.

The numeri
al results are shown in Table 7 and 
on�rm this pi
ture. The frequen
ies of the

fundamental mode are very small but real for 
entral densities just below the 
riti
al value and

be
ome imaginary for larger densities.

A further test for the eigenmode frequen
ies arises from a relation between the period of the

fundamental mode T

1

of a neutron star model and the deviation of the radius R from the 
riti
al

radius R




that has been suggested by Harrison et al. (1965) [see their Eq. (155)℄

(R�R




) � T

2

1

= 
onst: (5.145)

In Table 8 we show the results obtained for neutron star models identi
al to model 1 and 3

with 
entral densities as indi
ated. Even though a deviation from Eq. (5.145) up to 20% is

observed for both models, this is rather small if one 
onsiders the variation of the frequen
y !

1

over several orders of magnitude.
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Table 8: Equation (5.145) is 
he
ked for neutron star models 1 and 3 for various 
entral densities.

model 1 model 3

�




!

1

(R�R


rit

)=!

2

1

�




!

1

(R�R


rit

)=!

2

1

[km

�2

℄ [km

�1

℄ [km

3

℄ [km

�2

℄ [km

�1

℄ [km

3

℄

0.0021785 0.000187 187.96 0.0028035 0.000172 97.55

0.0021780 0.000616 192.72 0.0028030 0.000773 85.21

0.0021775 0.000850 192.34 0.0028025 0.001080 84.89

0.0021750 0.001563 192.59 0.0028020 0.001317 84.77

0.0021700 0.002424 193.00 0.0028000 0.002002 84.87

0.0020000 0.010939 207.93 0.0027000 0.010838 86.97

0.0015000 0.020261 236.69 0.0020000 0.029622 106.64

0.0011775 0.023606 235.61 0.0015000 0.036427 128.95

(d) The eigenmode solutions

We will now turn our attention to the eigenmode pro�les of the physi
al variables. We have

already noted that the eigenvalue problem has an enumerable in�nite set of solutions whi
h


an be ordered with respe
t to their eigenvalues. This order is also re
e
ted in the spatial

pro�les of the 
orresponding eigenfun
tions. We have numeri
ally 
al
ulated the �rst four

eigenmodes in terms of the displa
ement ve
tor � for model 3 with polytropi
 exponent 
 = 2.

The velo
ity w, the res
aled displa
ement � and the energy density perturbation Æ� then follow

from Eqs. (5.111) where we use harmoni
 time dependen
e, (5.112) and (5.130). The results

are shown in Fig. 36, where we have also in
luded the solution for � 
orresponding to the tenth

eigenmode. Sin
e the eigenmode solutions are determined up to a 
onstant fa
tor only, we

have res
aled them to about unit amplitude. For all variables we see that the number of nodes

is given by the order of the mode and the number of lo
al maxima or minima is given by the

order minus one. This behaviour remains valid for higher modes and is 
hara
teristi
 of the

eigenmode solutions. In order to illustrate the signi�
an
e of the transformation to the res
aled

radius y we have plotted � as a fun
tion of r as well. In the upper panels of Fig. 36 we 
an see

that the os
illations in the spatial pro�le of the eigenmodes be
ome more 
on
entrated towards

larger radii r the higher the order of the mode. In terms of the res
aled radius y, however,

the os
illations are evenly distributed over the entire interval. This behaviour is reminis
ent

of the narrowing of the wave pulse we observed in se
tion 5.2.4 and illustrates why a superior

numeri
al performan
e is obtained when using the 
oordinate y, espe
ially when higher order

modes are present in the evolution.

The 
orresponding eigenmodes obtained for the other stellar models look qualitatively similar

in all variables ex
ept for the energy density perturbation Æ�. We have already noted that the
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Figure 36: The displa
ement � as a fun
tion of the areal radius r and the res
aled radius y as

well as the velo
ity w and the energy density Æ� as a fun
tion of y are shown for the �rst four

eigenmodes of model 3. For � we have also plotted mode 10 to illustrate the 
on
entration of

os
illations towards larger r.
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Figure 37: The energy density perturbation Æ� obtained for the �rst four eigenmodes of stellar

model 1 (left panel) and 5 (right panel) is plotted as a fun
tion of y.

asymptoti
 behaviour of Æ� depends on the polytropi
 exponent 
. This is 
on�rmed by the

numeri
al solutions shown in Fig. 37 where we plot the pro�les of the energy density perturbation

obtained for the stellar models 1 and 5 with polytropi
 exponents 
 = 1:75 and 2:3 respe
tively.

For model 1 the energy density perturbation goes to zero at the surfa
e, although with a non-

zero gradient. In 
omparison the gradient of the ba
kground density of the same model vanishes

in Fig. 33 and the quotient Æ�=� 
an indeed be shown to diverge in agreement with Eq. (5.133).
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Figure 38: The energy density pro�le of an os
illating neutron star is s
hemati
ally plotted at

three di�erent stages of one os
illation. Initially the stellar radius is at its equilibrium value,

at the later time t

1

the star has expanded and at t

2

it has shrunk below its initial radius. The

verti
al line indi
ates the extension of the numeri
al grid.

For the larger polytropi
 index 2.3 the perturbation Æ� itself diverges at the surfa
e as expe
ted

from Eq. (5.132).

The 
orresponding results obtained in the Cowling approximation are very similar to those

shown above. The only notable di�eren
e is the frequen
y of the fundamental mode whi
h does

not de
rease towards zero as the 
entral density approa
hes the 
riti
al value but instead remains

real and positive. This result is to be expe
ted sin
e a 
uid will not be
ome gravitationally

unstable if the gravitational �eld is kept �xed.

The eigenmode solutions obtained in this se
tion will be used extensively as initial data in the

non-linear evolutions. We have seen, however, that the stellar surfa
e represents a problemati


area even in the linearized 
ase. The diÆ
ulties are more pronoun
ed in the non-linear 
ase

and need to be investigated in more detail before we 
an study the fully non-linear numeri
al

evolutions.

5.3.4 The surfa
e problem

When we formulated the des
ription of non-linear radial os
illations of neutron stars in se
-

tion 5.3.1 we 
ons
iously omitted the issue of boundary 
onditions. The diÆ
ulties involved in

spe
ifying outer boundary 
onditions in an Eulerian 
ode are so 
omplex that we dedi
ate a

whole subse
tion to this topi
. We have already mentioned that the surfa
e is de�ned by the


ondition

^

P = 0 whi
h is equivalent to �̂ = 0 for a polytropi
 equation of state. With respe
t

to the �xed numeri
al grid, however, the surfa
e of the star is moving and we 
annot apply this
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ondition at the outer grid boundary. This is a further indi
ation that one may have to emulate

a Lagrangian treatment of the surfa
e in order to a

urately model neutron star os
illations

involving radial displa
ements of the surfa
e. The situation is graphi
ally illustrated in Fig. 38

where the total energy density pro�le is s
hemati
ally plotted as a fun
tion of radius. At time

t

0

an equilibrium star (solid 
urve) is perturbed with a velo
ity �eld that 
auses the star to

expand. The initial 
on�guration also determines the extension of the numeri
al grid indi
ated

by the verti
al line. At a later time t

1

the star has expanded (long dashed 
urve). The outer

part of the star has therefore moved out of the numeri
al grid (dotted part of the 
urve) and

the 
orresponding information would be lost in a non-linear numeri
al evolution. At time t

2

the

star has shrunk and is 
ompletely 
ontained inside the numeri
al grid. Outside of the star the

energy density will be zero. In general, therefore, the energy density pro�le or its derivatives

will have a dis
ontinuity at the stellar surfa
e. Worse from a numeri
al point of view is the

region between the stellar surfa
e and the outer grid boundary. Even though the energy density

will be zero at these points theoreti
ally, numeri
ally this will not exa
tly be the 
ase. At

some of these points the total energy density will have small negative values due to numeri
al

noise, unless the values are manipulated in some form. A negative energy density, however,

means that the pressure 
an no longer be 
al
ulated from the equation of state whi
h normally

terminates the evolution. There are several possibilities for dealing with these diÆ
ulties. We

will dis
uss four methods and implement two of them in the 
ourse of this work.

1.) The �rst method 
onsists in embedding the star in an atmosphere of low density. In

this method the numeri
al grid extends well beyond the size of the neutron star and no

information is lost at any stage of the evolution. The boundary 
onditions are then applied

to the atmosphere whereas the star will always be 
on�ned to the interior numeri
al grid

and the surfa
e of the star is entirely des
ribed by the interior numeri
al evolution, for

example by sho
k 
apturing methods. It is a non-trivial question, however, to what extent

the atmosphere and the numeri
al treatment of the surfa
e dis
ontinuities will a�e
t the

evolution of the neutron star. For this reason it seems plausible to use an atmosphere of

low density. A low density, however, will in general be a

ompanied by a small speed of

sound and we have already seen in the dis
ussion of the wave equation in se
tion 5.2.4 that

su
h regions require a 
areful numeri
al treatment. An insuÆ
ient resolution may result

in spurious phenomena. In terms of a res
aled radius su
h as the 
oordinate y de�ned in

Eq. (5.47) we have been able to obtain a suÆ
ient resolution, but a large number of grid

points would be required to simulate an atmosphere of signi�
ant spatial extension.
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An interesting variation of this method 
onsists in viewing the surfa
e of the star as

an interfa
e to an exterior va
uum region and expli
itly tra
king the movement of the

interfa
e. Sophisti
ated te
hniques su
h as level set methods and fast mar
hing methods

have been developed for these purposes (see for example Sethian 1999) and may provide

an answer to the surfa
e problem in Eulerian formulations. One may even go a step

further and re
all the strikingly similar 
on
ept of Cau
hy-
hara
teristi
 mat
hing and,

thus, 
onsider a 
ombination of these ideas. It is, however, well beyond the s
ope of this

work to investigate these methods in more detail and we will therefore fo
us on simpler

te
hniques.

2.) The se
ond method is a modi�ed version of the atmosphere approa
h dis
ussed above.

Instead of using an external atmosphere, we modify the equation of state of the neu-

tron star at low densities and thus view the outer layers of the neutron star itself as an

atmosphere. For that purpose we use an equation of state given by

P = K �




if � > �

t

; (5.146)

P = a

1

�+ a

2

�

2

+ a

3

�

3

+ a

4

�

4

if � � �

t

; (5.147)

where a

2

, a

3

and a

4

are 
oeÆ
ients determined by the 
ontinuity of P and its �rst two

derivatives with respe
t to �. The 
oeÆ
ient a

1

and the transition density �

t

are free

parameters that are spe
i�ed by the user. A 
onsequen
e of this de�nition is that P � �

at low densities and the behaviour will be similar to that of a 
 = 1 polytrope in this

region, i.e. extend beyond the surfa
e of the original purely polytropi
 model. The low

density part of the neutron star 
an thus be viewed as an atmosphere smoothly atta
hed

to a polytropi
 neutron star trun
ated at �

t

. Whenever the energy density falls below a

threshold value �

min

during the evolution, it is set to this threshold value. The parameter

�

min

also needs to be spe
i�ed by the user. This requirement avoids the o

urren
e of

negative total energy densities, but introdu
es ad ho
 dis
ontinuities in the Æ� pro�le. We

take 
are of these dis
ontinuities by introdu
ing arti�
ial vis
osity of the modi�ed von

Neumann-Ri
htmyer form (see for example Fox 1962)

q =

8

<

:

b�y

2

�̂w

2

;y

if w

;y

< 0

0 if w

;y

� 0;

(5.148)

where b is the vis
osity parameter. In many 
ases b = 2 leads to satisfa
tory results. This
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vis
osity term is added to the pressure perturbation ÆP wherever it o

urs in the equa-

tions. With 
areful 
hoi
es of the free parameters a

1

, �

t

, �

min

and b we have obtained

long term stable evolutions of lo
alised wave pulses. The parti
ular values we have to


hoose for a stable evolution, espe
ially the density values �

t

and �

min

, do however de-

pend sensitively on the initial data. Furthermore the manipulation of the energy density

perturbation Æ� in 
ases of a negative total energy density leads to a 
ontamination of the

evolution of eigenmodes in the low density range. The resulting disturban
es then travel

into the stellar interior within a few os
illation periods. In view of these diÆ
ulties we

have de
ided to use a di�erent treatment of the stellar surfa
e.

3.) A fully satisfa
tory solution to the surfa
e problem in one spatial dimension 
an be ob-

tained with a Lagrangian formulation either of the surfa
e or the whole star. In the �rst


ase this 
an be implemented by res
aling to a new radial 
oordinate

s :=

r

R(t)

; (5.149)

where R is the time dependent total radius of the star. This transformation leads to a few

extra terms in the equations in the radial gauge, but is more 
ompli
ated to implement in

terms of the res
aled 
oordinate y. For this reason and be
ause of the wider range of ap-

pli
ations we have 
hosen instead to reformulate the non-linear radial os
illations entirely

within a Lagrangian framework. Combined with the singularity avoiding properties of the

polar sli
ing 
ondition the resulting 
ode 
an not only be used for the simulation of radial

os
illations but also allows high resolution studies of spheri
ally symmetri
 gravitational


ollapse. This 
ode and the 
orresponding testing will be dis
ussed in detail in se
tion

5.4.

Even though Lagrangian methods represent a formidable tool for 1-dimensional problems,

we have already mentioned that there is no straightforward generalisation to two or three

spatial dimensions, where the paths of 
uid elements may interse
t and give rise to 
aus-

ti
s.

4.) The method we will be using in the remainder of this se
tion 
an be 
onsidered the

inverse of the atmospheri
 treatments dis
ussed above. Instead of adding matter in the

form of an atmosphere the outer layers of the star are removed. In this 
ontext it is

worth remembering that the solution of the TOV equations via quadrature does not go
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all the way out to � = 0 and a fully non-linear perturbative 
ode working with su
h a

ba
kground intrinsi
ally des
ribes a trun
ated neutron star. The per
entage of mass that

we will remove from the star will be very small in most 
ases (� 1%). We will see below

that the resulting 
ode behaves well in the linearized limit in most 
ases.

5.3.5 The numeri
al implementation in Eulerian 
oordinates

In se
tion 5.3.2 we have derived the equations for a fully non-linear perturbative formulation of a

dynami
 spheri
ally symmetri
 star in terms of the generalised 
oordinate x. In the remainder

of the Eulerian dis
ussion we will restri
t ourselves to the res
aled version and set r

;x

= C

and x = y. In order to numeri
ally solve these equations, we also have to spe
ify appropriate

boundary 
onditions. We start with the origin and re
all that the displa
ement � of a 
uid

element at the 
entre of a spheri
ally symmetri
 star vanishes. As a 
onsequen
e the radial

velo
ity will also vanish at the origin. As far as the energy energy density is 
on
erned, we note

that �̂ is a 
omponent of a rank 2 tensor and therefore the spatial derivative �̂

;y

will vanish in

spheri
al symmetry. The same is true for the ba
kground density � and therefore we obtain the

inner boundary 
ondition Æ�

;y

= 0. Finally we require the vanishing of Æ� to avoid a 
oni
al

singularity.

At the outer boundary we mat
h the lapse fun
tion to an exterior S
hwarzs
hild metri
 as in the

stati
 
ase whi
h results in the 
ondition

^

� � �̂ = 1. As far as the matter variables are 
on
erned,

the situation is a bit more 
ompli
ated. For the velo
ity we use the regularity 
ondition w

;y

= 0.

In view of the de�nition of the radial 
oordinate y this is equivalent to demanding that the

velo
ity has a �nite gradient with respe
t to r at the surfa
e. This 
ondition is satis�ed by

the eigenmode solutions obtained in se
tion 5.3.3. In Fig. 36 we 
an see that the gradient w

;y

vanishes for all three polytropi
 exponents 
 = 1:75, 2:00 and 2:3. In 
ontrast to the velo
ity

gradient the derivative of the energy density perturbation Æ�

;y

will in general not vanish at the

surfa
e. If we 
onsider the stellar models listed in Table 3 it 
an be shown that Æ�

;y

will only

vanish in the 
ase 
 = 2 whi
h is also illustrated in Figs. 36 and 37. In summary the boundary


onditions are

Æ�

;y

= 0; (5.150)

w = 0; (5.151)

Æ� = 0: (5.152)
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at the origin and

w

;y

= 0; (5.153)

^

� � �̂ = 1 (5.154)

at the surfa
e.

In this 
ontext it is worth mentioning a subtlety 
on
erning se
ond order �nite di�eren
ing

s
hemes used for evolution equations su
h as (5.102), (5.103). In general this system of equations

has one ingoing and one outgoing 
hara
teristi
 at ea
h boundary and physi
al information has

to be spe
i�ed in the form of one 
ondition for either w or Æ� at either boundary. The 
entred

�nite di�eren
ing s
heme (or variation thereof) used in se
ond order te
hniques, however, 
annot

be applied at the grid boundaries and the variables must be evolved in an alternative way. The

physi
al boundary 
onditions do not ne
essarily provide enough information for this. In our


ase, for example, we have two variables Æ�, w that need to be updated at two grid points

respe
tively whi
h requires four 
onditions, but only two 
onditions are required to provide

information for the 
hara
teristi
s entering the numeri
al grid. The remaining boundary values

not determined by these two 
onditions have to be obtained in alternative ways, for example by

extrapolation or the use of one sided derivatives in the evolution equations. We have obtained

optimal performan
e in the evolution of Æ� and w by using 
onditions (5.150) and (5.151)

at the 
entre and (5.153) at the surfa
e. The outer boundary value of Æ� is then obtained

by extrapolation on ea
h new time sli
e. It is worth pointing out that this problem is not

apparent in the impli
it �nite di�eren
e methods applied to the 
osmi
 string in se
tion 4 or

the Lagrangian 
ode in se
tion 5.4.

Before we s
hemati
ally outline the 
omputational steps involved in the time evolution we need

to dis
uss one �nal numeri
al issue, the CFL stability 
ondition. We have mentioned in se
tion

2.3.8 that the stability 
riterion of Courant, Friedri
hs and Lewy requires the physi
al domain

of dependen
e to be in
luded in the numeri
al domain of dependen
e. A standard method

to ensure that this 
riterion is met in a hydrodynami
al evolution is based on 
al
ulating the

slopes of the 
hara
teristi
s at ea
h point on the numeri
al grid. In our 
ase we 
onsider the

system of evolution equations (5.102), (5.103). The quasi-linear nature of this system enables

us to 
al
ulate the 
hara
teristi
s from

dy

i

dt

= �

i

; (5.155)
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where �

i

are the eigenvalues of the 
oeÆ
ient matrix and are de�ned by the equation

2

4

0

�

�

11

�

12

�

21

�

11

1

A

� � � 1

3

5

0

�

Æ�

w

1

A

= 0: (5.156)

The solution for the 
oeÆ
ient fun
tions (5.105)-(5.107) is given by

� =

1

r

;x

D

 

w(1 �

^

C

2

)�

^

C

�̂

^

�v

!

: (5.157)

If the 
hara
teristi
s are straight lines, the Courant-Friedri
hs-Lewy 
ondition is satis�ed if the

time step dt obeys the inequality

dt �

dy

max j�

i

j

: (5.158)

We therefore 
al
ulate the eigenvalue �elds �

1

, �

2

on ea
h time sli
e and determine the value of

max j�

i

j. Even though the 
hara
teristi
s will in general not be straight lines, the deviation is

small on time s
ales of dt and we allow for this e�e
t by multiplying the resulting time step by

a fa
tor of 0.9. With that 
hoi
e and about 500 grid points we have obtained stable evolutions

over several 100000 time steps whi
h 
orresponds to more than 0:1 s of proper time as measured

by an observer at in�nity.

We have got all ingredients now to summarise the individual steps involved in the fully non-

linear numeri
al evolution.

(1) A stati
 ba
kground model is 
al
ulated a

ording to the TOV equations (5.48)-

(5.51), where we set r

;x

= C. For this purpose the polytropi
 exponent 
, the

polytropi
 fa
tor K, the 
entral density �




and the surfa
e density �

s

need to

be spe
i�ed by the user. A non-zero surfa
e density will result in a trun
ated

neutron star model. The results are given in the form of data �les 
ontaining

the ba
kground variables �, �, � and r as fun
tions of y.

(2) If initial data is required in the form of eigenmode pro�les, the eigenmode solu-

tions 
an be 
al
ulated a

ording to the method des
ribed in se
tion 5.3.3. The

order of the eigenmode is determined by the initial guess for the frequen
y whi
h

needs to be spe
i�ed. The amplitude of the eigenmode is a free parameter in the

evolution 
ode.

(3) There are several alternative 
hoi
es for the initial data. Among these are lo-


alised perturbations of Gaussian shape and linear 
ombinations of di�erent
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eigenmodes.

(4) With the initial velo
ity w and energy density Æ� spe
i�ed, the metri
 perturba-

tions follow from the 
onstraint equations (5.100) and (5.101). These equations

are numeri
ally integrated with a fourth order Runge-Kutta s
heme.

(5) The initial data is evolved a

ording to the se
ond order in spa
e and time

M
Corma
k s
heme des
ribed in se
tion 2.3.4. One evolution 
y
le 
onsists of

the following steps.

a) Cal
ulation of the Courant fa
tor,

b) predi
tor step for Æ� and w,


) appli
ation of the inner boundary 
onditions for Æ� and w,

d) integration of the 
onstraint equations to obtain preliminary values for Æ�

and Æ� on the new time sli
e,

e) 
orre
tor step for Æ� and w,

f) appli
ation of boundary 
onditions for Æ� and w,

g) integration of the 
onstraint equation on the new sli
e to obtain the �nal

values of Æ� and Æ�.

5.3.6 The performan
e of the 
ode in the linear regime

We will now investigate the performan
e of the 
ode in the linear regime, where we know the

exa
t solution with high a

ura
y. If initial data is provided in the form of an eigenmode pro�le

w

i

(y) and zero Æ�, we know that the time dependent solution in the linear regime is given by

Æ�(t; y) = �Æ�

i

(y) sin!

i

t; (5.159)

w(t; y) = w

i

(y) 
os!

i

t: (5.160)

For �nite amplitudes this solution is not exa
t, but for suÆ
iently small amplitudes the deviation

of the exa
t solution from (5.159), (5.160) is negligible 
ompared with the trun
ation error of

the numeri
al s
heme. We have therefore 
al
ulated the fundamental mode for stellar model 3

of Table 3 using 1600 grid points and a trun
ation density �

s

= 1:0 � 10

�7

km

�2

. This density


orresponds to the removal of about 3 � 10

�8

of the neutron star mass whi
h is one order of

magnitude smaller than the a

ura
y of the numeri
ally 
al
ulated total mass. The amplitude

of the eigenmode 
orresponds to an os
illation of the stellar radius of about 10 
m, i.e. a relative

displa
ement of about 10

�5

. In Fig. 39 we show the time evolution of Æ� and w together with

the deviation from the analyti
 solution (5.159), (5.160). The numeri
al evolution reprodu
es
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Figure 39: The left panels show the time evolution of Æ� and w obtained for neutron star model

3 with 
 = 2:00. The initial perturbation is given in the form of the fundamental mode in the

velo
ity �eld w. The right panels show the deviation from the exa
t solution of the linearized

equations.

the expe
ted harmoni
 time dependen
e with high a

ura
y. Be
ause of its low frequen
y the

fundamental mode is parti
ularly suitable for this graphi
al illustration. The 
ode reprodu
es

the sinusoidal evolution of higher modes with 
omparable a

ura
y, but the large number of

os
illations is not well resolved in plots similar to Fig. 39. For the same reason we have shown

the earlier stages of the evolution up to t = 600 km only in the �gure. The whole run lasts more

than ten times longer and shows no signi�
ant loss of a

ura
y. It is worth mentioning that the

a

ura
ies obtained here are limited not only by the evolution 
ode but also by the results for

the stati
 ba
kground, the eigenmode pro�les and, most importantly, the eigenmode frequen
ies

used in the 
al
ulation of the analyti
 solution. The same long term stability and high a

ura
y

has been observed in similar evolutions for a variety of di�erent neutron star models with

polytropi
 indi
es 
 � 2. Below we will see, however, that the 
ode does not perform equally

satisfa
torily if we use a larger trun
ation density in 
ombination with a marginally stable

neutron star model with a 
entral density just below the 
riti
al value.
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Figure 40: The power spe
tra of the time evolution of the 
entral density for neutron star

models 1 and 3. The verti
al bars indi
ate the frequen
ies predi
ted by the linear analysis.

For neutron star models suÆ
iently far away from the stability limit, we 
an also 
he
k the

performan
e of the 
ode in the linear regime by 
omparing the frequen
y spe
trum of the

time evolution with the values predi
ted by the eigenmode 
al
ulations of se
tion 5.3.3. For

this purpose initial velo
ity �elds have been 
al
ulated for models 1 and 3 by adding the �rst

ten eigenmode pro�les whereas the initial density perturbation is set to zero. The 
ombined

amplitude of the perturbations is similar to that used above for determining the deviation

from harmoni
 time dependen
e. In Fig. 40 we show the Fourier spe
tra for the 
orresponding

time evolutions of the 
entral density perturbation Æ�(t; 0). The frequen
ies predi
ted by the

eigenmode analysis are indi
ated by verti
al bars and show good agreement with the peaks in

the Fourier spe
tra.

Next we 
ompare the performan
e of the perturbative approa
h with that of a \standard"

non-perturbative method. We have already mentioned that we 
an simulate a non-perturbative

approa
h by using va
uum 
at spa
e for the ba
kground variables. In this 
ase we only use the

TOV-model to determine the numeri
al grid as well as the areal radius r and the sound speed C

as fun
tions of y. The ba
kground variables, however, are spe
i�ed as � = 1, � = 1 and � = 0. If

we insert these values into the perturbative equations (5.100)-(5.109) they will be
ome identi
al

to the non-perturbative system (5.83)-(5.92) (after transformation to the radial 
oordinate y)

with

^

�, �̂, �̂ and

^

P repla
ed by 1 + Æ�, 1 + Æ�, Æ� and ÆP . The o

urren
e of the 
onstant 1 in

the metri
 variables has no impli
ations on the numeri
al performan
e. We have thus evolved

initial data in the form of a fundamental eigenmode pro�le in the velo
ity �eld w for neutron

star model 3. First we have used the TOV-ba
kground and a resolution of 600 grid points. We

have then repeated the evolution with a 
at spa
e ba
kground using 600 and 1200 grid points

in order to 
he
k the dependen
e of the non-perturbative results on the spatial resolution. It is

important to note that the same 
ode and the same evolution algorithm has been used in both
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Figure 41: The 
entral density perturbation 
orresponding to the fundamental os
illation mode

of model 3 as obtained with a perturbative method for 600 grid points (dotted 
urve) and

a non-perturbative method for 600 (solid) and 1200 grid points (dashed 
urve). See text for

details.


ases. The amplitude of the perturbation 
orresponds to an os
illation of the surfa
e of several

metres. For this amplitude we still expe
t the evolution to be dominated by the harmoni
 time

dependen
e, although the results of se
tion 5.3.9 below indi
ate the presen
e of weak non-linear

e�e
ts. The numeri
al results are shown in Fig. 41, where the 
entral density perturbation is

plotted as a fun
tion of time. We 
learly see that the perturbative evolution results in the

expe
ted sinusoidal time dependen
e. In the non-perturbative 
ase the 
entral density shows

similar os
illations but simultaneously the mean value de
reases signi�
antly. In longer runs

this de
rease is revealed to be exponential and thus indi
ates a starting evaporation of the star.

Neutron star model 3, however, is lo
ated on the stable bran
h as we 
an 
learly see in Fig. 35

and no 
ollapse or evaporation is expe
ted. Indeed the higher resolution run indi
ates that

the non-perturbative s
heme 
onverges to the harmoni
 solution. In order to understand this

behaviour of the non-perturbative s
heme we re
all the presen
e of ba
kground terms in the

evolution equation for w

;t

. If we 
onsider the 
oeÆ
ients

~

b

2

and ~�

21

given by Eqs. (5.90), (5.92),

we 
an see that the evolution equation (5.86) 
ontains the ba
kground in the form

e(y) :=

1

�

2

D

�

�

;r

�

+

C

2

�

;r

(�+ P )

�

: (5.161)

We know that this term vanishes by virtue of the TOV equation (5.12) and it has been removed

from the equations in the perturbative formulation. In the non-perturbative 
ase, however, it

will manifest itself in the form of a residual numeri
al error. This error is shown in Fig. 42
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Figure 42: The sour
e terms of the evolution equation for w (5.103) at the �rst 
omputational

step are shown for the perturbative (solid 
urve) and the non-perturbative s
heme (dashed


urve). The dotted 
urve shows the numeri
al error of the ba
kground terms and demonstrates

the signi�
an
e of the spurious sour
e terms.

for the �rst step in the evolution with 600 grid points together with the entire sour
e terms

of w

;t

as given by Eq. (5.86) in the non-perturbative and Eq. (5.103) in the perturbative 
ase.

Be
ause of the 
osine time dependen
e of the velo
ity the sour
e terms should nearly vanish at

t = 0. It 
an be seen, however, that the sour
e terms are dominated by the residual numeri
al

error in the non-perturbative s
heme whi
h is parti
ularly large at the 
entre and the surfa
e.

On the time s
ale of one os
illation period, about 150 km, the spurious a

eleration of up to

10

�4

km

�1

will have a signi�
ant impa
t on the os
illation of several metres of the star. A


loser investigation of the velo
ity �eld reveals that the integral e�e
t of the residual error is an

in
rease in the velo
ity �eld near the surfa
e. We attribute the gradual evaporation of the star

to this disturban
e in the velo
ity �eld whi
h gradually radiates matter o� the numeri
al grid.

Considering that the same 
ode has been used for the 
omparison just des
ribed, it is ne
essary

to 
he
k the perturbative s
heme for similar spurious e�e
ts. After all the main advantage of

the perturbative s
heme lies in higher a

ura
y whi
h may postpone the onset of a spurious


ollapse or evaporation but not ne
essarily avoid it. We have already mentioned, however, that

no signi�
ant deviation from the harmoni
 time dependen
e has been observed in the 
ase of

model 3 and initial data in the form of eigenmodes over very long times. In order to avoid even

longer integration times and the asso
iated 
omputational 
osts, we have 
hosen an alternative

way of testing the 
ode for this behaviour. We use a stellar model identi
al to model 3 but with

a 
entral density of �




= 0:002802 km

�2

whi
h is just below the 
riti
al value given in Table 7.



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 151

0 5000 10000 15000 20000
t [km]

−2e−07

−1e−07

0

1e−07

δρc

Figure 43: The 
entral density resulting from the evolution of the fundamental eigenmode of

a neutron star 
orresponding to model 3 with a 
entral density just below the 
riti
al value

is plotted for a trun
ation density of 5 � 10

�6

km

�2

(dashed 
urve) and 2:5 � 10

�8

km

�2

(solid


urve).

The initial data 
onsist of the fundamental velo
ity mode with an amplitude 
orresponding to

a surfa
e displa
ement of about 10 
m and we use a numeri
al grid with 600 grid points. In the

�rst 
al
ulation we have imposed a trun
ation density of Æ�

s

= 5 � 10

�6

km

�2

and in a se
ond

run the intrinsi
 value of the TOV 
ode Æ�

s

= 2:5 � 10

�8

km

�2

is used. In Fig. 43 we show the

resulting 
entral density perturbation as a fun
tion of time. For the small trun
ation density

we obtain the expe
ted sinusoidal time dependen
e whereas the larger value signi�
antly a�e
ts

the evolution, even though only a fra
tion of 10

�5

of the stellar mass has been negle
ted in

this 
ase. This result demonstrates the limitations of the 
ode in its 
urrent form. For larger

trun
ation densities it does not ne
essarily guarantee mass 
onservation whi
h we attribute to

the boundary 
ondition (5.153) whi
h is stri
tly valid only if the numeri
al grid extends to

� = 0. For suÆ
iently small trun
ation densities the resulting numeri
al error is negligible

and has no signi�
ant e�e
t on the evolution. For larger trun
ation densities, however, it 
an

result in spurious phenomena similar to those observed in the non-perturbative 
ase. This is

parti
ularly problemati
 sin
e the investigation of non-linear e�e
ts will require perturbations

of larger amplitudes and 
onsequently larger trun
ation densities are ne
essary in order to avoid

total negative energy densities. From here on we will therefore pro
eed in two di�erent ways.

In the remainder of se
tion 5.3 we will investigate a simpli�ed neutron star model for whi
h the


ode ensures mass 
onservation for arbitrary amplitudes and negative energy densities are still

avoided. This model will ne
essarily provide a less realisti
 des
ription of a neutron star, but
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the general stru
ture of the eigenmodes remains the same and it is not unrealisti
 to expe
t that

non-linear e�e
ts su
h as mode 
oupling will be qualitatively similar in more realisti
 models.

Considering the sensitivity of the numeri
al evolutions to the treatment of the surfa
e, it is,

however, desirable to develop a formulation of the dynami
 neutron star whi
h unambiguously

provides a 
orre
t treatment of the surfa
e. This will be done in se
tion 5.4 where we develop

a fully non-linear perturbative Lagrangian 
ode.

5.3.7 A simpli�ed neutron star model

In the previous se
tion we have seen that a suÆ
iently large trun
ation density in 
ombination

with the boundary 
ondition (5.153) may result in a 
ontinuous loss or gain of mass. In order

to avoid total negative energy densities, however, we have to use suÆ
iently large trun
ation

densities when we study non-linear e�e
ts in the time evolution of large amplitude perturba-

tions. We have therefore de
ided to ensure mass 
onservation by using the alternative boundary


ondition

w = 0 (5.162)

at the surfa
e instead of Eq. (5.153). This means that the surfa
e of the star remains at a

�xed position in spa
e and only 
uid elements in the interior of the star are displa
ed during

the evolution. It is the �xed lo
ation of the surfa
e whi
h avoids the main problems we have

en
ountered with the Eulerian formulation so far. The model we use for the following analysis

has the same equation of state as model 3 of Table 3 and a 
entral density �




= 1:224�10

�3

km

�2

whi
h implies a radius R = 11:34 km and a total mass M = 2:18 km. The trun
ation density

is �xed at �

s

= 2:0 � 10

�4

km

�2

whi
h means that the simpli�ed model 
ontains 90% of the

mass of the original star and extends to 84% of the original radius. Apart from 
hanging

the trun
ation density in the 
al
ulation of the TOV-ba
kground and implementing the new

boundary 
ondition in the evolution 
ode only one further modi�
ation in the numeri
al setup

des
ribed in se
tion 5.3.5 is required. The outer boundary 
ondition (5.144) in the 
al
ulation

of the eigenmodes is repla
ed by

�(R) = 0: (5.163)

The resulting eigenmodes 
an be ordered in the same way as des
ribed in se
tion 5.3.3 and the

evolution of eigenmodes in the linear regime again results in harmoni
 time dependen
e as in

the original 
ase with the frequen
ies predi
ted by the eigenmode 
al
ulation. The �rst four
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Figure 44: The pro�les of the lowest four eigenmodes in Æ� and w for the simpli�ed neutron

star model.

eigenmode pro�les of Æ� and w for the model mentioned above are shown in Fig. 44. The plots

show that the number of lo
al maxima and minima of the pro�les still 
orresponds to the order

of the mode.

5.3.8 Testing the 
ode with the new model

The only modi�
ation of the 
ode that needed to be implemented for the new model is the

outer boundary 
ondition (5.162). The performan
e of the 
ode in the linear regime is thus

well established by the results of se
tion 5.3.6 and we merely have to demonstrate that no

spurious results are obtained for larger trun
ation densities. This is the only 
ase where we

will depart from the model parameters listed in the previous se
tion and use a 
entral density

�




= 0:002802 km

�2

instead. We thus re
over the parameters of the model whi
h lead to a

spurious evaporation of the star in Fig. 43. For this model we have again evolved initial data

in the form of the fundamental mode of the velo
ity with an amplitude of 10 
m using 600 grid

points. In Fig. 45 we show the resulting 
entral density Æ�




together with the deviation from the
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Figure 45: The evolution of the 
entral density for initial data in the form a fundamental

eigenmode in the velo
ity �eld for model 3 with a 
entral density �




= 0:002802 km

�2

.
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Figure 46: The 
onvergen
e fa
tor obtained for evolving the se
ond eigenmode with an ampli-

tude of 70 m is shown for the variables Æ�, w, Æ� and Æ�.

harmoni
 solution of the linearized 
ase. For presentation purposes we only show the evolution

up to t = 6000 km. The harmoni
 time dependen
e is reprodu
ed with reasonable a

ura
y

as the deviation in
reases linearly up to about 1%. In general we have found the eigenmode

frequen
y the quantity most vulnerable to numeri
al error as 
an be seen for example by varying

the resolution. Be
ause of this observation and the os
illatory 
hara
ter of the deviation in the

�gure we attribute the error mainly to the limited a

ura
y of the frequen
y rather than the

numeri
al error of the time evolution itself. The in
reasing phase shift between the numeri
al

and the analyti
 solution arising from the limited a

ura
y of the frequen
y will result in a

linear in
rease of the deviation as observed in Fig. 45. In spite of the small deviation this


al
ulation is in sharp 
ontrast with that shown in Fig. 43, where a mu
h smaller trun
ation

density resulted in an exponential de
ay of the 
entral density. We 
on
lude that using a large

trun
ation density in 
ombination with the boundary 
ondition (5.162) the 
ode performs well

in the linearized regime.

We now return to the model parameters of the previous se
tion and use �




= 0:001224 km

�2

.
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In order to test the 
ode for 
onvergen
e in the non-linear regime we have evolved the se
ond

eigenmode with an amplitude 
orresponding to a maximal displa
ement of 
uid elements of

70 m. The 
al
ulation has been 
arried out with 400, 800 and 1600 grid points and the resulting


onvergen
e fa
tors are shown in Fig. 46. In spite of variations around the expe
ted value 4,

the results for all variables are 
ompatible with se
ond order 
onvergen
e.

For the next test we will use the 
ode in the Cowling approximation, sin
e the stati
 metri


provides a straightforward re
ipe to 
al
ulate 
onserved quantities. We have seen in se
tion

5.3.2 that only minor modi�
ations are required to swit
h between the Cowling approximation

and a dynami
 metri
. The 
onservation properties with a �xed metri
 will therefore represent

a good test for the matter evolution in the general 
ase. The �rst step in the derivation of a


onserved quantity is to �nd a time-like Killing �eld. The existen
e of su
h a ve
tor �eld follows

from the stati
 nature of the metri
 in the Cowling approximation. The Killing ve
tor 
an be

found by looking at the Killing equation

r

�

X

�

+r

�

X

�

= 0: (5.164)

The resulting 10 di�erential equations 
an be solved rather easily and de�ne the solution up to

a 
onstant fa
tor. We 
hoose this fa
tor so that the Killing �eld 
an be written as

X

�

=

�

�

2

; 0; 0; 0

�

: (5.165)

The 
onserved quantity then follows from 
ontra
tion of the Killing �eld with the energy mo-

mentum tensor

J

�

= T

��

X

�

: (5.166)

By virtue of 
onservation of energy momentum this ve
tor satis�es the 
ondition

r

�

J

�

= 0: (5.167)

With the metri
 (5.2) and the energy momentum tensor (5.78) this equation 
an be written in


onservative form

�

t

�

��r

2

J

t

�

+ �

r

�

��r

2

J

r

�

= 0; (5.168)
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Figure 47: The numeri
al evolution of the fun
tion E obtained in the Cowling approximation.

The quantity is 
onserved with an a

ura
y better than 10

�4

.

where the t and r 
omponents of J are given by

J

t

= (1 + �

2

w

2

)�̂+ �

2

w

2

^

P ; (5.169)

J

r

=

w

v

(1 + �

2

w

2

)(�̂+

^

P ): (5.170)

If we 
onsider a general 
onservation law in one dimension

u

;t

+ F (u)

;r

= 0; (5.171)

we obtain after integration over t and r

Z

R

0

[u(T; r)� u(0; r)℄dr +

Z

T

0

[F (t; R)� F (t; 0)℄dr = 0: (5.172)

In our 
ase the 
ux fun
tion is given by F = ��r

2

J

r

and vanishes at r = 0 and r = R be
ause

the velo
ity w vanishes at both boundaries. Consequently

E =

Z

R

0

��r

2

J

t

dr (5.173)

is a 
onserved quantity.

In order to test the 
onservation properties of the 
ode we have evolved the same initial data as



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 157

in the 
onvergen
e analysis with the metri
 �xed at the ba
kground values. In Fig. 47 we show

E as a fun
tion of time as 
al
ulated with 800 grid points. The quantity is 
onserved with a

relative a

ura
y better than 10

�4

. Even higher a

ura
y is obtained for smaller amplitudes of

the initial data. We have thus demonstrated that the 
ode performs well in the linear as well

as the non-linear regime. The appli
ability of the 
ode to a wide range of amplitudes will be


ru
ial when we study non-linear e�e
ts in the evolution of eigenmodes in the next subse
tion.

5.3.9 Non-linear mode 
oupling

(a) Measuring the eigenmode 
oeÆ
ients

We will now use the simpli�ed neutron star model des
ribed in se
tion 5.3.7 to study the 
oupling

of eigenmodes in non-linear evolutions of radial os
illations. In order to measure the presen
e of

the individual eigenmodes in the evolution we re
all the Sturm-Liouville problem (5.118) whi
h

determines the eigenmode solutions in terms of the res
aled displa
ement ve
tor �. In se
tion

5.3.3 we have seen that the solutions �

i

form a 
omplete orthonormal system with respe
t to

the inner produ
t de�ned in Eq. (5.122). This property enables us to quantify the 
ontributions

of the di�erent eigenmodes in the evolution at any given time. We need to 
al
ulate the

displa
ement �(t; r) of a fully non-linear evolution from the fundamental variables Æ� and w.

For this purpose we eliminate � from Eqs. (5.111) and (5.112) and obtain

�

;t

= r

2

w: (5.174)

The initial values of � follow from the initial data whi
h we provide in the form of an eigenmode

in the velo
ity �eld w and zero energy density perturbation Æ�. We 
an see from Eq. (5.130)

that the initial displa
ement � vanishes as a 
onsequen
e. At any time t we 
an then expand

the non-linear displa
ement �(t; r) in terms of the eigenmodes

�(t; r) =

X

i

A

i

(t)�

i

(r); (5.175)

where the time dependent 
oeÆ
ients are given by the inner produ
t

A

i

(t) = h�(t; r); �

i

(r)i: (5.176)
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Figure 48: The sum of the �rst ten R

i

has been 
al
ulated for evolving the se
ond eigenmode

with an amplitude of 70 m.

In pra
ti
e we prefer to 
al
ulate the eigenmode 
oeÆ
ients from the time derivative of this

equation

�A

i

�t

= h�

;t

; �

i

i; (5.177)

where we have dropped the t and r dependen
e for 
onvenien
e. If we substitute Eq. (5.174)

for �

;t

we obtain the �nal result

�A

i

�t

= hr

2

w; �

i

i: (5.178)

We 
an thus 
al
ulate the time derivative of the 
oeÆ
ients and use the initial values to obtain

the 
oeÆ
ients at any given time t. In our 
ase all 
oeÆ
ients are zero initially be
ause of the

vanishing of �. The integral appearing in the de�nition of the inner produ
t is 
al
ulated with

the fourth order Simpson method (see for example Press et al. 1989).

It is also interesting to 
onsider the relative 
oeÆ
ients de�ned by

R

i

(t) =

h�; �

i

i

h�; �i

; (5.179)

whenever � is a non-zero fun
tion. If we multiply this equation by A

i

and sum over i, we 
an
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Table 9: The inner produ
t h�

i

; �

j

i between the �ve lowest eigenmodes.

�

1

�

2

�

3

�

4

�

5

�

1

1.0 �2:1 � 10

�6

�6:3 � 10

�6

�1:2 � 10

�6

�2:6 � 10

�6

�

2

�2:1 � 10

�6

1.0 �8:0 � 10

�6

�1:5 � 10

�5

�6:3 � 10

�6

�

3

�6:3 � 10

�6

�8:0 � 10

�6

1.0 �1:8 � 10

�5

�2:7 � 10

�5

�

4

�1:2 � 10

�6

�1:5 � 10

�5

�1:8 � 10

�5

1.0 �3:2 � 10

�5

�

5

�2:6 � 10

�6

�6:3 � 10

�6

�2:7 � 10

�5

�3:2 � 10

�5

1.0

use Eq. (5.175) to obtain the relation

X

i

R

i

= 1; (5.180)

whi
h 
an be used to 
he
k the 
ompleteness of the numeri
ally 
al
ulated eigenmodes. For

this purpose we have evolved the se
ond eigenmode with a large amplitude 
orresponding to

a maximum displa
ement of 70 m and 
al
ulated the sum of the �rst ten weighted 
oeÆ
ients

R

i

using 600 grid points. The result is shown in Fig. 48 and demonstrates that Eq. (5.180) is

satis�ed to within less than one per 
ent. This does not only 
on�rm the 
ompleteness of the

system of eigenmodes, but also indi
ates that the energy essentially remains within the lowest

ten eigenmodes. In order to 
he
k the orthonormality we have 
al
ulated the inner produ
ts of

the eigenmodes. The results for the lowest �ve eigenmodes are shown in Table 9 and demon-

strate that the orthonormality 
ondition (5.125) is satis�ed with high a

ura
y.

(b) Non-linear 
oupling between eigenmodes

In order to study the 
oupling of modes due to non-linear e�e
ts we have provided initial data

in the form of one velo
ity eigenmode. The order of the eigenmode j and the amplitude of

the initial data K

j

are free parameters that determine the physi
al setup. We will spe
ify the

amplitude of the initial perturbation by the maximum value of the eigenmode pro�le of the

displa
ement ve
tor � 
orresponding to the initial velo
ity perturbation. This is a measure for

the maximum displa
ement a 
uid element of the interior of the star will undergo. During the

evolution we 
al
ulate the eigenmode 
oeÆ
ients A

i

(t) with 1 � i � 10 or 15 a

ording to the

method des
ribed above. Due to the os
illatory 
hara
ter of the modes, the 
oeÆ
ients will

also os
illate during the evolution. This is shown in Fig. 49 where we plot the 
oeÆ
ients A

2

(t)

and A

4

(t) for evolving the se
ond eigenmode. A large amplitude 
orresponding to a maximum

displa
ement of 70 m has been used for this 
al
ulation and we 
an 
learly see the transfer

of energy between the se
ond and the fourth mode. It is interesting to see that the energy
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Figure 49: The 
oeÆ
ients A

2

(t) and A

4

(t) obtained for initial data in the form of the se
ond

eigenmode with an amplitude of 70m.

transferred to the fourth mode does not remain there but instead is periodi
ally passed ba
k

and forth between the two modes. We observe a qualitatively similar behaviour for the other

eigenmodes, although these are ex
ited less eÆ
iently. If we want to investigate this 
oupling

between eigenmodes more systemati
ally, we need to quantify the degree to whi
h a parti
ular

mode has been ex
ited in an evolution. For this purpose we will use the maximum value of

the 
orresponding 
oeÆ
ient obtained during that evolution. We will refer to these maxima

by A

i

as opposed to A

i

(t) used for the time dependent 
oeÆ
ients. We have thus evolved

the eigenmodes i = 1, 2 and 3, referred to as 
ase 1, 2 and 3 from now on, with amplitudes

ranging between 1 
m and 100 m. At some stage in the range between about 50m and 100m

we observed the onset of sho
k formation. The a

ura
y of the eigenmode 
oeÆ
ients resulting

from these evolutions is not 
lear. In this dis
ussion we have therefore only used amplitudes for

whi
h no dis
ontinuities are observed. For the numeri
al runs we have used 3200 grid points

and an integration time of 1500 km. Test runs over signi�
antly longer times did not lead to

signi�
antly di�erent results for the A

i

whi
h is 
ompatible with the periodi
 ex
hange of en-

ergy shown in Fig. 49. The high grid resolution on the other hand enables us to measure small

eigenmode 
oeÆ
ients with good a

ura
y.

Case 1:

We start our analysis with 
ase 1, where the fundamental mode is ex
ited initially. In Fig. 50

we plot the 
oeÆ
ients A

i

as a fun
tion of the initial amplitude K

1

for the �rst ten eigenmodes.

We �nd that the 
oeÆ
ient A

1

in
reases linearly with the amplitude K

1

as expe
ted. A 
loser

investigation of the higher eigenmode 
oeÆ
ients, however, reveals the presen
e of two distin
t

regimes.

(1) In a weakly non-linear regime for amplitudes up to about 10 m all 
oeÆ
ients
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Figure 50: The eigenmode 
oeÆ
ients for the �rst ten eigenmodes are shown as a fun
tion of

the amplitude K

1

for initial data in the form of the fundamental velo
ity mode.

A

2

; : : : A

10

in
rease quadrati
ally with the amplitude K

1

. Deviations from this

quadrati
 power law at very small amplitudes are due to the limited numeri
al

a

ura
y in 
al
ulating the 
oeÆ
ients.

(2) At larger amplitudes all eigenmode 
oeÆ
ients ex
ept for A

2

show a transition

to power laws with larger exponent whi
h marks a moderately non-linear regime.
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Figure 51: The ex
itation of eigenmodes has been �tted with quadrati
 power laws in the range

between K

1

= 1 m and 10 m.

We have illustrated this behaviour in Fig. 51 where the eigenmode 
oeÆ
ients have been ap-

proximated with quadrati
 power laws

A

i

= 


i

�K

2

1

: (5.181)

The 
oupling 
oeÆ
ients 


i

whi
h represent the 
oupling strength in the weakly non-linear

regime have been obtained from least square �ts of quadrati
 power laws to the eigenmode
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Figure 52: The eigenmode 
oeÆ
ients A

2

, A

3

and A

4

are �tted with linear 
ombinations of

power laws a

ording to Eqs. (5.183)-(5.185).


oeÆ
ients in amplitude ranges between 0:1 m and 10 m. It is interesting to investigate the

dependen
e of the 
oupling 
oeÆ
ients on the order of the eigenmodes. This is shown in the

upper left panel of Fig. 53, where we plot 


i

over the order i � 1. The solid line in this �gure

shows a power law �t for these 
oupling 
oeÆ
ients given by




i

= 3:2 � 10

�7

� (i� 1)

�3

: (5.182)

This result is 
ompatible with the expe
tation that 


i

! 0 as i!1. Otherwise an in�nite num-

ber of modes would ea
h be ex
ited with a �nite amount of energy. In the moderately non-linear

regime the eigenmode 
oeÆ
ients A

3

; : : : ; A

10

show a higher order growth with the amplitude

K

1

. For the most eÆ
iently ex
ited modes 2, 3 and 4 we have been able to approximate the

eigenmode 
oeÆ
ients with the following 
ombinations of power laws

A

2

= 3:6 � 10

�7

�K

2

1

; (5.183)

A

3

= 3:4 � 10

�8

�K

2

1

+ 9:7 � 10

�10

�K

3

1

; (5.184)

A

4

= 1:0 � 10

�8

�K

2

1

+ 1:2 � 10

�11

�K

4

1

: (5.185)

Here the higher order power laws have been obtained from �tting the eigenmode 
oeÆ
ients

after subtra
ting the quadrati
 
ontributions. The resulting �ts are shown in Fig. 52. The
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Figure 53: The 
oupling 
oeÆ
ients 


i

de�ned in Eq. 5.181 are plotted as a fun
tion of the mode

number i� 1 for 
ase 1 in the upper left panel. In the upper right and lower panel we plot the


orresponding 
oeÆ
ients for 
ase 2 and 3 as a fun
tion of the mode number i � 3 and i � 5

respe
tively. In all 
ases the 
oeÆ
ients 
an be approximated with inverse 
ubi
 power laws as

indi
ated by the solid lines.

higher order 
ontributions for the higher eigenmodes is rather weak so that it is diÆ
ult to

obtain a

urate measurements of the 
orresponding power law exponents. It is thus not 
lear

whether the regular pattern suggested by Eqs. (5.183)-(5.185) remains valid for higher modes.

The steepening of the 
urves in the moderately non-linear regime, however, 
an be 
learly seen

in Fig. 51.

Case 2:

We will now address the question to what extent these results remain valid if we initially ex
ite

higher modes. For this purpose we have repeated the numeri
al analysis by providing initial

data in the form of the se
ond velo
ity mode. The resulting eigenmode 
oeÆ
ients are shown

as a fun
tion of the amplitude K

2

in Fig. 54. The presen
e of the two distin
t regimes is again


learly demonstrated by the �gures and a 
loser investigation 
on�rms the quadrati
 growth
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Figure 54: The eigenmode 
oeÆ
ients for the �rst ten eigenmodes are shown for initial data in

the form of the se
ond velo
ity mode.

of the eigenmode 
oeÆ
ients in the weakly non-linear regime. This is demonstrated in Fig. 55

where the 
orresponding quadrati
 power law �ts are shown for the eigenmodes. We also observe

a similar dependen
e of the quadrati
 
oupling 
oeÆ
ients 


i

on the mode number. In 
ase 1

we observed a power law relation given by Eq. (5.182) between the 
oeÆ
ients 


i

and the mode

number i � 1. In 
ase 2 we 
an also approximate the 
oeÆ
ients 


i

reasonably well with an

inverse 
ubi
 power law if we use the number i� 3 instead whi
h is demonstrated in the right

panel of Fig. 53. The lower order modes 1 and 3 do not �t into this pattern and we shall
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Figure 55: The ex
itation of eigenmodes in 
ase 2 has been �tted with quadrati
 power laws in

the range between K

1

= 0:1 m and 10 m.

readdress their behaviour in the quadrati
 regime below when we dis
uss 
ase 3.

Apart from these similarities there are some interesting di�eren
es between 
ase 1 and 
ase 2:

(1) The transition from the weakly to the moderately non-linear regime o

urs at smaller

amplitudes than in 
ase 1. This is parti
ularly pronoun
ed in the 
ase of mode 6 (see

Fig. 55).

(2) The regular pattern observed in 
ase 1 in the moderately non-linear regime for the strongly

ex
ited modes 2, 3 and 4, whi
h is expressed in Eqs. (5.183)-(5.185), is now being observed
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Figure 56: In the upper panel we show the higher order power law 
ontributions of Eqs. (5.186)-

(5.189) whi
h �t the even eigenmode 
oeÆ
ients rather well in the moderately non-linear regime.

The lower panel shows the resulting �ts obtained from the sum of the quadrati
 and the higher

order power laws a

ording to the same equations.

for the eigenmodes of even order 2n. We obtain ex
ellent �ts for the data if we model the

even eigenmode 
oeÆ
ients with the following linear 
ombinations of power laws.

A

4

= 1:9 � 10

�6

�K

2

1

; (5.186)

A

6

= 2:5 � 10

�8

�K

2

1

+ 8:7 � 10

�9

�K

3

1

; (5.187)
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Table 10: The quadrati
 
oupling 
oeÆ
ients 


i

for the lower modes in 
ase 3.

i 


i

1 2:0 � 10

�7

2 1:2 � 10

�7

4 6:7 � 10

�8

5 3:0 � 10

�8

A

8

= 4:9 � 10

�9

�K

2

1

+ 6:2 � 10

�11

�K

4

1

; (5.188)

A

10

= 1:8 � 10

�9

�K

2

1

+ 4:9 � 10

�13

�K

5

1

: (5.189)

In Fig. 56 we show the 
urves resulting from the higher order power laws as well as

those 
orresponding to the linear 
ombinations. For the odd modes the higher order


ontributions are rather small so that we 
annot a

urately measure the 
orresponding

power law indi
es. The steepening of the 
urves and thus the onset of the moderately

non-linear regime, however, is 
learly visible.

(3) Whereas the quadrati
 
oupling 
oeÆ
ients 


i

shown in the right panel of Fig. 53 show a


ontinuous de
rease with the order of the mode starting with mode 4, a 
lear preferen
e

of the se
ond mode to 
ouple to modes of even order 2n is observed in the moderately

non-linear regime. This is indi
ated by the rather eÆ
ient 
oupling to mode 4 and the

signi�
antly steeper in
rease of the eigenmode 
oeÆ
ients A

6

, A

8

and A

10

for larger

amplitudes K

2

in Fig. 55.

(4) A small 
attening of the even eigenmode 
oeÆ
ients at large amplitudes in Fig. 56 may

indi
ate the onset of saturation e�e
ts. A possible me
hanism for saturation is the forma-

tion of dis
ontinuities. As we have already mentioned we have 
hosen an amplitude range

in whi
h no sho
k formation is observed. At the high end of our amplitude range, it may

be possible, however, that similar dissipative e�e
ts due to the strong non-linearity start

having an e�e
t on the 
oupling of eigenmodes.

Case 3:

Next we 
onsider 
ase 3 where we perturb the star with the third velo
ity mode. The fun-

damental observations we have made in the previous two 
ases are 
on�rmed by the results

in this 
ase. In the weakly non-linear regime all eigenmode 
oeÆ
ients (ex
ept for A

3

) grow

quadrati
ally with the amplitude K

3

. The 
orresponding quadrati
 
oupling 
oeÆ
ients 
an
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Figure 57: The eigenmode 
oeÆ
ient A

3

, A

6

,: : : ,A

15

are shown for 
ase 3 together with the

resulting �ts a

ording to Eqs. (5.190)-(5.193).

on
e more be approximated with a power law with exponent �3. We �nd, however, that the

relevant mode number is now i� 5. This behaviour is graphi
ally illustrated in the lower panel

of Fig. 53 where the 
oupling 
oeÆ
ients are shown together with the power law approximation.

The results of this �gure suggest the following regular pattern: For initial data in the form of

eigenmode j the quadrati
 
oupling 
oeÆ
ients starting with mode 2j are well approximated

by an inverse 
ubi
 power law of a relative mode number i + 1 � 2j whi
h is 1 for mode 2j, 2

for mode 2j + 1 and so on.

We still have to analyse the quadrati
 
oupling 
oeÆ
ients of the modes below 2j. In 
ase 1 and

2 we did not have enough data to derive any results for these modes. For 
ase 3 we have listed

the 
orresponding 
oeÆ
ients 


i

in Table 10. The 
oeÆ
ients 


i

are approximately redu
ed by a

fa
tor of 2 ea
h time the mode number is in
reased whi
h may indi
ate an exponential de
rease

of the quadrati
 
oupling 
oeÆ
ients for the low order modes. This is only a vague 
on
lusion

from a small data set, however, and needs to be 
on�rmed by studies of higher eigenmodes.

In the moderately non-linear regime we have seen for 
ase 2 a preferred 
oupling to modes with

an even order 2n. In analogy we �nd that the third eigenmode 
ouples more eÆ
iently to modes

of order 3n for larger amplitudes. Again we 
an approximate the results with good a

ura
y
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with 
ombinations of two power laws analogous to Eqs. (5.186)-(5.189)

A

6

= 1:2 � 10

�6

�K

2

3

; (5.190)

A

9

= 0:9 � 10

�8

�K

2

3

+ 6:5 � 10

�9

�K

3

3

; (5.191)

A

12

= 2:2 � 10

�9

�K

2

3

+ 4:6 � 10

�11

�K

4

3

; (5.192)

A

15

= 7:8 � 10

�10

�K

2

3

+ 4:5 � 10

�13

�K

5

3

: (5.193)

We re
ognise the same pattern of in
reasing integer power law indi
es in the higher order terms

that we have already found in 
ase 1 and 2. These results are graphi
ally illustrated in Fig. 57.

Again the higher order 
ontributions in the other eigenmodes is 
learly present but too weak

to fa
ilitate an a

urate measurement of the exponents.

We 
on
lude the study of non-linear mode 
oupling with a summary of the key results.

(1) We 
learly observe two distin
t regimes in the non-linear 
oupling of eigenmodes. In the

weekly non-linear regime, normally up to amplitudes of several metres, all eigenmode


oeÆ
ients grow quadrati
ally with the amplitude K

j

. In the moderately non-linear

regime we observe a steeper in
rease of the 
oeÆ
ients A

i

.

(2) In the quadrati
 regime the 
oupling 
oeÆ
ients 


i

generally de
rease with in
reasing

order of the eigenmodes. If the initial perturbation is given in the form of mode j, we 
an

model the behaviour of the quadrati
 
oupling 
oeÆ
ients with an inverse 
ubi
 power

law of the mode number starting with mode 2j. The 
oupling to lower modes does not

obey the same pattern, but we also observe a de
rease of the 


i

with in
reasing mode

number for these modes. This de
rease may have exponential 
hara
ter.

(3) In the moderately non-linear regime an initially present mode j shows a preferen
e to


ouple to modes of order n � j where n � 2 is an integer number. In these 
ases we 
an

a

urately model the dependen
e of the eigenmode 
oeÆ
ients on the amplitude K

j

with

the sum of a quadrati
 and a higher order power law with exponent n: A

i

= 


i

�K

2

j

+d

i

�K

n

j

for i = n � j.

(4) In some 
ases we observe a 
attening of the eigenmode 
oeÆ
ients at amplitudes of about

50m whi
h may indi
ate the onset of saturation.
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5.3.10 Dis
ussion of the non-linear mode-
oupling

In the previous se
tion we have studied the 
oupling of eigenmodes due to non-linear e�e
ts by

evolving a single eigenmode with varying amplitude. Con
erning the transfer of energy to other

modes we have found two distin
t regimes, a weakly non-linear regime where the ex
itation

of modes grows quadrati
ally with the initial amplitude and a moderately non-linear regime,

where this in
rease 
an be reasonably well des
ribed by power laws of higher order.

In the analyti
 study of non-linear mode 
oupling one normally views the eigenmode 
oeÆ
ients

as harmoni
 os
illators and the non-linear intera
tion between eigenmodes is represented in the

form of driving terms whi
h are quadrati
 or of higher order in the amplitudes (see for example

Van Hoolst 1996)

d

2

A

i

dt

2

+ !

2

i

A

i

= 


jk

i

A

j

A

k

+ d

jkl

i

A

j

A

k

A

l

+ : : : ; (5.194)

where the 


jk

i

, d

jkl

i

; : : : are the quadrati
, 
ubi
 and higher order 
oupling 
oeÆ
ients and

summation over j; k; l is assumed. In our analysis the initial data 
onsists in one isolated

eigenmode j, so that the right hand side 
an be approximated by 


i

A

2

j

+ d

i

A

3

j

+ : : : In analyti


studies this series expansion is normally trun
ated at se
ond or third order. In view of our

results the omission of higher order terms seems to be justi�ed in the weakly non-linear regime,

where our fully non-linear simulations 
on�rm that quadrati
 terms in the initial amplitude

dominate the 
oupling between eigenmodes. This is no longer true, however, in the moderately

non-linear regime, where higher order terms are more important. In parti
ular the regular

pattern suggested for example by Eqs. (5.186)-(5.189) indi
ates that the ex
itation of higher

order modes is dominated by in
reasingly higher order powers of the initial amplitude. It is not


lear how this behaviour 
an be modelled in the framework of a �nite series expansion of the

type (5.194). It rather seems that the use of fully non-linear methods su
h as the numeri
al

te
hnique des
ribed in this work is ne
essary in order to obtain a 
omprehensive des
ription

of the 
oupling between eigenmodes in the moderately non-linear regime. In terms of the

maximum displa
ement of 
uid elements in the star this 
orresponds to initial amplitudes as

low as a 
ouple of metres.

We have also observed that given an initial mode j the 
oupling to modes n � j is parti
ularly

eÆ
ient in the moderately non-linear regime. We interprete this as a resonan
e e�e
t, whi
h

we illustrate in the simple 
ase of a for
ed os
illator

d

2

A

i

dt

2

+ !

2

i

A

i

= F sin
t; (5.195)
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where 
 is the frequen
y and F the amplitude of the external for
e. The parti
ular integral of

this ordinary di�erential equation is

A

i

(t) =

F

!

2

i

� 


2

sin
t; (5.196)

whi
h implies resonan
e if !

i

= 
. If we assume that resonan
e o

urs for any integer multiple

of the frequen
y 
 in the general non-linear 
ase, we 
an s
hemati
ally write the eigenmode


oeÆ
ients in the form

A

i

(t) =

X

n

F

n

!

2

i

� (n
)

2

; (5.197)

where the F

n

may depend on the frequen
ies. The analyti
 study of non-linear mode 
oupling

up to 
ubi
 order leads to eigenmode 
oeÆ
ients whi
h resemble this pattern [see for example

Eqs. (18), (19) of Van Hoolst 1996℄. In our 
ase the external for
e is provided by the non-linear


oupling to the initial mode j, so that 
 = !

j

. We therefore obtain resonan
e in Eq. (5.197)

if !

i

= n!

j

. As 
an be seen for example in Fig. 40, the eigenfrequen
ies of radial neutron

star os
illations are fairly equally spa
ed in the frequen
y domain with the ex
eption of the

fundamental mode and we 
an reasonably well approximate !

i

� (i!

j

)=j for i; j � 2. The


ondition for resonan
e then be
omes

i = n � j; (5.198)

whi
h is exa
tly the relation we have observed in se
tion 5.3.9.

From the relativisti
 point of view the non-linear 
oupling of eigenmodes in the weak and mod-

erately non-linear regime is of parti
ular interest in the dis
ussion of unstable modes of rotating

neutron stars. The underlying prin
iple of these unstable os
illation modes is the in
rease in

amplitude of the os
illation due to the emission of gravitational waves. The in
reased amplitude

in turn gives rise to stronger gravitational radiation and so on. The 
onservation of energy is

ensured in this 
ase by the spin-down of the neutron star and the resulting de
rease of rota-

tional energy whi
h sets a natural upper limit on this run-away e�e
t. The physi
al me
hanism

whi
h fa
ilitates this remarkable instability is known as the CFS-instability (Chandrasekhar

1970, Friedman and S
hutz 1978). In order for a neutron star os
illation mode to be subje
t

to the CFS-instability two 
onditions must be satis�ed: (1) the mode must be retrograde with

respe
t to the star but prograde with respe
t to a distant inertial observer and (2) the energy

loss in the rotating frame due to dissipative e�e
ts must be smaller than the amount of energy
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gained from the gravitationally driven instability. The parti
ular importan
e of the so-
alled

r-modes in this respe
t arises from the fa
t that the dominating l = m = 2 r-mode satis�es

the �rst CFS-
ondition for arbitrarily small values of the angular frequen
y of the neutron star

(Andersson 1998). One of the most important questions raised in 
onne
tion with the r-modes


on
erns the eÆ
ien
y with whi
h energy is dissipated for example due to vis
osity or non-linear

e�e
ts.

Considering the gradual in
rease in the os
illation amplitude, it is important to understand

how the instability of the mode is a�e
ted in the weakly non-linear regime. To our knowledge

the numeri
al studies presented in this work provide the �rst fully non-linear time evolutions

of neutron star os
illations with high a

ura
y for amplitudes going all the way down to the

weakly non-linear regime. Our results may therefore pave some of the way towards under-

standing non-linear e�e
ts in a wider 
lass of neutron star os
illations. In parti
ular we have

managed to quantify the transfer of energy from low into higher eigenmodes. The pi
ture that

emerges from these evolutions is that only a rather small fra
tion of energy is shifted away from

the low eigenmodes. In parti
ular the results shown in Fig. 49 indi
ate that the energy shifted

towards higher eigenmodes does not a

umulate in time but is rather transferred ba
k and

forth between the initially present and the higher mode. Correspondingly we do not observe

an eÆ
ient 
as
ade of energy into higher modes. It is not 
lear, however, to what extent this

pi
ture will 
hange if the energy residing in the higher order modes is gradually dissipated. In

the 
ontext of r-modes it is expe
ted that the energy in higher order modes is dissipated on a

mu
h shorter times
ale than that of the dominating l = m = 2 mode. The numeri
al te
hniques

and the 
ode developed in this work may fa
ilitate a 
orresponding study in the framework of

radial os
illations by introdu
ing an arti�
ial damping of higher order modes and an external

for
e whi
h drives the fundamental mode. One may then look for steady state situations arising

from this model, where the amount of energy transfered to higher modes and thus dissipated

equals that gained from the external driving me
hanism.

From a numeri
al point of view we emphasise the new perturbative approa
h whi
h enabled

us to obtain highly a

urate fully non-linear evolutions over a large range of amplitudes. This

te
hnique 
an be applied for any physi
al problem where there exists a non-trivial stati
 limit.

The dynami
 evolution 
an always be 
onsidered a �nite perturbation of the stati
 
ase and a


orresponding perturbative formulation will provide a numeri
al a

ura
y that is determined by

the amplitude of the perturbation rather than the stati
 ba
kground. We expe
t this method

to be parti
ularly e�e
tive in higher dimensional evolutions where the grid resolution is rather

limited by 
omputational 
osts and the ensuing residual error arising from ba
kground terms
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in a non-perturbative formulation will be more signi�
ant.
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5.4 Radial os
illations in a Lagrangian formulation

In the previous se
tion we have seen that an Eulerian des
ription of radial os
illations en
oun-

ters diÆ
ulties at the stellar surfa
e for several reasons. For 
ertain equations of state the

eigenmode pro�les predi
ted by the linearized theory result in a diverging energy density per-

turbation. A purely numeri
al problem arises from the movement of the stellar surfa
e with

respe
t to the numeri
al grid. Highly sophisti
ated te
hniques may be required to adequately

des
ribe the surfa
e of a neutron star in Eulerian 
oordinates and it is not 
lear to what extent

these will lead to a fully satisfa
tory performan
e in the linear regime where the exa
t solution

is known to high a

ura
y and fa
ilitates a quantitative test for the 
ode. It is interesting to

see that these problems vanish immediately on
e the problem is des
ribed in a formalism where

the 
oordinates follow the movement of the 
uid elements. Even though it is not obvious how

to generalise a Lagrangian approa
h to s
enarios in two or three spatial dimensions, it still

seems to be the natural 
hoi
e for the 1-dimensional 
ase. Lagrangian 
odes have often been

based on the formulation of May and White (1966) and (1967) who following Misner and Sharp

(1964) use a vanishing shift ve
tor and de�ne the radial 
oordinate in terms of the interior rest

mass. In order to fa
ilitate a simple 
omparison with the Eulerian 
ode dis
ussed in se
tion

5.3, however, it will be 
onvenient for us to use as similar a gauge 
hoi
e to the Eulerian 
ase

as possible. For this purpose we will follow S
hinder et al. (1988) and use a Lagrangian gauge

in 
ombination with the polar sli
ing 
ondition whi
h is also implemented in the Eulerian 
ode

(
f. se
tion 5.3.1). As a parti
ularly useful 
onsequen
e the singularity avoiding properties of

this 
ondition in 
ombination with the Lagrangian gauge make this 
ode highly suitable for

studying spheri
ally symmetri
 gravitational 
ollapse. We will not exhaustively study this type

of s
enarios in this work, but will use the analyti
 solution by Oppenheimer and Snyder (1939)

whi
h des
ribes the 
ollapse of a homogeneous dust sphere for testing the 
ode.

5.4.1 The equations in the Lagrangian formulation

The derivation of the Lagrangian equations for a dynami
 spheri
ally symmetri
 neutron star

was largely inspired by the work of S
hinder et al. (1988). We will, however, slightly deviate

from their approa
h and work with a di�erent set of variables and equations.

We start by 
onsidering the line element of a spheri
ally symmetri
 spa
e time in polar sli
ing

and Lagrangian gauge. As a result of the polar sli
ing 
ondition, we are able to 
hoose the same

time 
oordinate t as in the Eulerian 
ase. The radial 
oordinate x will label the 
uid elements

and generally di�er from the areal radius r whi
h is intrinsi
ally not 
omoving with the matter.
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Finally we 
hoose standard angular 
oordinates � and � as above. Below we will see that the

polar sli
ing 
ondition implies a non-vanishing shift ve
tor so that the line element be
omes

ds

2

=

 

�

^

�

2

+

^

��

2

r̂

2

;x

!

dt

2

+ 2�dt dx+

r̂

2

;x

^

�

dx

2

+ r̂

2

(d�

2

+ sin

2

�d�

2

): (5.199)

It turns out to be 
onvenient for our dis
ussion if we introdu
e the variables

w =

r̂

;t

^

�

; (5.200)




2

=

^

�� w

2

; (5.201)

m̂ =

r̂

2

(1�

^

�); (5.202)

where the velo
ity is identi
al to that used in the Eulerian 
ase. As before we use the \hat" to

distinguish between the time dependent variables and their 
ounterparts in the stati
 
ase. We

note that we need to distinguish between the time dependent areal radius r̂ and the stati
 value

r, sin
e the areal radius 
orresponding to the position of a 
uid element is a dependent variable

and will generally vary with time. In the Eulerian 
ase the areal radius was a 
oordinate and

therefore intrinsi
ally independent of time. If we 
ompare the Lagrangian line element (5.199)

with the Eulerian one given by Eq. (5.77) we therefore have to use the time dependent r̂ in the

latter line element instead of r. The 
oordinate transformation relating the two line elements

is des
ribed by

r̂ = r̂(t; x): (5.203)

The transformation law for the metri
 
omponents 
orresponding to the transformation from


oordinates x

�

= (t; x; �; �) to x

0

�

= (t; r; �; �) is given by

g

0

��

=

�x

�

�x

0

�

�x

�

�x

0

�

g

��

; (5.204)

and leads to the two non-trivial equations

� = r̂

;x

r̂

;t

�̂

2

; (5.205)

^

� =

1

�̂

2

: (5.206)
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As a 
onsequen
e the shift ve
tor � is related to the 
omponents of the Lagrangian metri
 by

� =

^

�

w r̂

;x

^

�

: (5.207)

In terms of the extrinsi
 
urvature de�ned in Eq. (2.19) this relation 
an be written as K

�

�

=

K

�

�

= 0 and we have re
overed the polar sli
ing 
ondition. The non-vanishing shift ve
tor

(5.207) is the pri
e we have to pay for keeping the polar sli
ing 
ondition in the Lagrangian

gauge.

As far as the matter is 
on
erned, we use again a single 
omponent perfe
t 
uid and thus the

energy momentum tensor given by Eq. (5.78). Sin
e the 
uid elements do not move with respe
t

to the radial 
oordinate x, the 4-velo
ity has zero spatial 
omponents and is determined by the

normalisation u

�

u

�

= �1

u

�

=

 

p

^

�

^

�


; 0; 0; 0

!

: (5.208)

The resulting �eld equations G

��

= 8�T

��


an be written as

^

�

;x

^

�

=

r̂

;x

r̂

^

�

 

m̂

r̂

+ 4�r̂

2

w

2

�̂+

^

�

^

P




2

!

; (5.209)

m̂

;x

= 4�r̂

2

r̂

;x

^

��̂+ w

2

^

P




2

; (5.210)

m̂

;t

= �4�r̂

2

^

�w

^

P : (5.211)

Similarly the 
onservation of energy and momentumr

�

T

�

�

= 0 leads to two evolution equations

for the matter variables

�̂

;t

+ (�̂+

^

P )




r̂

2

r̂

;x

�

r̂

2

r̂

;x




�

;t

= 0; (5.212)




4

^

P

;x

r̂

;x

+

^

P

;t

w

^

�




2

+ (�̂+

^

P )

�


̂

w

;t

^

�

+ (
̂ � 2w

2

)

�

m̂

r̂

2

+ 4�r̂

^

P

��

= 0; (5.213)

and the system is 
losed by the polytropi
 equation of state (5.79). It is worth pointing out

that the appearan
e of the time derivative in the �eld equation (5.211) does not 
ontradi
t

the absen
e of gravitational degrees of freedom in spheri
al symmetry. This equation 
an be

shown to be a 
onsequen
e of the 
onstraints (5.209), (5.210) and the matter equations (5.212),

(5.213). In this sense the degrees of freedom still reside in the matter variables and the metri
 is



5 NON-LINEAR OSCILLATIONS OF SPHERICALLY SYMMETRIC STARS 178

determined at ea
h time irrespe
tive of its history. In pra
ti
e, however, we will use the rather

simple equation (5.211) to evolve the variable m̂ instead of evolving �̂ via the matter equation

(5.212).

If we 
onsider the stati
 limit of the system of equations (5.209)-(5.213) we expe
t to re
over the

Tolman-Oppenheimer-Volko� equations (5.48)-(5.51). That this is indeed the 
ase 
an be seen

if we set all time derivatives in
luding the velo
ity w to zero and assume that x is identi
al to

the 
oordinate x we used in the stati
 
ase. The se
ond 
ondition 
an always be satis�ed sin
e

the 
uid elements are not moving and 
an be labelled by the areal radius of their position or

the res
aled 
oordinate y de�ned in Eq. (5.47). Then Eq. (5.210) dire
tly redu
es to Eq. (5.11)

or the transformed version thereof expressed in terms of the 
oordinate y. From Eq. (5.206)

we 
on
lude that � = 1=�

2

and the 
onstraint (5.209) be
omes identi
al to (5.49). Finally the

matter equation (5.213) redu
es to Eq. (5.51) and the evolution equations (5.211) and (5.212)

vanish identi
ally.

5.4.2 The linearized evolution equations

We have seen that the stati
 limit of the evolution equations (5.209)-(5.212) is given by the

TOV equations. We 
an therefore linearise the dynami
 equations around this ba
kground and


ompare the results with the Eulerian 
ase des
ribed in se
tion 5.3.3. In order to distinguish

between Eulerian and Lagrangian perturbations we will use a 
apital � in the Lagrangian 
ase.

The only ex
eption is the radial displa
ement whi
h is identi
al in both formulations so that

we keep the variable name �.

We start the linearisation with the de�nition of the radial velo
ity w (5.200). In terms of the

radial displa
ement this equation be
omes

w =

�

;t

�

: (5.214)

We note that the ba
kground value of the lapse � appears in the denominator instead of the

time dependent

^

�. In the same way we will negle
t higher order terms in the other equations.

If we substitute this expression for w in the evolution equation (5.211) for m and integrate over

time, we obtain

�m = �4�r

2

P�: (5.215)

The 
onstant of integration vanishes be
ause a zero displa
ement � of the 
uid elements implies

�m = 0. We 
an use this expression for �m in the de�nition (5.202) to obtain the result for
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the auxiliary variable

^

�

�� = 8�rP� +

�

r

(1� �): (5.216)

The energy density perturbation then follows from substituting Eqs. (5.214)-(5.216) in the evo-

lution equation (5.212) and integrating over time. With the 
onstant of integration vanishing

as before the result is

�� =

(�+ P )

r

;x

�

�r

2

�

�

;x

: (5.217)

From the de�nition of the speed of sound we 
an 
al
ulate the pressure perturbation

�P = C

2

��: (5.218)

If we substitute the results (5.214)-(5.218) in the evolution equation (5.213) we get exa
tly the

se
ond order di�erential equation (5.113) of the Eulerian 
ase with the 
oeÆ
ient fun
tions

(5.114)-(5.116). No substitution for �� is ne
essary here, be
ause all terms 
ontaining ��

drop out by virtue of the TOV ba
kground equations. Writing the displa
ement as a produ
t

�(x)f(t) we obtain again harmoni
 time dependen
e and �nally arrive at the ordinary di�erential

equation (5.118) so that we 
an use the whole ma
hinery developed in se
tion 5.3.3 to 
al
ulate

the eigenmodes. It is interesting, however, to 
ontrast Eq. (5.217) for the Lagrangian �� with

the Eulerian analogue Eq. (5.130). We have seen in se
tion 5.3.3 that the extra term in the

Eulerian relation leads to the problemati
 asymptoti
 behaviour of Æ� at the surfa
e. No su
h

problem o

urs in the Lagrangian 
ase whi
h thus provides a self-
onsistent way of deriving the

linearized equations.

5.4.3 The equations for the numeri
al implementation

The Lagrangian evolution of a dynami
 neutron star in spheri
al symmetry is des
ribed by

the system of equations (5.200), (5.209)-(5.211), (5.213), where the auxiliary variables

^

� and


 are de�ned by Eqs. (5.201) and (5.202). This 
hoi
e of variables and equations, however,

did not lead to an entirely satisfa
tory performan
e of the 
ode. This be
ame most obvious

in the simulation of the Oppenheimer-Snyder dust 
ollapse where the energy density showed

an in
reasing deviation from the analyti
 solution near the 
entre of the star. When the dust

sphere had 
ollapsed 
lose to its S
hwarzs
hild radius, the deviation was larger than 10%. In

order to understand this ina

ura
y, we 
onsider Eq. (5.210) whi
h relates the energy density to
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the mass. If we solve this equation for �̂ we see that the mass appears in the form m̂

;x

=r̂

2

, whi
h

will be of the order O(1) near the origin. The se
ond order a

ura
y of the �nite di�eren
ing

s
heme we have used, however, implies that the variable m̂ is known with a lo
al error O(�x

3

)

only and 
onsequently the numeri
al derivative m̂

;x

has an error O(�x

2

). Near the origin the

radius r̂ is of the same order of magnitude as �x and the error of m̂

;x

=r̂

2

and thus the energy

density �̂ is large. This problem is a 
onsequen
e of the r̂

3

behaviour of the mass m̂ near the

origin 
ombined with the strong variation of the variables in the dust 
ollapse and persists in a

perturbative formulation. In the numeri
al evolution we therefore use the variable

^

N =

m̂

r̂

2

; (5.219)

instead of the mass m̂. The Lagrangian equations (5.200), (5.209)-(5.211), (5.213) then be
ome

^

�


2

^

�

;x

� r̂

;x

^

�

h




2

^

N + 4�r̂(w

2

�̂+

^

�

^

P )

i

= 0; (5.220)

r̂


2

^

N

;x

+ 2


2

r̂

;x

^

N � 4�r̂r̂

;x

(

^

��̂+ w

2

^

P ) = 0; (5.221)

r̂

^

N

;t

+ 2

^

�w

�

^

N + 2�r̂

^

P

�

= 0; (5.222)

r̂

;t

�

^

�w = 0; (5.223)

^

�


4

^

P

;x

+ r̂

;x

w


2

^

P

;t

+ r̂

;x

(�̂+

^

P )

h

^

�w

;t

+

^

�(

^

�� 2w

2

)(

^

N + 4�r̂

^

P )

i

; (5.224)

where

^

� is now de�ned by

^

� = 1� 2

^

Nr̂: (5.225)

In the stati
 limit these equations redu
e to the TOV equations

��

;x

� r

;x

�(N + 4�rP ); (5.226)

rN

;x

+ r

;x

(2N � 4�r�) = 0; (5.227)

�P

;x

+ r

;x

(�+ P )(N + 4�rP ) = 0; (5.228)

� = 1� 2Nr: (5.229)
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In order to derive a fully non-linear perturbative formulation, we de
ompose the time dependent

quantities into stati
 ba
kground 
ontributions and time dependent perturbations

r̂(t; x) = r(x) + �(t; x); (5.230)

^

�(t; x) = �(x) + ��(t; x); (5.231)

^

N(t; x) = N(x) + �N(t; x); (5.232)

^

�(t; x) = �(x) + ��(t; x); (5.233)

�̂(t; x) = �(x) + ��(t; x): (5.234)

With these de�nitions the fully non-linear perturbative version of Eqs. (5.220)-(5.224) be
omes

^

�

2

��

;x

+��(2� +��)�

;x

� (�

;x

�� + r̂

;x

��� + r̂

;x

^

���)(N + 4�rP )

+ w

2

h

�

^

�

^

�

;x

+ r̂

;x

^

�(

^

N � 4�r̂�̂)

i

� r̂

;x

^

�

^

� [�N + 4�(�P + r̂�P )℄ = 0;

(5.235)

� w

2

(r̂

^

N

;x

+ 2r̂

;x

^

N + 4�r̂r̂

;x

^

P ) + ��(r̂

^

N

;x

+ 2r̂

;x

^

N � 4�r̂r̂

;x

�̂)

+ � [�N

;x

+ r̂�N

;x

+ 2�

;x

N + 2r̂

;x

�N � 4�(��r

;x

+ r̂�

;x

�+ r̂r̂

;x

��)℄ = 0;

(5.236)

r̂

^

N

;t

+ 2

^

�w(

^

N + 2�r̂

^

P ) = 0; (5.237)

�

;t

�

^

�w = 0; (5.238)
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^
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^
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^
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^

P )r̂

;x

(

^

N + 4�r̂

^

P )

i

+ ��

n

��P

;x

+

^

��P

;x

+

h

(��+�P )r

;x

+ (�̂+

^

P )�

;x

i

(N + 4�rP ) + (�̂+

^

P )r̂

;x

(�N + 4��P + 4�r̂�P )

o

= 0:

(5.239)

This is the �nal system of equations used in the numeri
al implementation.
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5.4.4 Initial data and boundary 
onditions

In order to numeri
ally evolve the system of partial di�erential equations (5.235)-(5.239) we

have to spe
ify initial data and boundary 
onditions. We will start with the initial data.

In the Eulerian 
ase we have determined the physi
al setup by providing initial data for the

matter variables �̂ and w. This gave us energy density and velo
ity at ea
h radial position

r̂. In order to provide the same information in the Lagrangian 
ase it is not suÆ
ient to give

initial data in the form of �̂(x) and w(x) be
ause the meaning of the spatial 
oordinate x is

not determined at this stage. Indeed it 
an easily be seen that the system of equations (5.220)-

(5.224) is invariant under any transformation x ! �x(x) whi
h 
orresponds to a relabelling of

the 
uid elements. Consequently we also need to establish a relation between the Lagrangian


oordinate x and the areal radius r̂ on the initial sli
e. The initial data for r̂(x) serve this

purpose. Alternatively this additional requirement be
omes obvious if we 
onsider the stru
ture

of the system (5.220)-(5.224). These equations 
ontain the time derivatives of r̂, w,

^

N and

^

P .

In addition to the lapse fun
tion

^

� only one of these quantities is determined by the 
onstraint

equations (5.220), (5.221). The remaining three variables follow from the time evolution and

thus require the spe
i�
ation of initial data. In the perturbative formulation the ba
kground

fun
tions r(x), �(x), N(x) and �(x) follow from the solution of the TOV equations and we

pres
ribe initial data for the perturbations �, w and ��. The values of �N and �� are then


al
ulated from the 
onstraint equations (5.235) and (5.236). For this purpose we use an impli
it

se
ond order s
heme based on the �nite di�eren
ing given for these equations in appendix A.

The spe
i�
ation of boundary 
onditions, in parti
ular at the stellar surfa
e, turned out to be

the most problemati
 part in the Eulerian formulation of the dynami
 star. In 
ontrast the

boundary 
onditions are well de�ned in the Lagrangian 
ase. At the 
entre we demand

� = 0; (5.240)

w = 0; (5.241)

�N = 0: (5.242)

The �rst two 
onditions guarantee that the 
entre of the star does not move whi
h immediately

follows from the spheri
al symmetry and the third 
ondition avoids the appearan
e of a 
oni
al
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Figure 58: The sten
ils used for the �nite di�eren
ing of Eqs. (5.235)-(5.239).

singularity. At the surfa
e we require

�� = 0; (5.243)

^

�

2

= 1� 2

^

Nr̂; (5.244)

whi
h follows from the de�nition of the surfa
e and the mat
hing to an exterior S
hwarzs
hild

metri
. If K is the number of grid points used, the �nite di�eren
ing of the evolution equations

(5.235)-(5.239) results in 5K � 5 algebrai
 relations between the 5K fun
tion values. The

boundary 
onditions (5.240)-(5.244) provide the remaining 5 relations to determine the evolution

and no additional treatment of boundary values is required.

5.4.5 The �nite di�eren
ing of the equations

We numeri
ally solve the system of partial di�erential equations (5.235)-(5.239) by using an

impli
it se
ond order in spa
e and time �nite di�eren
ing s
heme. The parti
ular 
hoi
e of

sten
ils has been guided by the presen
e of derivatives in the individual di�erential equations.

This is illustrated in Fig. 58 where the grid points k and k + 1 are shown for the time levels n

and n+1. The �lled 
ir
les indi
ate grid points that have been used for the �nite di�eren
ing,

the 
rosses those points whi
h have not been used. The 
onstraint equations (5.235) and (5.236)


ontain spatial derivatives only. It is therefore suitable to use two neighbouring grid points on

the new time sli
e n + 1. In 
ontrast Eqs. (5.237) and (5.238) 
ontain time derivatives only

and we use two grid points at spatial position k + 1 on neighbouring time sli
es for the �nite

di�eren
ing. Both kinds of derivatives are present in Eq. (5.239) and we need to use all four

grid points as a 
onsequen
e. Fig. 58 also illustrates an extra option that has been in
luded

in the �nite di�eren
ing. In the 
ase of the Oppenheimer-Snyder dust 
ollapse it turns out

to be ne
essary to interpret the values of the energy density �

n

k

, ��

n

k

as 
ell averages and


orrespondingly use a staggered grid for these variables. This is indi
ated by the empty 
ir
les

in Fig. 58. In the �nite di�eren
ing equations we will therefore introdu
e a parameter � whi
h
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allows us to swit
h between a staggered and the \normal" grid for � and ��. The staggering,

however, is only needed for the dust 
ollapse and will not be used when we simulate neutron

stars.

The resulting �nite di�eren
e equations are listed in appendix A together with the additional

relations we use to 
al
ulate auxiliary fun
tions and derivatives of the ba
kground variables.

The parameter � will be zero in all 
ases ex
ept for the simulation of the Oppenheimer-Snyder

dust 
ollapse, where we will use the staggered grid for the energy density and set � = 1. Before

we turn our attention towards solving this system of algebrai
 equations, we need to 
omment

on some of its properties.

(1) If we use the staggered grid to 
al
ulate the energy density, the outer boundary


ondition (A.35) is only a formal 
ondition be
ause ��

K

de
ouples from the

remaining 5K�1 variables. In the analysis of the dust 
ollapse we will therefore

use the interior values ��

k

for k = 1; : : : ;K � 1 only.

(2) We also note that the �nite di�eren
e expression (A.25) for ��

;x

is only a �rst

order a

urate approximation if the staggered grid is used for the energy density.

This does not a�e
t the a

ura
y of the numeri
al s
heme, however, sin
e this

derivative appears in the form of the pressure gradient �P

;x

only in Eq. (5.239).

The only s
enario where we use the staggering is the dust 
ollapse, where the

pressure and thus its gradient vanish identi
ally.

(3) Finally we note that the �nite di�eren
ing s
heme used here slightly di�ers from

that used for the evolution of 
osmi
 strings in se
tion 4.4.3. The s
heme used

here was partly inspired by the work of S
hinder et al. (1988) and partly re-

sulted from attempts to eliminate numeri
al noise that we en
ountered during

the development of the 
ode. It turned out, however, that this noise originated

from the numeri
al ina

ura
y asso
iated with the r̂

3

behaviour of the variable

m̂ we dis
ussed above. We have no reason therefore to question the appli
ability

of the Crank-Ni
holson s
heme des
ribed in se
tion 2.3.6.

In order to solve the system of 5K non-linear algebrai
 relations we use the Newton-Raphson

method des
ribed in se
tion 2.3.5. The initial guess is given by the values on the previous time

sli
e and 
onvergen
e is typi
ally a
hieved after three iterations.

5.4.6 Testing the 
ode

In order to 
he
k the performan
e of the 
ode we subje
t it to three independent tests. As

in the Eulerian 
ase, we will 
ompare the numeri
al results with the approximative analyti
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solution obtained from the linearized equations of a dynami
 spheri
ally symmetri
 neutron star.

Se
ondly we will test the 
onvergen
e properties of the 
ode in the non-linear regime. Finally

we 
al
ulate the deviation of the numeri
al results from the analyti
 solution by Oppenheimer

and Snyder (1939) whi
h des
ribes the 
ollapse of a homogeneous dust sphere.

We start by testing the performan
e of the 
ode in the linear regime. In the Eulerian analysis

we have seen that the eigenmodes for stellar models with polytropi
 indi
es 
 > 2 lead to a

diverging energy density perturbation at the surfa
e and thus 
ould not be used for a time

evolution. We have seen, however, that this divergen
e results from a 
oordinate singularity

at the stellar surfa
e and the Lagrangian energy density perturbation is well behaved for any

polytropi
 index. It is tempting therefore to use a stellar model with a large polytropi
 index

to test the performan
e of the Lagrangian 
ode in the linear regime. We 
hoose a model

with polytropi
 exponent 
 = 3:0, polytropi
 fa
tor K = 2 � 10

5

km

�2

and 
entral density

�




= 2:2 � 10

15

g=
m

3

. This is the third model of Table 6 where we 
ompared our results of the

eigenmode frequen
ies with those of Kokkotas and Ruo� (2001).

In general we have a
hieved better performan
e with the Lagrangian 
ode if the outer boundary


ondition � = 0 is satis�ed exa
tly. In the remainder of the Lagrangian dis
ussion we will

therefore use the relaxation method des
ribed in se
tion 5.2.2 to 
al
ulate the TOV ba
kground.

Unless spe
i�ed otherwise we will use the res
aled 
oordinate y for this 
al
ulation and the time

evolution and thus set r

;x

= C.

The next step 
onsists in 
al
ulating the eigenmode pro�les for the variables �, w and ��. These

results enable us to spe
ify initial data and 
al
ulate the analyti
 solutions. In this 
ase the

initial perturbation of the star 
onsists in a displa
ement � of the 
uid elements 
orresponding

to the fundamental mode with a surfa
e amplitude of about 5 
m. The initial velo
ity is set

to zero and the energy density 
orresponding to this eigenmode follows from Eq. (5.217). The

remaining initial variables are 
al
ulated from the 
onstraint equations (5.235), (5.236). The

resulting data on the initial sli
e are then evolved in time a

ording to the method des
ribed in

the previous se
tion. The analyti
 solution for the fundamental variables �, w, �� is given by

�(t; x) = �

1

(x) 
os!t; (5.245)

w(t; x) = �w

1

(x) sin!t; (5.246)

�� = ��

1

(x) 
os!t; (5.247)
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Figure 59: The left panels show the time evolution of ��, � and w obtained for 1600 grid points.

The initial perturbation is given as the fundamental mode in the displa
ement ve
tor �. The

right panels show the deviation from the exa
t solution of the linearized equations.

where ! is the frequen
y derived from the eigenmode 
al
ulation. In Fig. 59 we show the nu-

meri
al results obtained for 1600 grid points together with their deviation from the harmoni


solutions. These results show that the 
ode reprodu
es the analyti
 solution with a relative a
-


ura
y of about 10

�4

. For presentation purposes the time evolution is shown up to t = 500 km

only. No signi�
ant loss of a

ura
y has been observed for longer evolutions.

We have also 
ompared the frequen
y spe
trum resulting from time evolutions with the 
orre-

sponding predi
tions by the eigenmode 
al
ulation. For this purpose we have used the same

stellar model as in the previous test as well as model 1 of Table 3 whi
h has a polytropi
 index


 = 1:75. In both 
ases the initial perturbation is given by the sum of the �rst ten eigenmodes
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Figure 60: Frequen
y spe
tra obtained for stellar models with polytropi
 indi
es 
 = 1:75 (left)

and 3.0 (right). The initial data 
onsists of a displa
ement � given by the sum of the �rst 10

eigenmodes. The verti
al bars indi
ate the frequen
ies predi
ted by the eigenmode 
al
ulations.

in the displa
ement �. The 
ombined amplitude is about 10 
m in both 
ases, so that the

deviation from the linear approximation should again be very small. In Fig. 60 we show the

Fourier spe
tra of the 
entral energy density perturbation ��(t; 0) obtained for time evolutions

over 1500 km using 600 grid points. The verti
al bars indi
ate the frequen
ies predi
ted for the

�rst 10 eigenmodes and 
oin
ide well with the peaks in the power spe
tra.

In order to test the performan
e of the 
ode in the non-linear regime we have performed a


onvergen
e analysis for an initial displa
ement with the pro�le of the se
ond eigenmode and

an amplitude of about 50 m for the stellar model with 
 = 3 and K = 2:0 � 10

5

km

�2

. In this

amplitude range non-linear e�e
ts are present, but sho
k formation is not yet expe
ted for ini-

tial data with suÆ
iently weak spatial variation. We have evolved these initial data using 400,

800 and 1600 grid points and have 
al
ulated the time dependent 
onvergen
e fa
tor a

ording

to the method des
ribed in se
tion 3.5.3. Sin
e the exa
t solution is not known, we use the

referen
e solution for 1600 grid points in its pla
e. The result obtained for the variables �, w,

�N , �� and �� is shown in Fig. 61 and demonstrates se
ond order 
onvergen
e throughout

the evolution.

Finally we have tested the 
ode with the analyti
 solution by Oppenheimer and Snyder (1939)

whi
h des
ribes the 
ollapse of a homogeneous spheri
ally symmetri
 dust 
loud. Petri
h et al.

(1986) have expressed this analyti
 solution in polar sli
ing 
ombined with radial or isotropi


gauge. Even though we are using a Lagrangian gauge 
ondition here, we 
an use their results

for a 
omparison with our numeri
al simulation.

In their 
al
ulation of the analyti
 solution Petri
h et al. use a Lagrangian 
oordinate � and

a time parameter � whi
h varies from �� to 0 as the dust sphere 
ollapses from initial radius

to r̂ = 0. On a given time sli
e t = 
onst, where t is the time 
oordinate de�ned by the polar
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Figure 61: The 
onvergen
e fa
tor for �, w, �N , �� and �� obtained for 400 and 800 grid

points. The referen
e solution has been 
al
ulated for 1600 grid points.

sli
ing 
ondition, � is given as a fun
tion of � by


os

�

2

= 
os

�

s

2

r


os�

s


os�

; (5.248)

where �

s

and �

s

are the values of � and � at the surfa
e of the dust 
loud. If we label the initial

sli
e by �

s

= ��, this equation implies that � = �� everywhere on the initial sli
e. At any

given time t the areal radius is then shown to be related to the 
oordinate � by

r̂ = 2M

sin�

sin

3

�

s

�

1� 
os

2

�

s

2

�


os�

s


os�

�

; (5.249)
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where M is the S
hwarzs
hild mass of the dust 
loud. If we 
onsider the spe
ial 
ase of this

equation at the surfa
e and on the initial sli
e we 
an 
al
ulate �

s

from

sin

2

�

s

=

2M

R

; (5.250)

where R is the initial radius of the dust sphere. For reasons that will be given below we will

identify the radial 
oordinate x with the areal radius of the initial lo
ation of the 
uid elements.

We 
an therefore set �

s

= �� and r̂ = x in Eq. (5.249) and use the result to 
al
ulate �(x)

on the initial sli
e. Sin
e both 
oordinates are 
omoving with the 
uid elements, this relation

between � and x remains valid at any time t. In order to 
al
ulate �(x) at a given time t we

still need to �nd the value �

s

. This is done by inverting the relation

t =M


os�

s

sin

3

�

s

n

(�

s

� sin �

s

) + 2 sin

2

�

s

h

�

s

� 2 tan�

s

tanh

�1

�

tan�

s


ot

�

s

2

�io

; (5.251)

for whi
h we use a Newton-Raphson method. On
e �

s

has been 
al
ulated, we 
an use Eq. (5.248)

to 
al
ulate �(x) on that time sli
e. The physi
al variables r̂, �̂,

^

� and

^

� then follow from

Eq. (5.249) and further relations by Petri
h et al. whi
h we write in the form

�̂ = 6

a

0

a

3

1

8�M

2

; (5.252)

^

� =


os

3

�� 
os

2

�




2


os�� 
os

2

�




2

; (5.253)

^

� = �

^

�




sin

�




2


os�� 
os

2

�




2

q


os

3

�� 
os

2

�




2

; (5.254)

where �




is the 
entral value of the lapse fun
tion and a

0

and a are given by

a

0

=

1

sin

3

�

s

; (5.255)

a = a

0

(1� 
os �): (5.256)

In pra
ti
e we spe
ify the initial energy density and radius of the dust sphere and set the velo
ity

to zero. The fun
tions

^

N and

^

� are then 
al
ulated from the 
onstraint equations and the total

mass of the sphere follows from the de�nition (5.219).

From the numeri
al point of view the dust 
ollapse is a spe
ial 
ase in several aspe
ts whi
h

restri
ts our 
hoi
e of the available options of the 
ode.
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Figure 62: The numeri
al simulation of the Oppenheimer-Snyder dust 
ollapse for a dust sphere

of 10 km radius and initial density 2 �10

�4

km

�2

. The left panels show the numeri
al results for

the radius r̂ and the energy density �̂, the right panels the deviation from the analyti
 solution.

(1) By de�nition the pressure vanishes in the dust sphere. As a result there is no

stati
 
on�guration analogous to the stati
 neutron star governed by the TOV

equations. We therefore need to use va
uum 
at spa
e as the ba
kground and

run the 
ode in the non-perturbative mode.

(2) The vanishing of the pressure also implies that the speed of sound is zero through-

out the dust sphere so that it 
annot be used to res
ale the radial 
oordinate

a

ording to Eq. (5.47). The radial 
oordinate x is therefore de�ned by the areal

radius of the initial positions of the 
uid elements and we use the 
ondition

r

;x

= 1 in the 
ode.

(3) The surfa
e of a neutron star with a polytropi
 equation of state is de�ned by the

vanishing of the energy density �̂ whi
h provided the outer boundary 
ondition

in the numeri
al evolution. For the dust sphere this relation is not valid any

more and the energy density is �nite at the outer boundary. The exa
t value,
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Figure 63: Same as Fig. 62 for the metri
 variables

^

� and

^

�.

however, is not known, so that we 
annot use it to derive an alternative boundary


ondition. The boundary 
ondition

^

P = 0 is trivially satis�ed in the 
ase of a

dust sphere and does not provide any extra information either. If we 
onsider

the stru
ture of equations (5.220)-(5.224), however, we 
an see that all spatial

derivatives of the energy density appear in the form of pressure gradients. These

terms are identi
ally zero in this 
ase and disappear from the equations. We 
an

therefore use the staggered grid for the energy density and thus eliminate the

need of a boundary 
ondition for �̂. For this purpose we set the parameter � to

1 in the evolution of the dust sphere.

In Figs. 62 and 63 we show the results obtained for a dust sphere with initial density �̂

0

=

2 � 10

�4

km

�2

and radius R

0

= 10 km whi
h 
orresponds to a total mass of M = 0:838 km. A

grid resolution of 800 points has been used for this 
al
ulation. The results demonstrate the

good a

ura
y with whi
h the 
ode reprodu
es the analyti
 solution. Near the surfa
e of the

dust sphere, however, the numeri
al error in
reases signi�
antly as the sphere approa
hes its

S
hwarzs
hild radius. We attribute this behaviour to the steep gradient of the lapse fun
tion
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near the surfa
e that arises in the late stages of the evolution.

This simulation also illustrates the singularity avoiding properties of the polar sli
ing 
ondition.

As the dust sphere 
ollapses towards its S
hwarzs
hild radius, the lapse fun
tion de
reases

towards zero and the evolution is pra
ti
ally frozen. This e�e
t, the so 
alled 
ollapse of the

lapse, is responsible for the apparent slow down of the 
ollapse of the radial fun
tion r that 
an

be seen in the upper left panel of Fig. 62. It is this property that makes polar sli
ing a popular


hoi
e for the numeri
al analysis of 1-dimensional gravitational 
ollapse.

5.5 Do sho
ks form at the surfa
e for low amplitude os
illa-

tions?

We will now address a question that impli
itly arose in the dis
ussion of the linearized equations

in the Eulerian formulation. We have seen in Eq. (5.133) that the linearized equations predi
t

a diverging ratio Æ�=� at the surfa
e. For polytropi
 indi
es 
 > 2 we know that the divergen
e

of Æ� is a result of the Taylor expansion used to relate the Eulerian energy density perturbation

to the Lagrangian one in Eq. (5.130) and thus a non-physi
al result. For polytropi
 exponents


 � 2, however, Eq. (5.130) represents a valid relation to �rst order in the perturbations, so

that the Eulerian density perturbation will indeed be large 
ompared with the ba
kground value

near the surfa
e. This behaviour raises the question whether non-linear e�e
ts will a�e
t the

evolution near the surfa
e and give rise to the formation of dis
ontinuities. From a di�erent

point of view one may 
onsider the speed of sound whi
h vanishes at the surfa
e for a polytropi


exponent 
 > 1 and the parti
le speed w whi
h is �nite be
ause of the movement of the stellar

surfa
e. Consequently the velo
ity of the 
uid elements will ex
eed the speed of sound and one

may again ask whether this leads to sho
k formation. We will investigate this by using the

exa
t treatment of the surfa
e provided by the Lagrangian 
ode.

For this purpose we 
onsider the neutron star model 3 of Table 3 and provide initial data in

the form of a displa
ement � 
orresponding to a single eigenmode. For reasonably low order

eigenmodes and amplitudes up to several metres we have not observed any signi�
ant deviation

from the expe
ted harmoni
 time dependen
e. For eigenmodes of very high order, however, this

pi
ture 
hanges. We illustrate this in the 
ase of an initial displa
ement of the 
uid elements


orresponding to a high order eigenmode (about 50) and an amplitude of about 1m at the

surfa
e. The high resolution of 3200 grid points has been used for this 
al
ulation to adequately

resolve the high order mode. We stress that this evolution is only possible be
ause of the high

resolution near the surfa
e provided by the res
aled variable y. In Fig. 64 we show snapshots
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Figure 64: The numeri
al evolution of the energy density perturbation �� as a fun
tion of y

obtained for an initial displa
ement 
orresponding to about the 50th eigenmode with amplitude

1m. Snapshots are shown at times t

1

: : : ; t

8

.

of the time evolution of the energy density perturbation at times t

1

= 0:0, t

2

= 0:5, t

3

= 1:0,

t

4

= 1:5, t

5

= 2:0, t

6

= 2:5, t

7

= 3:0 and t

8

= 3:1 km. We note that only the small radial range

28 km � y � 31:7 km is shown in the �gure. In terms of the areal radius this 
orresponds to

a range of about 120m below the surfa
e. We 
an see that for this small amplitude a steep

gradient forms near the surfa
e after about t = 3:1 km whi
h 
orresponds to less than two

os
illation periods of the eigenmode. This indi
ates the formation of a dis
ontinuity. At later

times than shown here the 
ode fails to 
onverge whi
h we attribute to the numeri
al noise


aused by the sho
k formation and the extreme sensitivity of the 
ode near the surfa
e of the

star. In order to demonstrate that this result is not merely due to numeri
al ina

ura
ies, we

have evolved the same initial data with the smaller amplitude of 1 
m. In Fig. 65 we show the

same snap shots for this evolution as in Fig. 64. In this 
ase we obtain harmoni
 time dependen
e

as expe
ted in the linear limit. By using eigenmodes with even higher order we have observed

sho
k formation at the surfa
e for smaller amplitudes. In view of the results for low order

modes where no signi�
ant non-linear e�e
ts are observed for similar amplitudes, we 
on
lude

that the magnitude of non-linear e�e
ts is not only determined by the size of the perturbations

relative to the ba
kground variables, but also by the length s
ale on whi
h the perturbations
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Figure 65: The same as Fig. 64 but for an amplitude of 1 
m.

vary signi�
antly. We �nally note that the surfa
e of a neutron star is too 
ompli
ated to be

a

urately des
ribed by the polytropi
 equation of state used for these evolutions. It is not 
lear

whether dis
ontinuities will form in the same way for more realisti
 des
riptions of neutron stars.

Nevertheless our results demonstrate that the surfa
e requires a 
areful numeri
al treatment.
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6 Con
lusions

In this work we have presented the appli
ation of di�erent numeri
al te
hniques to solve Ein-

stein's �eld equations. We have laid the foundation for our dis
ussion by des
ribing in detail

the ADM \3+1" and the 
hara
teristi
 Bondi-Sa
hs formulation of the �eld equations together

with various aspe
ts of numeri
al analysis.

In the framework of \3+1" formulations of the Einstein �eld equations the restri
tion to a �-

nite grid in numeri
al 
omputations results in diÆ
ulties 
on
erning the spe
i�
ation of outer

boundary 
onditions and the interpretation of gravitational waves. These problems are nat-

urally resolved in a 
hara
teristi
 formulation, but the foliation of spa
etime based on the


hara
teristi
 surfa
es may break down in regions of strong 
urvature due to the formation of


austi
s. The 
ombination of the two s
hemes in the framework of Cau
hy-
hara
teristi
 mat
h-

ing enables one to make use of the advantages of both methods while avoiding the respe
tive

drawba
ks. In this work we have 
ompleted the 
ylindri
ally symmetri
 stage of the Southamp-

ton Cau
hy-
hara
teristi
 mat
hing proje
t by providing a new long term stable CCM 
ode

in
luding both gravitational degrees of freedom. A Gero
h de
omposition of the 4-dimensional

spa
etime allows us to reformulate the problem in terms of the norm of the axial Killing ve
-

tor � and the Gero
h potential � on an asymptoti
ally 
at 3-dimensional quotient spa
etime.

These geometri
al �elds des
ribe the gravitational degrees of freedom in simple terms and ap-

pear to be a natural 
hoi
e of variables for the des
ription of a 
ylindri
ally symmetri
 va
uum

spa
etime. The 
onformal 
ompa
ti�
ation of the resulting 3-dimensional spa
etime allows us

to impose exa
t boundary 
onditions at null in�nity. In 
ontrast to the previous work we have

also applied the Gero
h de
omposition to the interior Cau
hy region and thus been able to use

the same variables throughout the numeri
al grid. This leads to a substantial simpli�
ation of

the interfa
e and the evolution equations and fa
ilitates a long term stable evolution with both

gravitational degrees of freedom present. The e�e
tiveness of the 
ode has been demonstrated

by reprodu
ing the analyti
 Weber-Wheeler solution and the va
uum spa
etime with two de-

grees of freedom due to Xanthopoulos. The 
ode has been shown to be se
ond order 
onvergent

over the dynami
ally relevant time intervals. Our results demonstrate the importan
e of a

\good" 
hoi
e of variables in order to obtain a stable, a

urate 
ode even in the 1-dimensional


ase. For higher dimensional problems the stru
ture of the null-geodesi
s will be mu
h more


ompli
ated be
ause of the angular dependen
e. As a 
onsequen
e the transformation between

the Cau
hy and the 
hara
teristi
 variables at the interfa
e will also be more 
ompli
ated and

thus more vulnerable to instabilities. In view of our results it seems preferable to sear
h for
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natural variables, su
h as the Gero
h variables in the 
ylindri
ally symmetri
 
ase, to des
ribe

the two regions rather than follow the \brute for
e" 
al
ulations whi
h arise for example from

a dire
t appli
ation of the ADM-formulation in the Cau
hy region.

Next we have derived a 
hara
teristi
 formulation of the equations governing a dynami
 
osmi


string in 
ylindri
al symmetry. A feature of the 
osmi
 string equations is that they admit

exponentially diverging unphysi
al solutions. By using the Gero
h de
omposition it is again

possible to reformulate the problem in terms of �elds whi
h des
ribe the string on an asymptot-

i
ally 
at 2+1-dimensional spa
etime and the two auxiliary �elds � and � . As well as avoiding

the need to introdu
e arti�
ial outgoing radiation boundary 
onditions the in
lusion of null

in�nity as part of the numeri
al grid has the advantage that we 
an enfor
e outer boundary


onditions for the string variables whi
h rule out the unphysi
al solutions. As spe
ial 
ases

of the dynami
 equations we also obtain the equations for a stati
 
osmi
 string in 
urved or

Minkowski spa
etime. These sets of equations have been solved by using a relaxation s
heme

in the stati
 
ases and an impli
it method for the dynami
 s
enario.

A 
onvergen
e analysis for all 
odes demonstrates 
lear se
ond order 
onvergen
e. The dynami



ode has also been shown to reprodu
e the results of the two exa
t va
uum solutions by Weber

& Wheeler and Xanthopoulos. Finally the dynami
 
ode reprodu
es the results for the stati



osmi
 string in that initial data 
orresponding to a stati
 solution do not 
hange signi�
antly

when evolved in time. For both the exa
t va
uum solutions and the stati
 initial data the 
ode

shows ex
ellent long term stability.

After demonstrating the reliability of the 
ode we have used it to analyse the intera
tion between

an initially stati
 
osmi
 string and a Weber-Wheeler type pulse of gravitational radiation. We

have found that the gravitational wave ex
ites the string and 
auses the string variables X

and P to os
illate. In terms of unphysi
al res
aled variables we �nd that the frequen
ies of

the os
illations are essentially independent of the strength of the 
oupling between string and

gravity des
ribed by � and of the width and amplitude of the Weber-Wheeler pulse. We have

also found that the frequen
y of X is independent of the relative 
oupling 
onstant � while

that of P is proportional to

p

�. When this result is translated ba
k into the physi
al units

we �nd that the frequen
y of the s
alar �eld is proportional to the mass of the s
alar �eld and

the frequen
y of the ve
tor �eld is proportional to the mass of the ve
tor �eld as predi
ted by

the linearized theory. This result is 
on�rmed by investigating two further s
enarios. Firstly

we 
onsider the evolution of stati
 initial data for the string 
oupled to the gravitational �eld,

but with a Gaussian perturbation to one of the string variables, and se
ondly we 
onsider the
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same s
enario but in a Minkowskian ba
kground with the gravitational �eld de
oupled. In both


ases we obtain the same relationship between the frequen
ies and the mass.

An interesting numeri
al result arising from the use of an impli
it numeri
al s
heme 
on
erns

the stru
ture of the interfa
e between the interior and the 
ompa
ti�ed outer region. In 
ontrast

to the rather 
ompli
ated interpolation te
hniques that were ne
essary to transform between

the Cau
hy and 
hara
teristi
 variables in the expli
it va
uum CCM-
ode, we have been able to

\lo
alise" the interfa
e in the impli
it s
heme by using two grid points for the spatial position

r = 1, one 
ontaining the variables of the inner region, one 
ontaining those used in the outer

region. The interfa
e then merely 
onsists in relating these variables and their derivatives by

using their de�nitions and applying the 
hain-rule. In our 
ase the resulting relations were

trivial and 
ould easily be in
orporated into the main evolution algorithm. We attribute this

substantial simpli�
ation to the simultaneous 
al
ulation in impli
it s
hemes of all fun
tion

values on the new time-sli
e. In expli
it s
hemes, on the other hand the 
al
ulation of the new

fun
tion values is normally subje
t to a 
ertain hierar
hi
al order.

In the �nal part of this work we have presented a new numeri
al approa
h whi
h enables us

to evolve radial os
illations of neutron stars over a large amplitude range with high a

ura
y.

In radial gauge and polar sli
ing the dynami
 star is des
ribed by two 
onstraint equations

for the metri
 and a quasi-linear system of two evolution equations for the matter variables.

The 
ru
ial step in our approa
h is to de
ompose the dynami
 variables into stati
 ba
kground


ontributions whi
h are determined by the Tolman-Oppenheimer-Volko� equations and time

dependent perturbations. We have used this de
omposition to rewrite the system of equations

in a perturbative form. We do, however, keep all terms of higher order in the perturbations

and thus obtain a formulation equivalent to the original set of equations. The motivation for

our approa
h is given by the fa
t that ba
kground terms (terms of zero order) are in general

present in the dynami
 equations. These terms 
an
el ea
h other analyti
ally by virtue of the

ba
kground equations. Numeri
ally, however, this is generally satis�ed up to a residual numeri-


al error only whi
h will 
onstitute a spurious sour
e term in the evolution of the perturbations

and 
ontaminate the numeri
al results. In order to avoid this e�e
t, we use the ba
kground

equations to remove all zero order terms from the perturbative equations. We thus ensure that

the numeri
al a

ura
y is determined by the perturbations instead of the stati
 ba
kground.

We have 
ompared the resulting perturbative 
ode with a \standard" non-perturbative method

by evolving the fundamental eigenmode of a dynami
ally stable neutron star using an amplitude

of several metres. Whereas the perturbative s
heme reprodu
es the expe
ted harmoni
 os
il-
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lations with high a

ura
y, the non-perturbative s
heme leads to an exponential de
ay of the


entral energy density perturbation after a few os
illations whi
h we attribute to the numeri
al


ontamination 
aused by the ba
kground terms.

Even though the perturbative 
ode performs well in the linear regime for a wide variety of

neutron star models, we have observed a spurious exponential growth of the physi
al variables

in the evolution of marginally stable neutron star models if we trun
ate the neutron star at a

suÆ
iently large density and thus omit the outer low density layers from the numeri
al evo-

lution. The need to trun
ate the neutron star at �nite densities arises from the o

urren
e of

negative energy densities near the surfa
e of the star due to numeri
al ina

ura
ies. In a purely

Eulerian formulation the outer grid boundary does not 
oin
ide with the surfa
e of the star in a

non-linear evolution. When the star shrinks inside the numeri
al grid negative energy densities

will o

ur be
ause the numeri
al evolution is not able to a

urately model the va
uum region

between the stellar surfa
e and the outer grid boundary. It is interesting to see that the surfa
e

represents a problemati
 area even in the 
omparatively simple linearized 
ase. For equations of

state with an asymptoti
 behaviour P � �




and 
 > 2 the Eulerian energy density perturbation

diverges at the surfa
e of the star. We have shown how this problem arises from the trans-

formation between Lagrangian and Eulerian perturbations and is not present in a Lagrangian

formulation.

In order to alleviate the surfa
e problem in the Eulerian 
ase in a simple manner we have used

a �xed boundary 
ondition by setting the radial velo
ity w = 0 at the outer grid boundary.

Furthermore we have trun
ated the outer layers of the neutron star, so that the resulting model


ontains 90% of the original mass. We have thus demonstrated se
ond order 
onvergen
e of the


ode in the non-linear regime and 
he
ked the 
onservation properties of the 
ode in the Cowling

approximation. We have �nally used the simpli�ed neutron star model to study the 
oupling

between eigenmodes due to non-linear e�e
ts. For this purpose we have provided initial data in

the form of an isolated eigenmode and quanti�ed the ex
itation of other modes in terms of the

inner produ
t, de�ned by the self-adjoined eigenvalue problem of the linearized 
ase, between

the non-linear data and the eigenmode solutions. The high a

ura
y of the perturbative s
heme

enables us to vary the amplitude of the initial data over a wide range 
orresponding to a maxi-

mum displa
ement of 
uid elements between several 
m and about 50m. For signi�
antly larger

amplitudes we observe the formation of steep gradients whi
h makes the a

urate measurement

of the eigenmode 
oeÆ
ients problemati
.

In our study we have provided initial data in the form of either of the �rst three eigenmodes

in the velo
ity �eld while the energy density perturbation has been set to zero. We have then
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measured the maximum 
oeÆ
ients for the �rst 10 or 15 eigenmodes. Our results 
learly show

the existen
e of two distin
t regimes. In the weakly non-linear regime with amplitudes up to

several metres all eigenmode 
oeÆ
ients in
rease quadrati
ally with the amplitude. If the or-

der of the initially ex
ited mode is j, we have also found that the 
oupling 
oeÆ
ients in the

weakly non-linear regime de
rease with in
reasing order of the eigenmodes starting with mode

2j. This de
rease 
an be approximated well with an inverse 
ubi
 power law. In the moderately

non-linear regime we have observed a di�erent behaviour of the modes. An initially present

mode j has been found to 
ouple more eÆ
iently to the eigenmodes n � j, where n = 2, 3, 4

and so on. For these modes we 
an model the resulting eigenmode 
oeÆ
ients with a sum of a

quadrati
 power law and a power law of index n with good a

ura
y. The remaining eigenmode


oeÆ
ients also show a steeper in
rease with amplitude than in the weakly non-linear regime,

but the power law 
ontribution with exponent larger than two is generally too small to fa
ilitate

an a

urate measurement.

Finally we have developed a fully non-linear Lagrangian 
ode for the evolution of spheri
ally

symmetri
 dynami
 neutron stars. We have demonstrated how the numeri
al diÆ
ulties en
oun-

tered in the Eulerian 
ase are resolved in the Lagrangian formulation. The 
ode has been shown

to a

urately reprodu
e the analyti
 solution of the linearized equations for low amplitudes and

the analyti
 solution of Oppenheimer and Snyder des
ribing the 
ollapse of a spheri
ally sym-

metri
 homogeneous dust sphere. We have furthermore demonstrated se
ond order 
onvergen
e

of the 
ode. The 
ode has been used to investigate non-linear e�e
ts near the stellar surfa
e

arising in low amplitude os
illations. Whereas we do not observe a signi�
ant deviation from

the linear regime for low order eigenmodes and amplitudes of several metres, high order eigen-

modes of the order of 50 with amplitudes of 1m lead to the formation of steep gradients near

the surfa
e due to non-linear e�e
ts. We 
on
lude that the magnitude of non-linear e�e
ts is

not only determined by the relative size of the perturbations with respe
t to the ba
kground

but also on the length s
ale on whi
h the perturbations vary signi�
antly. The high resolution

at the surfa
e required for these evolutions has been obtained by the use of a res
aled radial


oordinate whi
h naturally takes into a

ount the vanishing of the speed of sound at the surfa
e

and fa
ilitates a formulation of the equations in terms of whi
h the slopes of the 
hara
teristi
s

are by and large independent of the position in the star.
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A The �nite di�eren
ing of the

Lagrangian equations

We use an impli
it se
ond order in spa
e and time �nite di�eren
ing s
heme for the numer-

i
al evolution of the fully non-linear perturbative Lagrangian equations (5.235)-(5.239). The

parameter � enables us to use the energy density �, �� on the \normal" grid (� = 0) or the

staggered grid (� = 1). The staggering, however, a�e
ts the energy density only. It is therefore

suitable to des
ribe the �nite di�eren
ing for a general fun
tion f , �f and the energy density

�, ��. The fun
tion f always represents the ba
kground variables r, N and �. Similarly �f

stands for the perturbations �, w, �N and ��.

In that notation Eqs. (5.235) and (5.236) are 
onverted into �nite di�eren
es by using

f =

1

2

(f

k

+ f

k+1

) ; (A.1)

� =

1

2

[(1 + �)�

k

+ (1� �)�

k+1

℄ ; (A.2)

�f =

1

2

�

�f

n+1

k

+�f

n+1

k+1

�

; (A.3)

�� =

1

2

�

(1 + �)��

n+1

k

+ (1� �)��

n+1

k+1

�

; (A.4)

�f

;x

=

1

�x

�

�f

n+1

k+1

��f

n+1

k

�

: (A.5)

In order to 
al
ulate the derivatives of the ba
kground variables we use the TOV equations to

express them in terms of undi�erentiated variables

N

;x

= �2

N

r

+ 4��; (A.6)

�

;x

=

�

�

(N + 4�rP ) : (A.7)
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The remaining auxiliary variables follow from the de�nitions

r

x

=

(

1 if x = r

C if x = y,

(A.8)

� = 1� 2Nr; (A.9)

�� = �2(

^

N� + r�N); (A.10)

P = K�
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^
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^

P � P; (A.13)

C
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�1

: (A.14)

The �nite di�eren
e expressions used for Eqs. (5.237) and (5.238) are given by

f = f
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; (A.15)
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where the total pressure

^

P is de�ned by Eq. (A.12). Finally we �nite di�eren
e Eq. (5.239)

a

ording to

f =

1

2

(f

k

+ f

k+1

) ; (A.20)
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The auxiliary variables are again de�ned by Eqs. (A.8)-(A.14). We also use the relations
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The last relation is needed for the Newton-Raphson method we use to solve the resulting system

of non-linear algebrai
 equations (
f. se
tion 2.3.5).

These �nite di�eren
e equations result in 5K � 5 algebrai
 relations, where K is the total

number of grid points. In order to determine the 5K variables �

k

, w

k

, �N

k

, ��

k

and ��

k

we
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also need the 5 boundary 
onditions (5.240)-(5.244) whi
h we now write as

�

1

= 0; (A.32)

w

1

= 0; (A.33)

�N

1

= 0; (A.34)

��

K

= 0; (A.35)

^

�

K

�

q

1� 2

^

N

K

r̂

K

= 0: (A.36)
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