Numerical simulations of astrophysical BHBs

Ulrich Sperhake

California Institute of Technology

22nd Spring School on Particles and Fields Taichung, Taiwan, Mar 31st – Apr 3rd 2009

- Motivation
- Introduction
- Ingredients of numerical relativity
- Results
 A brief history of BH simulations
 Results following the recent breakthrough
- Summary

1. Black holes in physics

Black Holes predicted by GR

- Black holes predicted by Einstein's theory of relativity
- Term "Black hole" by John A. Wheeler 1960s
- Vacuum solutions with a singularity
- For a long time: mathematical curiosity
 valuable insight into theory
 but real objects in the universe?
- That picture has changed dramatically!

How to characterize a black hole?

- Consider light cones
- Outgoing, ingoing light
- Calculate surface area of outgoing light
- Expansion:=Rate of change of that area
- Apparent horizon:=
 Outermost surface with zero expansion
- "Light cones tip over" due to curvature

Black Holes in astrophysics

Black holes are important in astrophysics

- Black holes found at centers of galaxies
- Structure of galaxies
- Important sources of electromagnetic radiation
- Structure formation in the early universe

Fundamental physics of black holes

Allow for unprecedented tests of fundamental physics
 Strongest sources of Gravitational Waves (GWs)
 Test alternative theories of gravity
 No-hair theorem of GR
 Production in Accelerators

Gravitational wave physics

- Accelerating bodies produce GWs
- Weber 1960s
 - Bar detector
 - Claimed detection probably not real
- GWs displace particles
- GW observatories: GEO600, LIGO, TAMA, VIRGO Bar detectors

Space interferometer LISA

9

Pulsar timing arrays

The big picture

2. General relativity

The framework: General Relativity

- Curvature generates acceleration
 "geodesic deviation"
 No "force" !!
- Description of geometry
 Metric $\mathcal{G}_{\alpha\beta}$ Connection $\Gamma^{\alpha}_{\beta\gamma}$ Riemann Tensor $R^{\alpha}_{\beta\gamma\delta}$

The metric defines everything

Christoffel connection

$$\Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} g^{\alpha\mu} \left(\partial_{\beta} g_{\gamma\mu} + \partial_{\gamma} g_{\mu\beta} - \partial_{\mu} g_{\beta\gamma} \right)$$

Covariant derivative

$$\nabla_{\alpha}T^{\beta}{}_{\gamma} = \partial_{\alpha}T^{\beta}{}_{\gamma} + \Gamma^{\beta}_{\mu\alpha}T^{\mu}{}_{\gamma} - \Gamma^{\mu}_{\gamma\alpha}T^{\beta}{}_{\mu}$$

Riemann Tensor

$$R^{\alpha}{}_{\beta\gamma\delta} = \partial_{\gamma}\Gamma^{\alpha}_{\beta\delta} - \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma} + \Gamma^{\alpha}_{\mu\gamma}\Gamma^{\mu}_{\beta\delta} - \Gamma^{\alpha}_{\mu\delta}\Gamma^{\mu}_{\beta\gamma}$$

- Geodesic deviation
- Parallel transport

How to get the metric?

- The metric must obey the Einstein Equations
- Ricci-Tensor, Einstein-Tensor, Matter tensor

$$R_{\alpha\beta} = R^{\mu}{}_{\alpha\mu\beta}$$
$$G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R^{\mu}{}_{\mu}$$

 $T_{\alpha\beta}$ "Matter"

Einstein Equations

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta}$$

Solutions: Easy!

- ► Take metric
- **Calculate** $G_{\alpha\beta}$
- Use that as matter tensor
- Physically meaningful solutions: Difficult!

The Einstein equations in vacuum

- Spacetime tells matter how to move, matter tells spacetime how to curve"
- Field equations: $R_{\alpha\beta} = 0$ Second order PDEs for the metric components Invariant under coordinate (gauge) transformations
- System of equations extremely complex: Pile of paper!

Analytic solutions: Minkowski, Schwarzschild, Kerr, Robertson-Walker,...

Numerical methods necessary for general scenarios!

3. The basics of numerical relativity

A list of tasks

- Target: Predict time evolution of BBH in GR
- Einstein equations: Cast as evolution system
 - Choose specific formulation
 - Discretize for Computer
- Choose coordinate conditions: Gauge
- Fix technical aspects: Mesh-refinement / spectral domains
 - Excision
 - Parallelization
 - Find large computer
- Construct realistic initial data
- Start evolution and wait...
- Extract physics from the data Gourgoulhon gr-qc/0703035

3.1. The Einstein equations

Split spacetime

- GR: "Space and time exist as Spacetime"
- NR: Split spacetime

 Characteristic / null split using Lightrays (not this lecture)
 "3+1" split: most common approach

Arnowitt, Deser, Misner '62, York '79

Foliation

Let (M,g) be a spacetime with coordinates x^{α}

Introduce scalar field ton M with gradient dt that satisfies $\langle dt, dt \rangle < 0$

"The hypersurfaces t = const are spacelike"

Unit normal field

Unit normal field

For any given hypersurface Σ_t the gradient dt has vanishing inner product with vectors tangential to Σ_t .

$$\Rightarrow n = \frac{\mathrm{d}t}{\sqrt{-\left\langle \mathrm{d}t, \mathrm{d}t \right\rangle}}$$

• Adapted coordinates (t, x^i)

Tangential vector

 ∂_t is the vector along The curves $x^i = \text{const}$

is the unit normal field

In general ∂_t is NOT normal to Σ_t !!

Unit normal field

Lapse function

The norm of dt is important and has its own name: lapse $\alpha = \sqrt{-\langle \mathrm{d}t, \mathrm{d}t \rangle}$

The lapse measures the advance of proper timealong n

Shift vector

The vector

 $\beta := \partial_t - \alpha n$ Is tangent to Σ_t

22

The shift vector measures How points with constant χ^i on different slices are related Lapse and shift represent coordinate choices

Projections

- Spatial projection operator $\perp^{\mu}{}_{\alpha} = \delta^{\mu}{}_{\alpha} + n^{\mu}n_{\alpha}$ For any given tensor $T^{\lambda}{}_{\mu\nu}$ we obtain the spatial projection $(\perp T)^{\alpha}{}_{\beta\gamma} = \perp^{\alpha}{}_{\lambda} \perp^{\mu}{}_{\beta} \perp^{\nu}{}_{\gamma} T^{\lambda}{}_{\mu\nu}$
- Time projection $T^{\lambda}{}_{\mu\nu}n_{\lambda}n^{\mu}n^{\nu}$
- Mixed projection For example: $\perp^{\mu}{}_{\beta} T^{\lambda}{}_{\mu\nu} n_{\lambda} n^{\nu}$

First fundamental form: 3-metric

- View the hypersurface Σ_t as a manifold in its own right
- It has its own "3-metric" $\gamma_{\alpha\beta}$
- The components are $\gamma_{\alpha\beta} = \perp_{\alpha\beta}$ Raising and lowering of indices with $\gamma_{\alpha\beta}$
- The complete machinery of
 - Connection
 - Riemann tensor
 - Ricci tensor

Works in 3 dimensions with $\gamma_{lphaeta}$ as in 4 dimensions with $g_{lphaeta}$

For each of these we have a 3-dim. and a 4-dim. version

Second fundamental form: Extrinsic curvature

- An embedded hypersurface Σ_t has two types of curvatures
 - 1) Intrinsic curvature: Riemann tensor of $\gamma_{\alpha\beta}$
 - 2) Extrinsic curvature $K_{\alpha\beta}$

The embedding of Σ_t in the 4-dim spacetime (M,g)

- Interpretations of extr. curvature:
 - > Change of n_{α} :

$$K_{\alpha\beta} = -\nabla_{\beta} n_{\alpha} - n_{\beta} n^{\mu} \nabla_{\mu} n_{\alpha}$$

➤ Evolution of 3-metric:

$$\mathbf{K} = -\frac{1}{2}L_{\mathbf{n}}\boldsymbol{\gamma}$$

Projections of Riemann

- How is the 4-dim. Curvature related to the 3-dim. intrinsic and extrinsic curvature?
- Answer: Project Riemann tensor
- Gauss Equation

 $\perp^{\mu}{}_{\alpha} \perp^{\nu}{}_{\beta} \perp^{\gamma}{}_{\rho} \perp^{\sigma}{}_{\delta} {}^{4}R^{\rho}{}_{\sigma\mu\nu} = R^{\gamma}{}_{\delta\alpha\beta} + K^{\gamma}{}_{\alpha}K_{\delta\beta} - K^{\gamma}{}_{\beta}K_{\alpha\delta}$

Gauss-Codacci Equation

 $\perp^{\mu}{}_{\alpha} \perp^{\nu}{}_{\beta} \perp^{\gamma}{}_{\rho} n^{\sigma} {}^{4}R^{\rho}{}_{\sigma\mu\nu} = D_{\beta}K^{\gamma}{}_{\alpha} - D_{\alpha}K^{\gamma}{}_{\beta}$

Fully mixed projection

$$\perp_{\rho\alpha} \perp^{\mu}{}_{\beta} n^{\sigma} n^{\nu} {}^{4}R^{\rho}{}_{\sigma\mu\nu} = L_{\mathbf{n}}K_{\alpha\beta} + \frac{1}{\alpha}D_{\alpha}D_{\beta}\alpha + K_{\alpha\mu}K^{\mu}{}_{\beta}$$

Projections of the energy momentum tensor

Energy momentum tensor $T_{\alpha\beta}$ defined such that $E := T_{\mu\nu} n^{\mu} n^{\nu}$ Energy density for observer with $u^{\alpha} = n^{\alpha}$ $p_{\alpha} := -T_{\mu\nu} n^{\mu} \perp^{\nu} \alpha$ Momentum density $S_{\alpha\beta} := T_{\mu\nu} \perp^{\mu}{}_{\alpha} \perp^{\nu}{}_{\beta}$ Matter stress tensor $S(e, \hat{e}) :=$ Force in direction of *e* acting on surface normal to \hat{e}

• With that:
$$T_{\alpha\beta} = S_{\alpha\beta} + n_{\alpha}p_{\beta} + p_{\alpha}n_{\beta} + En_{\alpha}n_{\beta}$$

$$T := T^{\mu}{}_{\mu} = g^{\mu\nu}S_{\mu\nu} + g^{\mu\nu}(n_{\alpha}p_{\beta} + p_{\alpha}n_{\beta}) + En^{\mu}n_{\mu} = S - E$$

Projections of the Einstein equations

- Einstein equations: $R_{\alpha\beta} \frac{1}{2}g_{\alpha\beta} = 8\pi T_{\alpha\beta}$
- Projections follow from Gauss-Codacci and Mainardi
- Notes:

▶ In 3-dim. objects we can ignore time components

- \Rightarrow Spatial indices i = 1, 2, 3
- \blacktriangleright 3-dim. Covariant derivative: D_i
- With matter there would be additional terms!

The ADM equations

Time projection
$$R_{\alpha\beta} n^{\alpha} n^{\beta} = 0$$
 $\Rightarrow R + K^2 - K_{ij} K^{ij} = 16E$ Hamiltonian constraint
 Mixed projection $\perp^{\mu}{}_{\alpha} R_{\mu\beta} n^{\beta} = 0$
 $\Rightarrow -D^i K + D_j K^{ij} = 8\pi p^i$ Momentum constraints

Spatial projection
$$\perp^{\mu}_{\alpha} \perp^{\nu}_{\beta} R_{\mu\nu} = 0$$

$$\Rightarrow (\partial_t - L_\beta) K_{ij} = -D_i D_j \alpha + \alpha [R_{ij} - 2K_{im} K^m_j + K_{ij} K] + 4\pi [(S - E)\gamma_{ij}] - 2S_{ij}$$

Evolution equations

$$\nabla_{\mu}T^{\mu\alpha} = 0$$

The structure of the ADM equations

- Constraints:
 - They do not contain time derivatives
 - ► They must be satisfied on each slice Σ_t
 - ▶ The Bianchi identities propagate the constraints:
 - If they are satisfied initially, they are always satisfied
- Evolution equations:
 - Commonly written as first order system

$$(\partial_{t} - L_{\beta})\gamma_{ij} = -2\alpha K_{ij}$$

$$(\partial_{t} - L_{\beta})K_{ij} = -D_{i}D_{j}\alpha + \alpha [R_{ij} - 2K_{im}K^{m}_{j} + K_{ij}K]$$

$$+ 4\pi [(S - E)\gamma_{ij}] - 2S_{ij}$$

Equations say nothing about lapse α and shift β !

The ADM equations as an initial value proble

• Entwicklungsgleichungen (from now on vacuum) $(\partial_t - L_\beta)\gamma_{ij} = -2\alpha K_{ij}$ $(\partial_t - L_\beta)K_{ij} = -D_i D_j \alpha + \alpha [R_{ij} - 2K_{im}K^m_j + K_{ij}K]$

31

Alternatives to the ADM equations

- Unfortunately the ADM eqs. do not seem to work in NR !! Weak hyperbolicity: Nearby initial data can diverge From each other super-exponentially
- Many alternative formulations have been suggested
- Two successful families so far
 - ADM based formulations: BSSN Shibata & Nakamura '95, Baumgarte & Shapiro '99
 - Generalized harmonic formulations
 Charmon Druck at 202 Confined to 204 Drate rives 204
 - Choque-Bruhat '62, Garfinkle '04, Pretorius '05

BSSN

 \Leftrightarrow

One can easily change variables. E.g. wave equation:

$$\partial_{tt} u - c^2 \partial_{xx} u = 0$$

$$\partial_t F - c^2 \partial_x G = 0$$

$$\wedge \quad \partial_x F - \partial_t G = 0$$

BSSN: rearrange degrees of freedom

Shibata, Nakamura '95, Baumgarte, Shapiro '99

The BSSN equations

$$\begin{split} ds^{2} &= -\alpha^{2} dt^{2} + \gamma_{ij} (dx^{i} + \beta^{i} dt) (dx^{j} + \beta^{j} dt) \\ \phi &= \frac{1}{12} \ln \gamma \qquad \hat{\gamma}_{ij} = e^{-4\phi} \gamma_{ij} \\ K &= \gamma_{ij} K^{ij} \qquad \hat{A}_{ij} = e^{-4\phi} \left(K_{ij} - \frac{1}{3} \gamma_{ij} K \right) \\ \hat{\Gamma}^{i} &= \gamma^{ij} \hat{\Gamma}^{i}_{jk} = -\partial_{j} \hat{\gamma}^{ij} \end{split}$$
$$(\partial_{t} - \mathcal{L}_{\beta}) \hat{\gamma}_{ij} &= -2\alpha \hat{A}_{ij} \\ (\partial_{t} - \mathcal{L}_{\beta}) \phi &= -\frac{1}{6} \alpha K \\ (\partial_{t} - \mathcal{L}_{\beta}) \hat{A}_{ij} &= e^{-4\phi} \left(-D_{i} D_{j} \alpha + \alpha R_{ij} \right)^{\text{TF}} + \alpha (K \hat{A}_{ij} - 2 \hat{A}_{ik} \hat{A}^{k}_{j}) \\ (\partial_{t} - \mathcal{L}_{\beta}) K &= -D^{i} D_{i} \alpha + \alpha \left(\hat{A}_{ij} \hat{A}^{ij} + \frac{1}{3} K^{2} \right) \\ \partial_{t} \hat{\Gamma}^{i} &= 2\alpha \left(\hat{\Gamma}^{i}_{jk} \hat{A}^{jk} + 6 \hat{A}^{ij} \partial_{j} \phi - \frac{2}{3} \hat{\gamma}^{ij} \partial_{j} K \right) - 2 \hat{A}^{ij} \partial_{j} \alpha + \hat{\gamma}^{jk} \partial_{j} \partial_{k} \\ &+ \frac{1}{3} \hat{\gamma}^{ij} \partial_{j} \partial_{k} \beta^{k} + \beta^{j} \partial_{j} \hat{\Gamma}^{i} + \frac{2}{3} \hat{\Gamma}^{i} \partial_{j} \beta^{j} \quad - (\chi + \frac{2}{3}) \left(\hat{\Gamma}^{i} - \hat{\gamma}^{jk} \hat{\Gamma}^{i}_{jk} \right) \end{split}$$

Yo et al. (2002)

Bi

 $\partial_l \beta^l$

Generalized harmonic (GHG)

- Harmonic gauge: choose coordinates so that $\nabla_{\mu} \nabla^{\mu} x^{\alpha} = 0$
- 4-dim. Version of Einstein equations $R_{\alpha\beta} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\partial_{\nu}g_{\alpha\beta} + ...$ (no second derivatives!!) Principal part of wave equation
- Generalized harmonic gauge: $H_{\alpha} := g_{\alpha\nu} \nabla_{\mu} \nabla^{\mu} x^{\nu}$

$$\Rightarrow R_{\alpha\beta} = -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \partial_{\nu} g_{\alpha\beta} + \dots - \frac{1}{2} \left(\partial_{\alpha} H_{\beta} + \partial_{\beta} H_{\alpha} \right)$$

Still principal part of wave equation!!!

The gauge in GHG

- Relation between H_{α} and lapse α and shift β^{i} : $H_{\mu}n^{\mu} = -K - \frac{1}{\alpha^{2}} \left(\partial_{0}\alpha - \beta^{i} \partial_{i}\alpha \right)$ $\pm^{i}_{\mu} H^{\mu} = \frac{1}{\alpha} \gamma^{ik} \partial_{k}\alpha + \frac{1}{\alpha^{2}} \left(\partial_{0}\beta^{i} - \beta^{k} \partial_{k}\beta^{i} \right) - \gamma^{mn} \Gamma_{mn}^{i}$
- Auxiliary constraint

$$C_{\gamma} := H_{\gamma} - \Gamma^{\mu}_{\mu\gamma} + g^{\mu\nu} \partial_{\mu} g_{\nu\gamma}$$

Requires constraint damping

Gundlach et al. 2005
3.2. Gauge choices

The gauge freedom

- Solution Remember: Einstein equations say nothing about α , β^{i}
- Any choice of lapse and shift gives a solution
- This represents the coordinate freedom of GR
- Physics do not depend on α, βⁱ So why bother?
- Avoid coordinate singularities!
- Stop the code from running into the physical singularity
- No full-proof recipe, but
 - Singularity avoiding slicing
 - Use shift to avoid coordinate stretching

- Target: Avoid singularities and instabilities
- Methods: Geometric ideas, mathematical structure of equations

Maximal slicing, min.distortion shift Smarr, York '78 Harmonic coords. Choquet-Bruhat '62 Analytic studies

- Target: Avoid singularities and instabilities
- Methods: Geometric ideas, mathematical structure of equations

Harmonic coords. Choquet-Bruhat '62 Analytic studies

- Target: Avoid singularities and instabilities
- Methods: Geometric ideas, mathematical structure of equations

Harmonic coords. Choquet-Bruhat '62 Analytic studies

- Target: Avoid singularities and instabilities
- Methods: Geometric ideas, mathematical structure of equations

- Target: Avoid singularities and instabilities
- Methods: Geometric ideas, mathematical structure of equations

3.3. Initial data

Initial data problem

Two problems: Constraints, realistic data

• York-Lichnerowicz split $\gamma_{ij} = \psi^4 \widetilde{\gamma_{ij}}$

$$K_{ij} = A_{ij} + \frac{1}{3}\gamma_{ij}K$$

Rearrange degrees of freedom

- Conformal transverse traceless
 Physical transverse traceless
 Thin sandwich
 York, Lichnerowicz
 O'Murchadha, York
 Wilson, Mathews; York
- Conformal flatness: Kerr is NOT conformally flat!
 Non-physical GWs: problematic for high energy collisions!

2 families of initial data

- Generalized analytic solutions: Isotropic Schwarzschild: $ds^2 = -dt^2 + \left(1 + \frac{M}{2r}\right)^4 \left(dr^2 + r^2 d\Omega^2\right)$
 - \Rightarrow Time-symmetric, N-holes:Brill-Lindquist, Misner (1960s) \Rightarrow Spin, Momenta:Bowen, York (1980) \Rightarrow PuncturesBrandt, Brügmann (1997)
- Excision Data: IH boundary conditions on excision surface Meudon group; Cook, Pfeiffer; Ansorg
- Quasi-circular:

 Effective potential
 PN parameters
 helical Killing Vektor

3.4. Mesh refinement

Mesh-refinement

- 3 Length scales: BH $\approx 1M$ Wavelength $\approx 10M$ Wave zone $\approx 100M$
- Mesh Refinement!
- Choptuik '93 AMR, Critical phenomena
- Stretch coords.: Fish-eye Lazarus, AEI, UTB
- FMR, Moving boxes: Berger-Oliger

BAM Brügmann'96 Carpet Schnetter et.al.'03

Mesh-refinement

AMR: Control resolution via curvature

Paramesh: MacNeice et.al.'00, Goddard

Modified Berger-Oliger: Pretorius, Choptuik '05

SAMRAI: OpenGR UT Austin

 Refinement boundaries: reflections, stability
 Tapered boundaries
 Lehner, Liebling, Reula '05

3.5. Singularity treatment

Singularities: Excision

- Cosmic censorship: horizon is causal boundary
- Unruh '84 cited in Thornburg '87
- Grand Challenge: Causale differencing
- Simple Excision" Alcubierre, Brügmann '01
- Oynamic "moving" excision
 - Pitt-PSU-Texas
 - PSU-Maya
 - Pretorius
 - LEAN (U.S.'06)
- Combined with "Dual coordinate frame" Caltech-Cornell
- Mathematic properties: Wealth of literature

Singularities: Excision

- Cosmic censorship: horizon is causal boundary
- Unruh '84 cited in Thornburg '87
- Grand Challenge: Causale differencing
- Simple Excision" Alcubierre, Brügmann '01
- Oynamic "moving" excision
 - Pitt-PSU-Texas
 - PSU-Maya
 - Pretorius
 - LEAN (U.S.'06)
- Combined with "Dual coordinate frame" Caltech-Cornell
- Mathematic properties: Wealth of literature

4. Extracting physics

Basic assumptions

- Extracting physics in NR is non-trivial !!
- Newtonian quantities are not always well-defined !!
- We assume that the ADM variables

Lapse	α
Shift	β^{i}
3-metric	γ _{ij}
Extrinsic curvature	K_{ii}

are given on each hypersurface Σ_t

Even when using other formulations, the ADM variables are straightforward to calculate

Global quantities

ADM mass: Global energy of the spacetime

$$M_{\rm ADM} = \frac{1}{16\pi} \lim_{r \to \infty} \int_{S_r} \sqrt{\gamma} \gamma^{ij} \gamma^{kl} \left(\gamma_{ik,j} - \gamma_{ij,k} \right) dS_l$$

Total angular momentum of the spacetime

$$P_{i} = \frac{1}{8\pi} \lim_{r \to \infty} \int_{S_{r}} \sqrt{\gamma} \left(K^{m}{}_{i} - \delta^{m}{}_{i}K \right) dS_{m}$$
$$J_{i} = \frac{1}{8\pi} \varepsilon_{i \mathbb{K}}^{m} \lim_{r \to \infty} \int_{S_{r}} \sqrt{\gamma} x^{\mathbb{K}} \left(K^{n}{}_{m} - \delta^{n}{}_{m}K \right) dS_{n}$$

By construction all of these are time-independent !!

Local quantities

- Often impossible to define !!
- Isolated horizon framework Ashtekar and coworkers
 - Calculate apparent horizon
 - irreducible mass, momenta associated with horizon

$$M_{\rm irr} = \sqrt{\frac{A_{\rm AH}}{16\pi}}$$

Total BH mass Christodoulou

$$M^{2} = M_{\rm irr}^{2} + \frac{S^{2}}{4M_{\rm irr}^{2}} + P^{2}$$

Binding energy of a binary: $E_{\rm b} = M_{\rm ADM} - M_1 - M_2$

Gravitational waves

Most important result: Emitted gravitational waves (GWs)

Newman-Penrose scalar

$$\Psi_4 = C_{\alpha\beta\gamma\delta} n^{\alpha} \overline{m}^{\beta} n^{\gamma} \overline{m}^{\delta}$$

Complex \Rightarrow 2 free functions

- GWs allow us to measure
 - **Radiated energy** E_{rad}
 - **Radiated momenta** P_{rad}, J_{rad}
 - Angular dependence of radiation
 - ▶ Predicted strain h_+ , h_{\times}

Angular dependence

Waves are normally extracted at fixed radius r_{ex} $\Rightarrow \Psi_4 = \Psi_4(t, \theta, \phi)$

 $\theta,\, \varphi\,$ are viewed from the source frame !!

Decompose angular dependence

$$\Psi_{4} = \sum_{\ell m} \psi_{\ell m}(t) Y_{\ell m}^{-2}(\theta, \phi)$$

$$\blacktriangleright \text{ Modes } \Psi_{4}(t) = A_{\ell m}(t) e^{i\phi(t)}$$

$$\blacktriangleright \text{ Spin-weighted spherical harmonics}$$

5. A brief history

A brief history of BH simulations

- Pioneers:Hahn, Lindquist '60s, Eppley, Smarr et.al. '70s Grand Challenge: First 3D Code Anninos et.al. '90s Further attempts: Bona & Massó, Pitt-PSU-Texas, ... AEI-Potsdam Alcubierre et al. PSU: first orbit Brügmann et al. '04 Codes unstable Breakthrough: Pretorius '05 "GHG"
 - UTB, Goddard '05 "Moving Punctures"
- Currently: ≈10 codes, a.o. BAM Brügmann LEAN Sperhake '07

Animations

- Lean Code representative for other codes
- Extrinsic curvature trK
- Apparent horizon

Animations

• Re[Ψ_4]

Animations

Event horizon of binary inspiral and merger BAM

Thanks to Marcus Thierfelder

7. Results on black-hole binaries

Free parameters of BH binaries

- Total mass M_{ADM}
 - > Relevant for detection: Frequencies depend on M_{ADM}
 - Not relevant for source modeling: trivial rescaling

• Mass ratio
$$q = \frac{M_1}{M_2}$$
, $\eta = \frac{M_1 M_2}{(M_1 + M_2)^2}$
• Spin \vec{S}_1 , \vec{S}_2

- Initial parameters
 - **•** Binding energy $E_{\rm b}$ Separation
 - Orbital angular momentum L

Eccentricty

Alternatively: frequency, eccentricity

7.1. Non-spinning equal-mass holes

al sub-state to sub-state

The BBH breakthrough

 Simplest configuration
 GWs circularize orbit ⇒quasi-circular initial data

Pretorius PRL '05

- BBH breakthrough
- Initial data: scalar field
- Radiated energy $R_{ex}[M] = 25 50 75 100$ E[%M] = 4.7 3.2 2.7 2.3
- Eccentricity e = 0...0.2

72
Non-spinning equal-mass binaries

• Total radiated energy: $3.6\% M_{ADM}$

 $\ell = 2, m = 2 \mod \text{dominant:} > 98\%$

The merger part of the inspiral

Buonanno, Cook, Pretorius '06 (BCP)

- merger lasts short: 0.5 – 0.75 cycles
- Eccentricity small ≈ 0.01 non-vanishing Initial radial velocity

Comparison with Post-Newtonian

Goddard '07

- 14 cycles, 3.5 PN phasing
- Match waveforms: $\phi, \ \phi^{\mathrm{PN}}$
- Accumulated phase error 1 rad

Buonanno, Cook, Pretorius '06 (BCP)

3.5 PN phasing
 2 PN amplitude

Comparison with Post-Newtonian

Jena '07

- 18 cycles
- phase error < 1 rad 6th order differencing !!
- Amplitude: % range

Cornell/Caltech & Buonanno

- 30 cycles
- phase error ≈ 0.02 rad
- Effective one body (EOB)

RIT

First comparison with spin; not conclusive yet

76

Zoom whirl orbits

Pretorius & Khurana '07

- 1-parameter family of initial data: linear momentum
- Fine-tune parameter
 - ⇒ "Threshold of immediate merger"
- Analogue in gedodesics !
- Reminiscent of "Critical phenomena"
- Similar observations by PSU

Max. spin $j_{fin} = 0.78$ for $L \approx M^2$

77

7.2. Unequal masses

Unequal masses

- Still zero spins
- Astrophysically much more likely !!
- Symmetry breaking
 - Anisotropic emission of GWs
 - Certain modes are no longer suppressed
- Mass ratios
 - ► Stellar sized BH into supermassive BH $\approx 10^6$
 - ► Intermediate mass BHs $\approx 10^3$
 - ► Galaxy mergers $\approx 1...10^3$
 - Currently possible numerically: $\approx 1...10$

Gravitational recoil

- Anisotropic emission of GWs radiates momentum → recoil of remaining system
- Leading order: Overlap of Mass-quadrupole with octopole/flux-quadrupole Bonnor & Rotenburg '61, Peres '62, Bekenstein '73
- Merger of galaxies
- \Rightarrow Merger of BHs
- ⇒Recoil
- \Rightarrow BH kicked out?

Gravitational recoil

Escape velocities

Globular clusters dSph dE Giant galaxies Merrit et al '04 30 km/s 20 – 100 km/s 100 – 300 km/s ≈1000 km/s

Ejection or displacement of BHs has repercussions on:

- Structure formation in the universe
- BH populations IMBHs via ejection?
- Growth history of Massive Black Holes
- Structure of galaxies

Kicks of non-spinning black holes

- Simulations PSU '07, Goddard '07
- Parameter study Jena '07
- Target: Maximal Kick
- Mass ratio: $M_1 / M_2 = 1...4$
- 150,000 CPU hours
- Maximal kick 178 km/s for $M_1 / M_2 \approx 3$
- Convergence 2nd order
- $E_{\rm rad} \approx 3\%$, $J_{\rm rad} \approx 25\%$
- Spin 0.45...0.7

Features of unequal-mass mergers

Berti et al '07

- Distribution of radiated energy
 - More energy in higher modes
 - Odd ℓ modes suppressed for equal masses
- Important for GW-DA

Mass ratio 10:1

- In preparation: González, U.S., Brügmann
- Mass ratio q = 10; Bam
- 4th order convergence

- Astrophysically likely configuration: Sesana et al. '07
- Test fitting formulas for spin and kick!

Kick:
$$v = 1.2 \times 10^4 \eta^2 \sqrt{1 - 4\eta} (1 - 0.93\eta)$$
 (Fitchett '83
Gonzalez et al. '07)

7.3. Spinning black holes

Spinning holes: The orbital hang-up

• The Spins parallel to $\vec{L} \Rightarrow$ more orbits, E_{rad}, J_{rad} larger $\downarrow \uparrow \downarrow$ Spins anti-par. to $\vec{L} \Rightarrow$ fewer orbits E_{rad}, J_{rad} smaller

UTB/RIT '07

no extremal Kerr BHs

Spin precession and flip

- X-shaped radio sources Merritt & Ekers '07
- Jet along spin axis
- Spin re-alignment ⇒ new + old jet
- Spin precession 98° Spin flip 71° UTB, Rochester '06

Recoil of spinning holes

Kidder '95: PN study with Spins

 $\frac{d\mathbf{P}}{dt} = \dot{\mathbf{P}}_{N} + \dot{\mathbf{P}}_{SO}, \quad = \text{``unequal mass''} + \text{``spin(-orbit)''}$

Penn State '07: SO-term larger $\frac{a}{m} = 0.2,...,0.8$ extrapolated: v = 475 km/s

- AEI '07: One spinning hole, extrapolated: v = 440 km/s
- UTB-Rochester: v = 454 km/s

Super Kicks

Side result RIT '07, Kidder '95: maximal kick predicted for

 $v \approx 1300 \text{ km/s}$

- Test hypothesis
 - González, Hannam, US, Brügmann & Husa '07
 - Use two codes: Lean, BAM
- Generates kick v = 2500 km/s for spin $a \approx 0.75$

Super Kicks

Side result RIT '07, Kidder '95: maximal kick predicted for

 $v \approx 1300 \text{ km/s}$

- Test hypothesis
 - González, Hannam, US, Brügmann & Husa '07

Use two codes: Lean, BAM

- Generates kick v = 2500 km/s for spin $a \approx 0.75$
- Extrapolated to maximal spin v = 4000 km/sRIT '07
- Highly eccentric orbits v = 10000 km/s PSU '08

What's happening physically?

Black holes "move up and down"

A closer look at super kicks

- Physical explanation: "Frame dragging"
- Recall: rotating BH drags objects along with its rotation

A closer look at super kicks

- Physical explanation: "Frame dragging"
- Recall: rotating BH drags objects along with its rotation

Thanks to F. Pretorius

How realistic are superkicks?

- Observations \Rightarrow BHs are not generically ejected!
- Are superkicks real?
- Gas accretion may align spins with orbit Bogdanovic et al.
- Kick distribution function: $v_{\text{kick}} = v_{\text{kick}}(\vec{S}_1, \vec{S}_2, M_1/M_2)$
- Analytic models and fits: Boyle, Kesden & Nissanke, AEI, RIT, Tichy & Marronetti,...
- Use numerical results to determine free parameters
- 7-dim. Parameter space: Messy! Not yet conclusive...
- EOB study ⇒ only 12% of all mergers have v > 500 km/s Schnittman & Buonanno '08

7.4. Numerical relativity and data analysis

VERISON AD AVERISON AD AVERISON AD

The Hulse-Taylor pulsar

Hulse, Taylor '93

- Binary pulsar 1913+16
- GW emission
- Inspiral
- Change in period
- Excellent agreement with relativistic prediction

The data stream: Strong LISA source

SMBH binary

100

The data stream: Matched filtering

Matched filtering (not real data)

Noise + Signal

Theoretically Predicted signal

Overlap

- Filter with one waveform per parameter combination
- Problem: 7-dim parameter space
- We need template banks!

Numerical relativity meets data analysis

Ajith et al. '07 **O** PN, NR \Rightarrow hybrid waveforms

Approximate hybrid WFs with phenomenological WFs

- Fitting factors: 0.99
- Create look-up tables to map between phenomenological and physical parameters
 102

Numerical relativity meets data analysis

PSU '07

- Investigate waveforms from spinning binaries
- Detection of spinning holes likely to require inclusion of higher order multipoles

Cardiff '07

Higher order multipoles important for parameter estimates

Pan et al. '07

- Equal-mass, non-spinning binaries
- Plot combined waveforms for different masses

Ninja

Large scale effort to use NR in DA

Noise curves

Size doesn't matter... or does it?

Expected GW sources

How far can we observe?

107

7.4. High energy collisions
Motivation

- US, Cardoso, Pretorius, Berti & González '08
- Head-on collision of BHs near the speed of light
- Test cosmic censorship
- Maximal radiated energy
- First step to estimate GW leakage in LHC collisions
- Model GR in most violent regime
- Numerically challenging Resolution, Junk radiation

Shibata et al. '08

- Grazing collisions, cross sections
- Radiated energy even larger

Total radiated energy

• Total radiated energy: $14 \pm 3\%$ about half of Penrose's limit

7.5. Neutron star – BH binaries

Neutron star is disrupted

Etienne et al. '08

Neutron star is disrupted

Etienne et al. '08

Neutron star is disrupted

Etienne et al. '08

Waveforms

Etienne et al. '08

- Ringdown depends on mass ratio q = 1, 3, 5
- Active research area: UIUC, AEI, Caltech/Cornell

Future research

Main future research directions

- Gravitational wave detection
 - PN comparisons with spin
 - Generate template banks
 - Understand how to best generate/use hybrid wave forms
 - Simulate extreme mass ratios
- Astrophysics
 - Distribution functions for Kick, BH-spin, BH-mass
 - Improve understanding of Accretion, GW bursts,...
- Fundamental physics
 - High energy collisions: radiated energy, cross sections
 - Higher dimensional BH simulations