Accuracy in numerical simulations of unequal-mass black-hole binaries

Ulrich Sperhake

California Institute of Technology FSU Jena

Collaborators: B.Brügmann, J.A.González

CALTECH

NRDA AEI Potsdam, 6th Jul 2009

Introduction

- The mass ratio 1:10
 - Numerical framework
 - Overall properties
 - Accuracy of GW signal
- Long simulations with
 - ► Setup
 - Dependence of GW signal on extraction radius
- Discussion...

Introduction

- Equal-mass, non-spinning BHB "under control" Scheel et al. '08
- Unequal-mass binaries are harder!
 - Lower degree of symmetry
 More demanding computationally
 1-parameter family: which a pecessal
 - 1-parameter family; which q necessary?
- Astrophysically relevant!
 - ► SMBH formation may favor mergers around $q \approx 10$ Sesana et al.'07
 - ► Mass distribution of SMBHs predicts most mergers in the range $3 \le q \le 10$ Gergely & Biermann '07
- 0
- Comparison with: PN, EOB, Perturbation theory

Numerical framework: q=10

BAM code Brügmann et al. '08

Puncture initial data
 BSSN evolution
 Moving puncture gauge
 FD 6th order in space, 4th order in time

Parameters $M := M_1 + M_2$ $q := \frac{M_1}{M_2} = 10$ D = 7 M $\eta := \frac{M_1 M_2}{(M_1 + M_2)^2} = 0.0826$

Quasi circular Kidder '95

Numerical difficulties: Gauge

Shift condition $\eta_b = \frac{1.375}{M}$ $\partial_t \beta^i = \frac{3}{4} B^i, \quad \partial_t B^i = \partial_t \tilde{\Gamma}^i - \eta_b B^i.$

- Poor choices of η_b
 - Loss of convergenceInstabilities
- q = 10 more difficult than earlier study q = 1...4

González et al. '07

Numerical difficulties: Resolution

• 6th order Convergence obtained for $h = \frac{M}{165}, \frac{M}{187}, \frac{M}{209}$

- Insufficient resolution
 - Loss of convergenceNo inspiral...
- q = 10 more difficult than earlier study q = 1...4

González et al. '07

What went right?

Radiated energy

Final spin

Recoil

Summary

$$E_{\rm rad} = (0.415 \pm 0.017) \% M_{\rm ADM}$$

 $j_{\rm fin} = 0.259 \pm 0.003$
 $v_{\rm kick} = (66.7 \pm 3.3) \text{ km/s}$

- Good: Excellent agreement with various fitting formulae.
- Bad: Does not discriminate between different formulae.
- **Needed:** q = 10 simulations with spin!

Wave signal

Wave signal

Multipolar distribution of radiated energy

Quadratic polynomial fits incl. data from Berti et al. '07

Multipolar distribution of radiated energy

Quadratic polynomial fits incl. data from Berti et al. '07

Accuracy of waveform

- Resolution: 6th order convergence
- Extraction radius: $r_{ex} = 18 M$, 27 M, 36 M
- Procedure: Quadrupole only! $\ell = 2, m = 2$
 - **Decompose** $\psi_{\ell m} = A_{\ell m} e^{im\phi}$
 - ► Align waveforms at $max(A_{22})$
 - **Richardson extrapolation** of A, ϕ using 6th and 4th order
 - Fit power law for dependence on extraction radius

$$\phi = \phi_0 + \phi_1 r_{ex}^{-1} \left(+ \phi_2 r_{ex}^{-2} \right)$$
$$A = A_0 + A_1 r_{ex}^{-1} \left(+ A_2 r_{ex}^{-2} \right)$$

Summary

- Higher multipoles significant in energy and wave signal
- Accuracy limited by small and few r_{ex}
- Local maximum in A difficulties in extrapolating
- Phase accuracy: $\Delta \phi \approx 0.6$ (optimistic)

 $\Delta \phi \approx 0.8$ (conservative)

- Amplitude accuracy: $\frac{\Delta A}{A} \approx 6\%$ (optimistic)
 - $\frac{\Delta A}{A} \approx 6\% \quad \text{(optimistic)}$ $\frac{\Delta A}{A} \approx 10\% \quad \text{(conservative)}$

Numerical framework: q=4 (long)

- Lean code Sperhake '07
 - Puncture initial data
 BSSN evolution
 Moving puncture gauge
 FD 6th order in space, 4th order in time
- Parameters (about 20 cycles) $M := M_1 + M_2$ $q := \frac{M_1}{M_2} = 4$ D = 10.9 M $\eta := \frac{M_1 M_2}{(M_1 + M_2)^2} = 0.16$
- Reduced eccentricity Caltech/Cornell '07
- Work in progress: Only extraction radius so far...

Summary

Resolution M/160 already appears to give reaonable accuracy for long simulations

Phase accuracy: $\Delta \phi \approx 0.01...0.02$ (inspiral)

 $\Delta \phi \approx 0.02...0.09$ (plunge, merger, ringdown)

- Amplitude accuracy: $\frac{\Delta A}{A} \approx 7 \%$ (early) $\frac{\Delta A}{A} \approx 2 \%$ (merger)
- Expect improvement by fitting higher order power laws!
- Warning: Low resolution dissipates GWs; Don't xpol!!!

Discussion

- Kick, final spin and radiated energy for q = 10 agree well with formulae
- Simulations of spinning BHBs needed to check formulae
- Higher order multipoles important!
- Accuracy limited by extraction radii; better than expected Δφ ≈ 0.6, ^{ΔA}/_A ≈ 6 %
 Long runs with q = 4 "easier"
 - $\int Long runs with q = 4$ casici

$$\Delta \phi \approx 0.02...0.09, \qquad \frac{\Delta \Lambda}{A} \approx 2...7\%$$

Convergence study to be completed and included in uncertainties