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1. Introduction
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Introduction: Kicks

@ Galaxies ubiquitously harbor BHs

@ BH properties correlated with bulge properties
€. g. J.Magorrian et al., AJ 115, 2285 (1998)
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Introduction

@ Most widely accepted scenario for galaxy formation:
hierarchical growth; “bottom-up”

@ Galaxies undergo frequent mergers, especially elliptic ones
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Superkicks

@ Numerical relativity breakthroughs in 2005
Pretorius '05, Goddard, RIT 06

@ NR now able to accurately calculate kicks

@ Superkicks: up to several 1000 km/s

Gonzélez et al. ‘07, Campanelli et al. '07

@ > escape velocities from giant galaxies!
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Introduction: BH binary formation

Evolution of single stars
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Introduction: BH binary formation

Stellar binaries
@ Tides

@ Roche lobe = mass transfer
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Gravitational wave detectors

LIGO, VIRGO upgraded; ET design studies
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Gravitational wave detectors

GW sources
extended syst » compact syst
coalescence of
/ massive black hole
supernova
proto-neutron
= rotating stars
L neutron stars
@
= coalescence of
neutron-star and
unresolved black-hole blnancs
Galactic
binaries resolved
b3 LISA Galactic
> binaries
= extreme mass
-'é ratio inspiral
2 Advanc:ed LIGO
10-2 10~ 10" 103

frequency (henz)

What can we learn from GW observations about BH binary formatlon'?
[m] = = =
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2. Spin orbit resonances
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Parameters of a black-hole binary

10 intrinsic parameters for quasi-circular orbits
@ 2 masses my, Mo

@ 6 for two spins S1, S»

@ 2 for the direction of the orbital ang. mom. L.
Elimination of parameters in PN inspiral
@ 1 mass; scale invariance

@ 2 for L; fix z axis
@ 2 spin magnitudes, 1 mass ratio g; conserved

@ 1 spin direction; fix x axis
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Evolution variables

= Three variables: 61, >, Ao
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Evolution equations
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Schnittman’s resonances

Schnittman ’04

For a given separation r of the binary, resonances are
@ Sy, Sy, Ly lieinaplane = A¢ = 0°,+180°

@ Resonance condition: 1 = 61, = 0 Apostolatos '96, Schnittman 04

@ A¢ = 0° resonances: always 61 < 6o
A¢ = +180° resonances: always 61 > 65

@ The resonance 64, 0, vary with r or Ly
= Resonances sweep through parameter plane

@ Time scales: t, < by < lgw
= “Free” binaries can get caught by resonance
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Evolution in 64, 6 plane for g = 9/11

- -

;i = A(Sla N)
01 = 0

S Ly = const

evolution

= BHs approach
01 = 0o

= 84, Sy align
if61 small

Kesden, Berti & US 10

1 K
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Resonance capture: A¢ = 0°

qg=9/11, xi =1, 6(t)) = 10°, rest random

Schnittman 04
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Resonance capture: A¢ = 180°

qg=9/11, xi =1, 0(f) = 170°, rest random

Schnittman 04
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Consequences of resonances

EOB spin
So = mM1S1 = mM282

evolution

= §y ~conserved

1k L
-1 -075-05-025 0 025 05 0.75 1
cos 8,
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Consequences of resonances

Total spin
S=S51+S;

é- ZN = const
evolution

blue steeper red
= S, Ly become

antialigned; A¢ = 0°

aligned; A¢ = 180°
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—1 075 -05-0.25 0 025 05 075 1
cos 8,
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Consequences of resonances

r decreases

= 64,0> — diagonal
i.e. 61 = 0>

= 8¢, S, become

aligned; A¢=0°

012 = 01 +60; Agp =180°

| e
-1 -075-05-025 0 025 05 0.75 1
cos 8,
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Summary: Resonances

@ S¢, Sy, Ly precess in plane
@ 2types: ) A¢p =0° 1l) Ap = 180°
@ Free binaries can get caught by symmetries

@ Consequences for A¢ = 0°
e S, S, aligned
e S, Ly antialigned

@ Consequences for A¢p = 180°
@ S¢, S, approach 1o = 61 + 02

@ S, Ly aligned
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3. Final spins
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Resonance capturing in practice: g = 9/11
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@ Isotropic 10 x 10 x 10 grid of configurations
@ At R=1000 M+ ¢, 1000 M, 100 M, 10 M
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Resonance capturing in practice: g = 1/3
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@ Isotropic 10 x 10 x 10 grid of configurations
@ At R=1000 M+ ¢, 1000 M, 100 M, 10 M
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Resonance capturing in practice: g = 9/11
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@ Isotropic 10 x 10 x 10 grid of configurations
@ At R=1000 M+ ¢, 1000 M, 100 M, 10 M
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Final spin of merged BBH

Numerical relativity = fitting formula (g, S1, S2) — S¢

Here: Barausse & Rezzolla’09, but similar results for others
70 E
60 F
50F
40F
30 F

@ 04(ty), O2(tp), Ap(lp) isotropic 10 x 10 x 10
@ large #4, all 1000 binaries,  small 6;
@ Initially isotropic stays isotropic

cf. Bogdanovi¢, Reynolds & Miller '07
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Final spin of merged BBH

Numerical relativity = fitting formula (g, S1, S2) — S¢

Here: Barausse & Rezzolla’09, but similar results for others

| O i s e e e e B B B B
140

120;
100;
80
60
40F

o 91(t0) =170°,

, , 30°, 20°, 10°
(] Hg(to), A¢(t0)2 30 x 30 iSOthpiC
@ dotted: switching off precession

solid: with precession
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Summary: Final spins

@ Resonances act as attractor for random binaries
@ This is a statistical effect!
@ Initially isotropic ensembles stay isotropic; cancelation

@ A¢ = 0° resonances increase final spin
(alignment of S1, S»)

@ A¢ = 180° resonances mildly decrease final spin
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4. Suppression of superkicks
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Superkicks

01 =02 =90°, Ap = 180°

@ Superkicks: up to several 1000 km/s
Gonzéalez, Hannam, Sperhake, Brigmann & Husa, PRL 98, 231101 (2007)

Campanelli, Lousto, Zlochower & Merritt, ApJ 659, L5 (2007)
@ > escape velocities from giant galaxies!
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Setup

@ BBHs inspiral from 1000 M to 10 M

@ Ensemble 1: 10 x 10 x 10 isotropic

@ Ensemble 2: 30 x 30 isotropic in 05, A¢
fix 01(fp) = 170°, , , 30°, 20°, 10°

@ Map Sy, Sz, g t0 Viick
V(Q,X1,X2) = Vm@1 + V1 (COS £€¢ + sinééy) + v €,
v~ A, A=TPex

1+q
Campanelli, Lousto, Zlochower & Merritt ‘07
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Kick distributions with and without PN inspiral g = =%

800 [ T T T [ T
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Kick distributions with and without PN inspiral g =

1250
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Even larger kicks: superkick and hang-up

Lousto & Zlochower, arXiv:1108.2009 [gr-qc]

Superkicks Hangup
@ Moderate GW generation @ Strong GW generation
@ Large kicks @ No kicks
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Superkicks and orbital hang-up

5000

4000

3000

2000 -

1000

0=0.91 (New)
=0.707 (New)
a=1 (New)
---= 1=0.707 (old)

@ Maximum kick about 25 % larger: vi.,x ~ 5000 km/s

@ Distribution asymmetric in 0
@ Largest recaoil for partial alignment
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Kick distributions with and without PN inspiral g = =
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Summary: Kick suppression

@ Resonances attract aligned (anti aligned) configurations towards
A¢ = 0° (180°)

@ Superkicks suppressed (enhanced) for
A¢p =0° (Ap = 180°) resonances

@ If accretion torque partially aligns §1 with Ly
= A¢ = 0° resonances dominate and suppress kicks

@ Kick suppression still effective for hang-up kicks

@ Why? Because the key angle is A¢
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5. Stellar-mass BH binary
formation
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A simplified scenario for stellar-mass BBH formation

/

e Stellar binary: Mg, Mg; = 35, 16.75 M, or 30, 24 M,

@ Primary expands to fill Roche lobe

@ 50% M transfer to Secondary until core remant M,. = 8.5 or 8M,,
@ Primary explodes as SN — BH with Mg, = 7.5 or 6M,,

@ SN kick tilts L

@ Tides may align S and circularize orbit

@ Secondary expands to fill Roche lobe = Common envelope

@ Secondary becomes helium core with M. = 8 or 8.5M,,

@ Secondary explodes as SN — BH with Mg, = 6 or 7.5M

@ SN kick again tilts orbital plane
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Comments: Initial separation

@ gy drawn from logarithmic distribution [@min, @max]
amax: Primary fills Roche lobe
amin: Secondary does not fill Roche lobe at transfer

@ 4y > amax = binary unbound by SN kick
ag < amin = merger in CE phase
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Comments: Mass transfer

@ Star fills Roche lobe = stable transfer or CE

@ Ourg = SN1 — stable transfer, SN2 — CE
Clausen, Wade, Kopparapu & O’Shaughnessy '12

/

@ Accretion by secondary: Mg, = Mg, + fa(Mg; — M)
We choose semi-conservative: f; = 0.5

@ f;tied to fraction of RMR vs. SMR
= potentially measurable via GWs
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Comments: SN kicks

@ Calibrate kick using observed motion of young pulsars
Vpons € Maxwellian with o = 265 km/s

@ Fallback = vgy = (1 — fi) Vpns
For our g, simulations suggest f, = 0.8
Fryer '99, Fryer & Kalogera '01

@ Kicks € cone with 6, about S

We consider: isotropic 6, = 90°, polar 6, = 10°
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Comments: Kick effect on orbit

@ SN = mass reduction, tilt of orbit

@ SN equally likely anywhere in orbit = true anomaly
@ At SN1: assume S; » aligned with L

@ a;, e from conservation of energy, ang. mom.

@ e; > 1 = Binary unbound

@ Overall: isotropic kicks less likely to unbind binary
= wider ranges of tilt angles
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Comments: Tidal alignment

@ Tidal dissipation = circularize orbit; align S, with L

@ We consider two extremes: i) fully efficient tides, ii) no tidal effects
@ Tidal effects on BH can be safely ignored

@ Tidal effects operate when secondary fills Roche lobe

@ Change in separation due to tides negligible compared with CE
phase
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Comments: Common envelope phase

@ If a; after SN1 too large = no CE phase; game over

. GM// M// _MII
o Otherwise: CE has £ = — s(Ver—c)
We use )\ from analytic fit of Dominik et al. 12
@ Energy, momentum conservation = acg

@ ajcg too small
= helium core fills Roche lobe, prompt merger; game over

@ We neglect accretion onto BH

The impact of spin-orbit resonances on astrophysical black-huie [;eoulations



a) Main-sequence binary

b) First mass-transfer phase
o o o o
L L
ao ap
% =0 hrd M @0 A
¢) 1 Supernova explosion d) Tides, common envelope, BH precession
o
L L
1 =0 M
€) 2% Supernova explosion

=

£) Post-Newtonian evolution
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Spin evolution 61, 62, tides, iso-kick: SMR,

T T T
Initial

T P : """_‘-r” rpuny
a=250M

136 | —+ —+ B

1 L e L -
[ 45 90 195 180 45 90 135 180 45 90 135 180

The impact of spin-orbit resonances on astrophysical black-huie penulations



Spin evolution Ag, 610, tides, iso-kick: SMR, =/

=] F = = = DA
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Spin evolution 64, 02, tides, pol-kick: SMR,
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Spin evolution Ag, 612, tides, pol-kick: SMR, =/
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Spin evolution 61, 65, no tides, iso-kick: SMR,

T
Initial
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Spin evolution Ag, 612, no tides, iso-kick: SMR, =/

12

DA
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Spin evolution 61, 62, no tides, pol-kick: SMR,

180 T

T T T T T T T
Initial a=1000M a=750M
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Spin evolution A¢, 612,

T T T
Initial

no tides, pol-kick: SMR,

DA
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Spin distribution at GW frequencies: A¢
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Spin distribution at GW frequencies: 012
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Summary: BH binary formation

@ Simplified model for stellar mass BHB formation

@ Key ingredients: mass reversal, tides

oo TO8O
ed F
- Revers__——
ae8 Resonant plane locking \/
- e B sin A® — 0 (equilibrium)
whc i mf\\\k
Merging BH binary o Magg rat,

T O12 =+ 01+ 0a
\:‘”\'h\\\ Free precession

sin AP — +1 (pile-up)
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Conclusions

@ Spin orbit resonances attract inspiraling binaries

@ 2 classes of resonances: A¢ = 0°, 180°

@ Isotropic ensembles remain isotropic

@ Non-isotropic ensembles can be drastically affected

@ Superkicks suppressed if heavy BH’s S more aligned with L

@ Stellar-mass BH binary formation affected by resonances
depending on mass transfer, tides
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