At the dawn of a new era in astrophysics: Gravitational waves have arrived

Ulrich Sperhake

DAMTP, University of Cambridge

National Meeting of Astronomy and Astrophysics Aveiro, 08 Sep 2016

Science & Technology Facilities Council

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690904, from H2020-ERC-2014-CoG Grant No. "MaGRaTh" 646597, from NSF XSEDE Grant No. PHY-090003 and from STFC Consolidator Grant No. ST/L000636/1.

Gravitational Waves: Ripples in spacetime

- Unusual news headlines on 11/12 February 2016
- First direct detection of gravitational waves: GW150914

What really happened...

• Once upon a time: $1.34_{-0.59}^{+0.52}$ Gyr ago, somewhere in the universe

Deep Precambrian

Overview

- A brief theory of gravitational waves
- Frequency windows, sources and detectors
- Parameter estimation and source modeling
- **GW150914**
- Some future applications
- Conclusions

Gravitational waves

General relativity in 30 seconds

- Spacetime as a curved manifold
- Key quantity: spacetime metric $g_{\alpha\beta}$
- Curvature, geodesics etc. all follow
- Einstein equations

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

10 non-linear PDEs for $g_{\alpha\beta}$

 $T_{\alpha\beta} = Matter fields$

Conceptually simple,
 hard in practice
 E.g. Schwarzschild

$$g_{\mu\nu} = \begin{pmatrix} \left(1 - \frac{2GM}{rc^2}\right) & 0 & 0 & 0 \\ 0 & -\left(1 - \frac{2GM}{rc^2}\right)^{-1} & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2\theta \end{pmatrix}$$

$$ds^{2} = c^{2} dt^{2} \left(1 - \frac{2GM}{rc^{2}} \right) - \frac{dr^{2}}{1 - 2GM/rc^{2}} - r^{2} d\theta^{2} - r^{2} \sin^{2} \theta d\phi^{2}$$

Gravitational waves: weak-field solutions

- Consider small deviations from Minkowski in Cartesian coordinates "Background": Manifold $\mathcal{M} = \mathbb{R}^4$, $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$
 - "Perturbation": $h_{\mu\nu} = \mathcal{O}(\epsilon) \ll 1 \Rightarrow g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$
- Coordinate freedom: "Transverse-traceless (TT)" gauge

$$h^{\mu}{}_{\mu} = 0, \quad \partial^{\nu}h_{\mu\nu} = 0$$

- Vacuum, no cosmological constant: $T_{\mu\nu} = 0$, $\Lambda = 0$
- Einstein's eqs.: $\Box h_{\mu\nu} = 0$
- Plane wave solution in z direction: $h_{\mu\nu} = H_{\mu\nu}e^{ik_{\sigma}x^{\sigma}}$

$$k^{\mu} = \omega(1, 0, 0, 1) \qquad H_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & H_{+} & H_{\times} & 0 \\ 0 & H_{\times} & -H_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Effect on particles

Geodesic eq.

Particle at rest at x^{μ} stays at $x^{\mu} = \text{const}$ in TT gauge Proper separation:

 $ds^{2} = -dt^{2} + (1 + h_{+}) dx^{2} + (1 - h_{+}) dy^{2} + 2h_{\times} dx dy + dz^{2}$

Effect on test particles:
 Mirshekari 1308.5240
 Debate on physical

reality until late 1950s e.g.Saulson GRG (2011)

The GW spectrum, sources and detectors

The gravitational wave spectrum

• Source types and detection strategies \Rightarrow 4 regimes

Ultra low	$f \sim 10^{-18} \dots 10^{-15} \text{ Hz}$
Very low	$f \sim 10^{-9} \dots 10^{-6} \text{ Hz}$
Low	$f \sim 10^{-4} \dots 10^{-1} \text{ Hz}$
High	$f \sim 10^1 \dots 10^3 \text{ Hz}$

Major sources

0

Ultra low:	Fluctuations in the early universe
Very low:	Supermassive BH binaries (high M, z)
Low:	SMBHs, EMRIs, Compact binaries,
High:	Neutron star / BH binaries, supernovae,

...

See e.g. Flauger, Hill, Spergel 1405.7351

The very low frequency regime

- Pulsar timing arrays PPTA, EPTA, NANOGrav
- Search for correlated arrival time delays of pulses

The very low frequency regime

Exotic sources: Topological defects, cosmic strings (early Universe)

• SMBH binaries $\gtrsim 10^8 M_{\odot}$

Most/all galaxies host BHs hole-halo correlation: $M_{
m bh} \propto \sigma^{4.8 \pm 0.5}$

Ferrarese & Merrit ApJ (2000), Gültekin et al, ApJ (2009)

• Galaxies merge \Rightarrow SMBH merger

But "Final parsec problem"

Few individually observed systems possible.

But mostly stochastic background.

Model as power law

$$h_c = A\left(\frac{f}{\mathrm{yr}^{-1}}\right)^{\alpha}$$

The very low frequency regime

- So far: upper limits
- E.g. PPTA

...

- Models excluded?
- Possible explanations
 Binaries stalled
 Accelerated mergers
 Eccentric orbits
 - Models too simple

Shannon et al (2015) Science

The low frequency regime

Black Hole Binaries

Galactic White Dwarf Binaries

Cosmic Strings and Phase Transitions

Gravity is talking. LISA will listen.

The low frequency regime

- Interferometry with $\sim 10^6$ km arms
- Realm of space missions
- eLISA: L3 mission of ESA's "Cosmic Vision" Launch: ~ 2034
- Configuration still uncertain:
 2 arms vs. 3 arms
 10⁶ km vs. 5 × 10⁶ km
 2 yr vs. 5 yr life span
 Calibration binaries (WDs)
 Outstanding SNR
 LISA Pathfinder: Test mission
 Launched 3 Dec 2015

LISA Pathfinder Latest: 7 Jun 2016

Noise curve exceeds LISA requirements

Armano et al. PRL (2016)

The interferometer diagram: LIGO

Abbott et al, PRL 116 (2016) 061102

Seismic, thermal, shot noise

The high frequency regime

Supernovae

- Neutron star oscillations
- Neutron star / stellar-mass black hole binaries

Abbott et al, PRL 116 (2016) 061102

Summary: sensitivity curves

http://rhcole.com/apps/GWplotter/

Parameter estimation and source modeling

The search for GWs in the data stream

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}; \quad \frac{8\pi G}{c^4} = 2.07 \times 10^{-43} \frac{\mathrm{s}^2}{\mathrm{m\,kg}}$$

Weak effect of matter on geometry

- GWs carry huge energy but barely interact with anything
- Induced changes in length: < atomic nucleus / km</p>

Detection and parameter estimation

Generic transient search

- No specific waveform model
- Identify excess power in detector strain data
- Use multi detector maximum likelihood Klimenko et al. 1511.05999

Binary coalescence search

- "Matched Filtering" e.g. Allen et al. PRD 2012
- Compare data stream with GW templates ("Finger print search")
- \bigcirc Bayesian analysis: Prior \rightarrow Posterior

Trifiró al. 1507.05587

Black-hole binaries: parameters

8+2 Intrinsic parameters

Masses m_1, m_2

Spins S_1, S_2

Eccentricity (often ignored; GW emission circularizes orbit)

7 Extrinsic parameters

Location: Luminosity distance D_L , Right ascension α , Declination δ Orientation: Inclination ι , Polarization ψ Time t_c and Phase ϕ_c of coalescence

GW source modeling

- Key requirement for matched filtering: GW template catalog
- Model black holes in general relativity
 - Solution Post Newtonian theory \rightarrow Inspiral Blanchet Liv.Rev.Rel. 2006
 - Solution Numerical relativity \rightarrow final orbits, merger

Pretorius PRL 2005, Baker et al PRL 2006, Campanelli et al PRL 2006

- Perturbation theory \rightarrow Ringdown
- Combine "NR" with "Post-Newtonian", "Effective one body" methods
- 2 families in use: Phenomenological, Effective one body
- Use reduced bases or similar to cover parameter space
- Multipolar decomposition

$$h_{+} - ih_{\times} = \sum_{\ell m} {}_{-2}Y_{\ell m}(\theta, \phi)h_{\ell m}(t)$$

Anatomy of a BHB coalescence

Binary Black Hole Evolution: Caltech/Cornell Computer Simulation

Top: 3D view of Black Holes and Orbital Trajectory

Middle: Spacetime curvature: Depth: Curvature of space Colors: Rate of flow of time Arrows: Velocity of flow of space

Bottom: Waveform (red line shows current time)

Thanks to Caltech-Cornell groups

GW150914

GW150914: The signal

Abbott et al 1602.03840

Whitened by power spectral density

Wavelet = Linear combination of sine-Gaussian pieces

GW150914: BH masses

Abbott et al 1602.03840

Mass ratio
$$q \equiv \frac{m_2}{m_1} = 0.65 \pm 0.03$$

Spins harder to measure: few cycles, no full-precession catalog

$$\chi_1 = \frac{|\boldsymbol{S}_1|}{m_1^2} < 0.7, \quad \chi_2 = \frac{|\boldsymbol{S}_2|}{m_2^2} < 0.9$$

$$\chi_{\rm fin} = 0.67^{+0.05}_{-0.07}$$

• Luminosity distance $D_L = 410^{+160}_{-180} \text{ Mpc}$

• Source redshift $z = 0.088^{+0.031}_{-0.038}$

GW150914: Sky location

Abbott et al 1602.03840

GW151226: BH masses

Abbott et al 1606.04855

(Selected) Present and future applications

Overview

Early Universe

Testing Einstein's theory

Galaxy history

Equation of state

BH populations

The unknown...

Testing GR with GW150914: Consistency

- \bigcirc Measure $M_{\rm f}, a_{\rm f}$ using only-inspiral or post-inspiral
- Results consistent with GR waveform model
- Quality factor from ringdown hard: Little SNR

Abbott et al 1602.03841

Morphologies and phase transitions in BHBs

- 3 morphologies
 - $\supseteq \Delta \Phi$ librates about 0
 - \supseteq $\Delta \Phi$ librates about π
 - \bigcirc Circulating $\Delta \Phi \in [-\pi, \pi]$
- Morphology can change during inspiral

Kesden et al 2015 PRL, Gerosa et al 2015 PRD

Morphologies and phase transitions in BHBs The morphology is closely related to the spin inclination at $r \to \infty$ Binary formation leaves a memory on the morphology 0 q = 0.2q = 0.5 $\chi_1 = 1$ $\chi_1 = 1$ 0.5 $\chi_2 = 1$ 0.5 $\chi_2 = 1$ 0.5 $\cos \theta_{2\infty}$ 0 0 Librating $\Delta \Phi \sim 0$ Circulating -0.5-0.5-0.5 Circulating (again) \sim q = 0.8Librating $\Delta \Phi \sim \pi$ $\chi_1 = 1$ $\chi_2 = 1$ 0.5 0.5 -0.50.5 -0.5-0.50 0 1 0 0.50.5 0.5 $\cos \theta_{2\infty}$ 0 -0.5-0.5-0.5q = 0.95q = 0.95q = 0.95 $\chi_1 = 0.5$ $\chi_1 = 1$ $\chi_1 = 1 + 1$ $\chi_2 = 0.5$ $\chi_2 = 1$ $\chi_2 = 1$ 0.5 0.5-0.5-0.50.5-0.50 0 0

 $\cos \theta_{1\infty}$

 $\cos\theta_{1\infty}$

 $\cos \theta_{1 \alpha}$

A simple model for BH binary formation

- Two massive stars in orbit
- Mass transfer may reverse mass ratio
- Initially more massive star goes supernova \rightarrow kick
- \bullet Tidal interaction may align spin with L
- \bigcirc 2nd supernova \rightarrow kick
- \bigcirc GW driven inspiral \rightarrow preference of one morphology

A simple model for BH binary formation

- Can we measure this?
- Inject binary population
 including all 3 scenarios
- Identify morphology; does it match expectations?
- Statistically yes!
- Tides + mass reversal
 - \rightarrow prefered $\Delta \Phi \sim 0$
- Tides + mass reversal
 - \rightarrow prefered $\Delta \Phi \sim \pi$
- No tides
 - \rightarrow no prefered libration

Gerosa et al 2014 PRD

Conclusions

Conclusions

- GW150914 marks the dawn of GW astronomy
 - "We" measured the change in length by a fraction
 - of an atomic nucleus caused by sth. 1 Gyr away!
 - >1 BBH! Not merely a lucky shot.
- First surprise: BHs heavier than expected
- Parameter estimation requires GW modeling
- Applications: Test GR, BH census, History of universe, EOS,...
 - A new window to the universe reveals interesting things...

