Strong gravity on supercomputers Ulrich Sperhake

DAMTP, University of Cambridge

IOP Meeting on Gravitational Waves London, 26 Sep 2016

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690904, from H2020-ERC-2014-CoG Grant No. "MaGRaTh" 646597, from NSF XSEDE Grant No. PHY-090003 and from STFC Consolidator Grant No. ST/L000636/1.

Gravitational Waves: Ripples in spacetime

- Unusual news headlines on 11/12 February 2016
- First direct detection of gravitational waves: GW150914

What really happened...

• Once upon a time: $1.34_{-0.59}^{+0.52}$ Gyr ago, somewhere in the universe

Deep Precambrian

	Overview
•	Introduction, Motivation
•	Foundations of numerical relativity
	☑ Formulations of Einstein's Eqs.: 3+1, BSSN, GHG
	Initial data, gauge
	Technical ingredients: Discretization, AMR, boundaries
	Diagnostics: Horizons, momenta, GWs,
•	Applications and selected results
	Gravitational wave physics
	Fundamental properties of gravity

1. Introduction

Strong gravity = non linearity

What is non-linearity? Think of the stock market

 \Rightarrow NON-LINEAR!

Strongest possible gravity: Black holes

Einstein 1915: General Relativity; geometric theory of gravity

Schwarzschild 1916: Solution to Einstein's equations

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}d\phi^{2}$$

Singularities

r = 0 : physical r = 2M : singularity

Horizon at r = 2M
 Light cones tilt over
 Newtonian escape velocity
 $v = \sqrt{\frac{2M}{r}}$

Research areas

Astrophysics

Gauge gravity duality Fundamental studies

GW physics

High-energy physics

Equation of state

General Relativity in 30 seconds

- Spacetime as a curved manifold
- Key quantity: spacetime metric $g_{\alpha\beta}$
- Curvature, geodesics etc. all follow
- Einstein equations

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

10 non-linear PDEs for g_{\alpha\beta}
T_{\alpha\beta}} = Matter fields
Conceptually simple,
hard in practice
E.g. Schwarzschild

$$g_{\mu\nu} = \begin{pmatrix} \left(1 - \frac{2GM}{rc^2}\right) & 0 & 0 & 0 \\ 0 & -\left(1 - \frac{2GM}{rc^2}\right)^{-1} & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2 \theta \end{pmatrix}$$
$$ds^2 = c^2 dt^2 \left(1 - \frac{2GM}{rc^2}\right) - \frac{dr^2}{1 - 2GM/rc^2} - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2$$

How do we get the metric?

- The metric must obey $R_{\alpha\beta} \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$ Ricci tensor, Einstein tensor, matter tensor $R_{\alpha\beta} = R^{\mu}{}_{\alpha\mu\beta}$ $G_{\alpha\beta} = R_{\alpha\beta} \frac{1}{2}g_{\alpha\beta}R^{\mu}{}_{\mu}$ "Trace reverse Ricci" $T_{\alpha\beta}$ "Matter"; see Talk by Luciano Rezzolla Λ "Cosmological constant"
 - Solutions: Easy!

Take metric $g_{\alpha\beta}$ \Rightarrow Calculate $G_{\alpha\beta}$ \Rightarrow Use that for $T_{\alpha\beta}$

Physically meaningful solutions: That's the hard part!

Solving Einstein's Eqs.: The toolbox

- Analytic solutions
 - Symmetry assumptions
 - Schwarzschild, Kerr, FLRW, Vaidya, Tangherlini, Myers-Perry, ...
- Perturbation theory
 - \bigcirc Assume solution is close to a known "background" $g_{lphaeta}$
 - Regge-Wheeler-Zerilli-Moncrief, Teukolsky, QNMs, EOB, ...
- Post-Newtonian theory
 - Solution Assume small velocities \Rightarrow Expansion in
 - Blanchet, Buonanno, Damour, Will,...
- Numerical Relativity

2. Foundations of Numerical Relativity

The Newtonian 2-body problem

 m_1

 m_2

Eqs. of motion

0

$$m_1 \frac{d^2 \vec{r_1}}{dt^2} = \vec{F} = -G \frac{m_1 m_2}{r^2} \hat{\vec{r}} = -m_2 \frac{d^2 \vec{r_2}}{dt^2}$$

Solution: Keppler ellipses, parabolic, hyperolic

 $r = \frac{r_0}{1 + \epsilon \cos \theta}$

- e.g. Sperhake CQG 1411.3997
- What's different in GR?
 - No point particles in GR!
 - GR is non-linear
 - No "background" time and space
 - Systems typically are dissipative \Rightarrow Gravitational waves
 - No obvious formulation as time evolution problem

A list of tasks in NR

• **Target:** Predict time evolution of a physical system in GR

Einstein eqs.: 1) Cast as evolution system

2) Choose a "good" formulation

3) Discretize for a computer

Gauge: Choose "good" coordinates

Technical aspects: 1) Mesh refinement / spectral domains

2) Singularity handling (excision)

3) Parallelization

Initial data: 1) Solve constraints

2) Get "realistic" initial data

Diagnostics: 1) GW extraction, kicks, ...

2) Horizon data, ADM mass,...

2.1 Formulations of Einstein's equations

The Einstein equations

• Recall:
$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

- In this form, the mathematical character is unclear! hyperbolic, elliptic, parabolic?
- Coordinates x^α are on equal footing.
 Time singled out only through signature of the metric!
- Well-posedness of the equations? Suitable for numerics?
- There are various ways to address these questions
 - \rightarrow Formulations of the equations

2.1.1 ADM type 3+1 formulations

The 3+1 decomposition

ADM 3+1 split: Arnowitt, Deser & Misner 1962

York 1979, Choquet-Bruhat & York 1980

Def.: Spacetime := (\mathcal{M}, g)

= Manifold with metric of signature -+++**Def.:** Cauchy surface := A spacelike hypersurface Σ in \mathcal{M} such that each timelike or null curve without endpoint intersects Σ exactly once.

The (D-1)+1 decomposition

Def.: A spacetime is globally hyperbolic

- $:\Leftrightarrow$ it admits a Cauchy surface
- From now on: Let (\mathcal{M}, g) be glob.hyp.

Then one can show:

- \exists smooth $t: \mathcal{M} \mapsto \mathbb{R}$ such that
- 1) The gradient $\mathbf{d}t \neq 0$ everywhere

2) level surfaces t = const are hypersurfaces: $\forall_{t_1 \in \mathbb{R}} \quad \Sigma_{t_1} = \{ p \in \mathcal{M} : t(p) = t_1 \}, \quad \Sigma_{t_1} \cap \Sigma_{t_2} = \emptyset \Leftrightarrow t_1 \neq t_2$

The 3+1 decomposition

• 1-Form:
$$\mathbf{d}t$$
; vector: $\frac{\partial}{\partial t} =: \partial_t \Rightarrow \langle \mathbf{d}t, \partial_t \rangle = 1$

Def.: Time like unit field: $n_{\mu} := -\alpha(\mathbf{d}t)_{\mu}$ Lapse function: $\alpha := \frac{1}{||\mathbf{d}t||}$ Shift vector: $\beta^{\mu} := (\partial_t)^{\mu} - \alpha n^{\mu}$ Adapted coordinates: $(t, x^i), x^i$ label points in Σ_t

Adapted coordinate basis:

$$\partial_t = \alpha n + \beta, \quad \partial_i := \frac{\partial}{\partial x^i}$$

The 3+1 decomposition

Def.: A vector \boldsymbol{v}^{α} is tangent to $\Sigma_t :\Leftrightarrow \langle \mathbf{d}t, \boldsymbol{v} \rangle = (\mathbf{d}t)_{\mu} v^{\mu} = 0$

Def.: Projector $\perp^{\alpha}{}_{\mu} := \delta^{\alpha}{}_{\mu} + n^{\alpha}n_{\mu}$

Projection of the metric

 $\gamma_{\alpha\beta} := \bot^{\mu}{}_{\alpha} \bot^{\nu}{}_{\beta} g_{\mu\nu} = g_{\mu\nu} + n_{\mu} n_{\nu} \quad \Rightarrow \quad \gamma_{\alpha\beta} = \bot_{\alpha\beta}$

- In adapted coordinates (t, x^i) : Ignore t component in $\gamma_{\alpha\beta} \rightarrow \gamma_{ij}$ "spatial metric" or "First fundamental form"
- Spacetime metric:

$$g_{\alpha\beta} = \left(\begin{array}{c|c} -\alpha^2 + \beta_m \beta^m & \beta_j \\ \hline & \beta_i & \gamma_{ij} \end{array} \right)$$

 $\Leftrightarrow \quad ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$

Extrinsic curvature

- **Def.:** Extrinsic curvature: $K_{\alpha\beta} := \bot \nabla_{\beta} n_{\alpha}$
- $abla_{eta} n_{lpha}$ is not symmetric, but $ot \perp
 abla_{eta} n_{lpha}$ is!
- The minus sign is a non-universal convention
- One can show that $\mathcal{L}_n \gamma_{\alpha\beta} = n^{\mu} \nabla_{\mu} \gamma_{\alpha\beta} + \gamma_{\mu\beta} \nabla_{\alpha} n^{\mu} + \gamma_{\alpha\mu} \nabla_{\beta} n^{\mu} = -2K_{\alpha\beta}$ • Interpretation of $K_{\alpha\beta} \rightarrow$ Embedding of Σ_t in \mathcal{M}

Decomposition of the Einstein eqs.

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}$$
$$\Rightarrow R_{\alpha\beta} = 8\pi \left(T_{\alpha\beta} - \frac{1}{D-2}g_{\alpha\beta}T\right) + \frac{2}{D-2}\Lambda g_{\alpha\beta}$$

Energy momentum tensor

$$\rho := T_{\mu\nu} n^{\mu} n^{\nu} ,$$

$$j_{\alpha} := - \bot^{\mu}{}_{\alpha} T_{\mu\nu} n^{\nu} ,$$

$$S_{\alpha\beta} := \perp T_{\alpha\beta}, \quad S = \gamma^{\mu\nu} S_{\mu\nu},$$

 $T_{\alpha\beta} = S_{\alpha\beta} + n_{\alpha}j_{\beta} + n_{\beta}j_{\alpha} + \rho n_{\alpha}n_{\beta}, \quad T = S - \rho.$

Lie derivative

 $\mathcal{L}_{m}K_{ij} = \partial_{t}K_{ij} - \beta^{m}\partial_{m}K_{ij} - K_{mj}\partial_{i}\beta^{m} - K_{im}\partial_{j}\beta^{m}$ $\mathcal{L}_{m}\gamma_{ij} = \partial_{t}\gamma_{ij} - \beta^{m}\partial_{m}\gamma_{ij} - \gamma_{mj}\partial_{i}\beta^{m} - \gamma_{im}\partial_{j}\beta^{m}$

The ADM version of the Einstein eqs. Introduction of the extrinsic curvature: $\mathcal{L}_{\boldsymbol{m}}\gamma_{ij} = -2\alpha K_{ij}$ • $\perp^{\mu}_{\alpha}\perp^{\nu}_{\beta}$ projection $\mathcal{L}_{\boldsymbol{m}}K_{ij} = -D_i D_j \alpha + \alpha (\mathcal{R}_{ij} + KK_{ij} - 2K_{im}K^m{}_j) + 8\pi\alpha \left(\frac{S-\rho}{D-2}\gamma_{ij} - S_{ij}\right) - \frac{2}{D-2}\Lambda\gamma_{ij}$ "Evolution equations" \bullet $n^{\mu}n^{\nu}$ projection $\mathcal{R} + K^2 - K^{mn} K_{mn} = 2\Lambda + 16\pi\rho$ "Hamiltonian constraint" • $\perp^{\mu} {}_{\alpha} n^{\nu}$ projection $D_i K - D_m K_i^m = -8\pi j_i$ "Momentum constraints" Problem: Doesn't work! ADM eqs. not "Strongly hyperbolic" 0

Problem: Doesn't w

The BSSN system

Goal: Modify ADM eqs. to get a strongly hyperbolic system

Shibata & Nakamura PRD 52 (1995), Baumgarte & Shapiro PRD gr-qc/9810065

Use (i) conformal desomposition, (ii) trace split, (iii) aux. variables

$$\gamma := \det \gamma_{ij}, \quad \chi = \gamma^{-1/(D-1)}, \quad K = \gamma^{mn} K_{mn},$$
$$\tilde{\gamma}_{ij} = \chi \gamma_{ii} \qquad \Leftrightarrow \quad \tilde{\gamma}^{ij} = \frac{1}{\chi} \gamma^{ij}$$
$$\tilde{A}_{ij} = \chi \left(K_{ij} - \frac{1}{D-1} \gamma_{ij} K \right) \qquad \Leftrightarrow \quad K_{ij} = \frac{1}{\chi} \left(\tilde{A}_{ij} + \frac{1}{D-1} \tilde{\gamma}_{ij} K \right)$$
$$\tilde{\Gamma}^{i} = \tilde{\gamma}^{mn} \tilde{\Gamma}^{i}_{mn}$$

Auxiliary constraints

0

$$\tilde{\gamma} = 1, \qquad \tilde{\gamma}^{mn} \tilde{A}_{mn} = 0, \qquad \mathcal{G}^i \equiv \tilde{\Gamma}^i - \tilde{\gamma}^{mn} \tilde{\Gamma}^i_{mn} = 0.$$

2.1.2 Generalized harmonic formulation

The generalized harmonic gauge (GHG)

Harmonic gauge: Choose coordinates such that

$$\Box x^{\alpha} = \nabla^{\mu} \nabla_{\mu} x^{\alpha} = -g^{\mu\nu} \Gamma^{\alpha}_{\mu\nu} = 0$$

 D dimensional Einstein eqs. in harmonic gauge: R_{αβ} = -¹/₂g^{μν}∂_μ∂_νg_{αβ} + ... principle part of wave equation ⇒ Manifestly hyperbolic!
 Problem: Start with a hypersurface t = const Does t remain timelike?
 Goal: Generalize the harmonic gauge

Garfinkle PRD gr-qc/0110013; Pretorius CQG gr-qc/0407110; Lindblom et al CQG gr-qc/0512093

 \rightarrow Source function $H^{\alpha} = \nabla^{\mu} \nabla_{\mu} x^{\alpha} = -g^{\mu\nu} \Gamma^{\alpha}_{\mu\nu}$

The generalized harmonic equations

- Any spacetime in any coordinates can formulated in GH form! Problem: find the corresponding H^{α}
- Promote the H^{α} to evolution variables
- Einstein equations in GH form:

$$\frac{1}{2}g^{\mu\nu}\partial_{\mu}\partial_{\nu}g_{\alpha\beta} = -\partial_{\nu}g_{\mu(\alpha}\partial_{\beta)}g^{\mu\nu} - \partial_{(\alpha}H_{\beta)} + H_{\mu}\Gamma^{\mu}_{\alpha\beta} - \Gamma^{\mu}_{\nu\alpha}\Gamma^{\nu}_{\mu\beta} - \frac{2}{D-2}\Lambda g_{\alpha\beta} - 8\pi \left(T_{\mu\nu} - \frac{1}{D-2}T g_{\alpha\beta}\right).$$

with constraints

$$\mathcal{C}^{\alpha} = H^{\alpha} - \Box x^{\alpha} = 0$$

Still has principle part of the wave equation!!! Manifestly hyperbolic Friedrich Comm.Math.Phys. 1985; Garfinkle PRD gr-qc/0110013; Pretorius CQG gr-qc/0407110

2.2 Initial data, gauge

Analytic initial data

Schwarzschild, Kerr, Tangherlini, Myers-Perry,...

e.g. Schwarzschild in isotropic coordinates $ds^{2} = -\left(\frac{2r-M}{2r+M}\right)^{2} dt^{2} + \left(1 + \frac{M}{2r}\right)^{4} \left[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})\right]$

Time symmetric initial data with *n* BHs:
 Brill & Lindquist PR 131 (1963) 471, Misner PR 118 (1960) 1110

Problem: Find initial data for dynamic systems

Goals: 1) Solve constraints

0

2) Realistic snapshot of physical system

This is mostly done using the ADM 3+1 split

The gauge freedom

- \bigcirc Recall: Einstein's equations say nothing about α , β^{i}
- Any choice of lapse and shift gives a solution to Einstein's eqs.
- This is the coordinate or gauge freedom of GR
- If the physics do not depend on α , β^i , then why bother?
- Answer: The performance of the numerics DO depend very sensitively on the gauge!

Ingredients for good gauge

- Singularity avoidance
- Avoid slice stretching
- Aim for stationarity in a co-moving frame
- Well-posedness of the system of PDEs
- Generalize "good" gauge, e.g. harmonic
- Lots of good luck!

Bona et al PRL (1995) Alcubierre et al PRD gr-qc/0206072 Alcubierre CQG gr-qc/0210050 Garfinkle PRD gr-qc/0110013

2.3 Discretization of the equations

Finite differencing

 \bigcirc Consider one spatial and one time dimension: t, x

• Replace computational domain by discrete points $x_i = x_0 + i \, dx$, $t_n = t_0 + n \, dt$

• Approximate function: $f(t_n, x_i) \approx f_{n,i}$

Mesh refinement

Alternative discretization schemes

- Spectral methods: high accuracy, efficiency, complexity
 e.g. Caltech-Cornell-CITA code; http://www.black-holes.org/SpEC.html
 Application to moving punctures hard
 - e.g. Tichy PRD 0911.0973

Also used in symmetric asymptotically AdS spacetimes e.g. Chesler & Yaffe PRL 1011.3562; Santos & Sopuerta PRL 1511.04344

- Finite volume methods
- Finite element methods
 - e.g. Arnold, Mukherjee & Pouly gr-qc/9709038 Sopuerta et al CQG gr-qc/0507112 Sopuerta & Laguna PRD gr-qc/0512028

2.4 Excision of the singularity

Inner boundary: Singularity treatment Cosmic censorship \Rightarrow horizon protects outside from singularity Moving puncture method: "we get away with it..." Baker et al PRL gr-qc/0511103; Campanelli et al PRL gr-qc/0511048 Excision: Cut out region around the singularity 0 Caltech-Cornell-CITA code, Pretorius' code уł

2.5 Diagnostics

The subtleties of diagnostics in GR

• Successful NR simulation \rightarrow Tons of numbers for grid functions

- Typically: Spacetime metric $g_{\alpha\beta}$ and time derivative $\partial_t g_{\alpha\beta}$, or ADM variables γ_{ij} , K_{ij} , α , β^i
- Challenges
 - \bigcirc Coordinate dependence of numbers \Rightarrow Gauge invariants
 - Global quantities at ∞ , domain finite \Rightarrow Extrapolation
 - \bigcirc Complexity of variables, e.g. GWs \Rightarrow Spherical harmonics
 - Solution \bigcirc Local quantities meaningful? \Rightarrow Horizons
 - AdS/CFT correspondence: Dictionary

Global quantities vs. local quantities

- Global mass, momentum, angular momentum
 - Well defined through asymptotics of metric
 - Arnowitt, Deser & Misner gr-qc/0405109; Gourgoulhon gr-qc/0703035
 - These are spacetime properties and constant by construction
- At null infinity: Bondi mass → Gravitational wave energy Bondi et al; Sachs Proc.Roy.Soc.A 1962
- ► Local mass, energy, ... : No rigorous definition in GR!
 Except: Black holes → Apparent, isolated, dynamic Horizons
 E.g.: Ashtekar & Krishnan gr-qc/0308033; Thornburg gr-qc/9508014

Alternative extraction methods

- Newman-Penrose scalars: Convenient projections of Weyl tensor \rightarrow Newman Penrose formalism Newman & Penrose J.Math.Phys. '61 Outgoing GWs: $\Psi_4 = -C_{\alpha\beta\gamma\delta}k^{\alpha}\bar{m}^{\beta}k^{\gamma}\bar{m}^{\delta}$
- Landau-Lifshitz pseudo tensor: simple but gauge dependent see e.g. Lovelace et al PRD 0907.0869

0

 Regge-Wheeler-Zerilli-Moncrief perturbation formalism: perturbations on Schwarzschild → gauge invariant master function Regge & Wheeler PR '57; Zerilli PRL '70; Moncrief Ann.Phys. '74
 Cauchy-characteristic extraction at *I*⁺ using a compactified exterior vacuum patch with characteristic coordinates: very accurate Reisswig et al PRL 0907.2637; Babiuc et al PRD 1011.4223

2.6 History of Numerical Relativity

A brief history of NR

- 1952: Cauchy problem has locally unique soln. Choquet-Bruhat
- 1964: First documented num.study Hahn & Lindquist Ann.Phys. '64
- 1977: First coordinated NR effort De Witt, Smarr, Eppley, Cadez
- 1990s: "Binary black hole Grand Challenge" Project
 First BH mergers (head-on), GWs, 3D code
 Matzner, Anninos, Price, Seidel, Smarr + many others
- 1998: BSSN: Shibata & Nakamura PRD '95, Baumgarte & Shapiro PRD '98
- 1999 : First 3+1 Binary BH merger Brügmann gr-qc/9912009
- 2000-2004: Much progress in gauge, formulations, excision
- 2005: Breakthrough Pretorius (GHG) Brownsville, Goddard (Mov.Puncs.)
- 2006 ...: Gold rush Years

3. Results from BH simulations

3.1 BHs in GW physics

Detection and parameter estimation

Generic transient search

- No specific waveform model
- Identify excess power in detector strain data
- Use multi detector maximum likelihood Klimenko et al. 1511.05999

Binary coalescence search

- "Matched Filtering" e.g. Allen et al. PRD 2012
- Compare data stream with GW templates ("Finger print search")
- \bigcirc Bayesian analysis: Prior \rightarrow Posterior

Black-hole binaries: parameters

8+2 Intrinsic parameters

Masses m_1, m_2

Spins S_1, S_2

Eccentricity (often ignored; GW emission circularizes orbit)

7 Extrinsic parameters

Location: Luminosity distance D_L , Right ascension α , Declination δ Orientation: Inclination ι , Polarization ψ Time t_c and Phase ϕ_c of coalescence

Anatomy of a BHB coalescence

Binary Black Hole Evolution: Caltech/Cornell Computer Simulation

Top: 3D view of Black Holes and Orbital Trajectory

Middle: Spacetime curvature: Depth: Curvature of space Colors: Rate of flow of time Arrows: Velocity of flow of space

Bottom: Waveform (red line shows current time)

Thanks to Caltech-Cornell groups

GW source modeling

- Key requirement for matched filtering: GW template catalog
- Model black holes in general relativity
 - Solution Post Newtonian theory \rightarrow Inspiral Blanchet LRR-2006-4
 - Solution Numerical relativity \rightarrow final orbits, merger
 - \bigcirc Perturbation theory \rightarrow Ringdown
- Combine "NR" with "Post-Newtonian", "Effective one body" methods
- 2 families in use: Phenomenological, Effective one body
- Use reduced bases or similar to cover parameter space
- Multipolar decomposition

$$h_{+} - ih_{\times} = \sum_{\ell m} {}_{-2}Y_{\ell m}(\theta, \phi)h_{\ell m}(t)$$

Tools of mass production

• Explore seven-dim. parameter space. E.g. SpEC catalogue: 171 waveforms: $m_1/m_2 \le 8$ up to 34 orbits Mroué et al PRL 1304.6077

3.2 Fundamental properties of BHs

Why 4 dimensions? Cosmic censorship in D=5

Lehner & Pretorius PRL 1006.5960

Axisymmetric code

0

Evolution of black string...

 Gregory-Laflamme instability;
 cascades down in finite time until string has zero width
 ⇒ Naked singularity

Note: spacetime not asympt.flat!

Cosmic censorship in D=5

Figueras, Kunesch & Tunyasuvunakool PRL 1512.04532

- 3+1 code with modified cartoon for 5th dimension
- Conformal Z4 system
- Fast rotating black hole: assympt.flat!
- Gregory-Laflamme instability
 develops for thin ring
 ⇒ Violation of CC!

Conclusions

- GW150914 marks the dawn of GW astronomy
 - "We" measured the change in length by a fraction
 - of an atomic nucleus caused by sth. 1 Gyr away!
 - Numerical relativity accurately models this!
- First surprise: BHs heavier than expected
- Parameter estimation requires a lot more GW modeling
- NR Applications: Astrophysics, High-energy phys., Fundamentals
 - A new window to the universe reveals interesting things...

