Long-Lived Inverse Chirp Signals from Core-Collapse in Massive Scalar-tensor Gravity Ulrich Sperhake

C Moore, M Agathos, R Rosca, D Gerosa, C Ott

DAMTP, University of Cambridge LIGO Scientific Collaboration LIGO-P1700218

arxiv:1708.03651

New Horizons for Gravity ETH Zürich, 29 May 2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690904, from H2020-ERC-2014-CoG Grant No. "MaGRaTh" 646597, from NSF XSEDE Grant No. PHY-090003 and from STFC Consolidator Grant No. ST/L000636/1.

Do we need a theory beyond GR?

When asked what he would do if Eddington's mission failed...

Then I would feel sorry for the good Lord. The theory is correct anyway.

(Albert Einstein)

izguotes.com

But we have reasons to search for "beyond GR"

Q Renormalization: Requires, e.g., higher curvature terms.
 → GR is low-energy limit of more fundamental theory
 Q Dark energy: Why is Λ so small and why ρ_{dark} ~ ρ_{mat}
 Q Dark matter: "Neptune" or "Vulcan" ?

Scalar tensor theory of gravity

- Scalars appear naturally in extra-dimensional theories
- Scalars prominent in cosmology
- ST theory well-posed; fairly well understood mathematically
- No-hair theorems limit potential of black-hole spacetimes
 - ⇒ Matter: Neutron stars, core-collapse
- Best example of smoking gun to date:
 - Spontaneous scalarization Damour & Esposito-Farese PRL 1993
- Collapse studies in massless case

Novak PRD 1998/1999 Novak & Ibanez ApJ 2000, Gerosa+ CQG 2016

Core-collapse scenario to 0th order

- Massive stars: $M_{\rm ZAMS} = 8 \dots 100 \ M_{\odot}$
- Core compressed from $\sim 1500 \text{ km}$ to $\sim 15 \text{ km}$ $\sim 10^{10} \text{ g/cm}^3$ to $\gtrsim 10^{15} \text{ g/cm}^3$
- Released gravitational energy: $\mathcal{O}(10^{53})$ erg
 ~ 99 % in neutrinos, ~ 10^{51} erg in outgoing shock, explosion
- Explosion mechanism: still uncertainties...
- Failed explosions lead to BH formation
 "Collapsar": possible engine for long-soft GRBs
- All of this handled for us by Woosley & Heger Phys.Rept. 2007
 → Initial pre-collapse profile

Theoretical framework

Einstein frame: conformal metric

$$\bar{g}_{\mu\nu} = F(\varphi) \, g_{\mu\nu}$$

Action

$$S = \frac{1}{16\pi} \int dx^4 \sqrt{-\bar{g}} \left[\bar{R} - 2\bar{g}^{\mu\nu} \partial_\mu \varphi \,\partial_\nu \varphi - 4V(\varphi) \right] + S_m [\psi_m, \bar{g}_{\mu\nu}/F(\varphi)]$$

- Energy momentum tensor: $T_{\alpha\beta} = \rho h u_{\alpha} u_{\beta} + P g_{\alpha\beta}$
- Spherical symmetry: $d\bar{s}^2 = \bar{g}_{\mu\nu}dx^{\mu}dx^{\nu} = -F\alpha^2 dt^2 + FX^2 dr^2 + r^2 d\Omega^2$

$$u^{\alpha} = \frac{1}{\sqrt{1 - v^2}} [\alpha^{-1}, \ vX^{-1}, \ 0, \ 0]$$

- Equations (gravity): $\partial_r \alpha = \dots$, $\partial_r X = \dots$ $\partial_t \partial_t \varphi = \dots$
- Equations (matter): $(\rho, h, v) \leftrightarrow (D, S^r, \tau) \Rightarrow HRSC$ GR1D code O'Connor & Ott CQG 2009

Equation of state

- Pressure: "cold" + "thermal" contribution: P = P_c + P_{th}
 Hybrid EOS for cold part: P_c = $\begin{cases}
 K_1 \rho^{\Gamma_1} & \text{if } \rho \leq \rho_{\text{nuc}} \\
 K_2 \rho^{\Gamma_2} & \text{if } \rho > \rho_{\text{nuc}}
 \end{cases}$
- Internal energy from 1st law: $\epsilon_c = \begin{cases} \frac{K_1}{\Gamma_1 1} \rho^{\Gamma_1 1} & \text{if } \rho \leq \rho_{\text{nuc}} \\ \frac{K_2}{\Gamma_2 1} \rho^{\Gamma_2 1} + E_3 & \text{if } \rho > \rho_{\text{nuc}} \end{cases}$
- Thermal pressure: $P_{\rm th} = (\Gamma_{\rm th} 1)\rho(\epsilon \epsilon_{\rm th})$
- Parameters: $\Gamma_1 = 1.3$, $\Gamma_2 = 2.5$, $\Gamma_{th} = 1.35$

 $K_1 = 4.9345 \times 10^{14} \text{ [cgs]}, \quad \rho_{\text{nuc}} = 2 \times 10^{14} \text{ g cm}^{-3}$ $K_2, \quad E_3 \quad \text{from continuity at} \quad \rho = \rho_{\text{nuc}}$

The coupling function and potential

Coupling function, potential:

$$F(\varphi) = e^{-2\alpha_0\varphi - \beta_0\varphi^2}$$

$$V(\varphi) = \frac{1}{2}\mu^2\varphi^2$$

• Only for $\mu \lesssim 10^{-19} \,\mathrm{eV}$!! Here: $\mu[\mathrm{eV}] \in [10^{-15}, 10^{-12}]$ Ramazanoglu & Pretorius PRD 2016

Free parameters: $\mu, \alpha_0, \beta_0, \Gamma_1, \Gamma_2, \Gamma_{th}$

Convergence test

• For $\mu = 10^{-14} \text{ eV}$, $\alpha_0 = 10^{-4}$, $\beta_0 = -20$ $\Gamma_1 = 1.3$, $\Gamma_2 = 2.5$, $\Gamma_{\text{th}} = 1.35$

• Using $N_1 = 5000$, $N_2 = 10000$, $N_3 = 20000$ points

• Discretization error: $\sim 5\%$

 $r\varphi \gg$ massless case; fairly insensitive to parameters; dispersion!

Waveforms ``far from" the source

- LIGO will observe the
 above scalar profiles
 after they propagate
 to large distances
- In the massless case this is almost trivial $\varphi(t;r) = \frac{1}{r}\varphi(t-r;r_{extract})$
- In the massive case
 things are more
 complicated: signals
 propagate with
 dispersion

Waveforms ``far from" the source Far from the source, scalar dynamics are governed by the flat-space Klein-Gordon wave equation ∂²_tφ - ∇²φ + ω²_{*}φ = 0 Easier to work with the radially rescaled field σ ≡ rφ As the signal propagates outwards: Low frequencies are suppressed High frequency power spectrum is unaffected Signal spreads out in time High frequencies arrive earlier than low frequencies

- Signal becomes increasingly oscillatory

Waveforms ``far from" the source

Signals become more oscillatory as they propagate outwards

- In the large-distance limit the stationary phase approximation applies \rightarrow analytic expression for the time domain signal
 - Signals have a characteristic "inverse chirp" lasting many years

SPA frequency as function of time (Inverse Chirp) $F(t) = \frac{\omega_*}{2\pi} \frac{1}{\sqrt{1 - (d/t)^2}}$

Distance to source $d = 10 \,\mathrm{kpc}$

Detection with LIGO-Virgo

GWs from core-collapse in ST gravity may fall into 3 classes:

- Burst signals: For light scalars (μ < 10⁻²⁰ eV) and short
 distances (10 kpc), the pulse does not disperse significantly;
 will look like a < 1 s burst
- Continuous wave signal: for heavier scalars, long dispersion turns pulse into a quasi-monochromatic signal
 capture using standard directed CW searches, assuming EM counterpart; e.g. SN1987A, Kepler1604
- Stochastic background:
 - Many quiet sources + very long duration (superposed)
 - Cosmological redshift + mass variation \rightarrow smeared low-f cutoff
 - Characteristic "bump" in background, peaking at $\sim \omega_*$
 - Well in reach for aLIGO/AdVirgo stochastic searches

Conclusions

- We have simulated stellar core collapse in massive ST theory
- Explored combined parameter space of EOS and ST theory parameters
- Spontaneous scalarization occurs as in massless case, but
 effect can be more dramatic because the scalar mass "screens"
 the effect of the scalar, allowing larger values of α₀, β₀ to be
 compatible with binary pulsar observations
- Signals propagate with dispersion, signals can last for years to centuries at kpc distances
- Signals can show up in LIGO/Virgo burst, CW or stochastic searches