Orbiting black-hole binaries and apparent horizons in higher dimensions Ulrich Sperhake

DAMTP, University of Cambridge

YITP Workshop: Dynamics in Strong Gravity Universe Kyoto UK, 4 Sep 2018 with W Cook, E Berti, V Cardoso, F Pretorius + others

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690904, from H2020-ERC-2014-CoG Grant No. "MaGRaTh" 646597, from NSF XSEDE Grant No. PHY-090003 and from STFC Consolidator Grant No. ST/L000636/1.

Overview

- Introduction: Why black holes in higher dimensions?
- Numerical Relativity in >4 dimensions
- High-energy collisions in 3+1 dimensions
 - Head-on collisions
 - Grazing collisions
- Black-hole collisions in >4 dimensions
 - Collisions from rest
 - Boosted collisions
- Conclusions and outlook

1. Introduction and motivation

Motivation: The hierarchy problem

- Gravity $\approx 10^{-39} \times$ other forces
- Higgs field $\mu_{obs} \approx 125 \text{ GeV} = \sqrt{\mu^2 \Lambda^2}$ where $\Lambda \approx 10^{16} \text{ GeV} =$ grand unification energy
- Requires enormous fine-tuning
- Fine tuning exists: $\frac{987654321}{123456789} = 8.0000000729$
- Or E_{Planck} much lower? Gravity strong at small r ?
- Gravity not measured below $\sim 0.1 \ {
 m mm}$. Diluted due to
 - Large extra dimensions Arkani-Hamed, Dimopoulos, Dvali '98
 - Extra dimensions with warp factor Randall & Sundrum '99

Motivation: TeV Gravity

Black Holes on Demand

Scientists are exploring the possibility of producing miniature black holes on demand by smashing particles together. Their plans hinge on the theory that the universe contains more than the three dimensions of everyday life. Here's the idea:

Particles collide in three dimensional space, shown below as a flat plane.

As the particles approach in a particle accelerator, their gravitational attraction increases steadily.

When the particles are extremely close, they may enter space with more dimensions, shown above as a cube. The extra dimensions would allow gravity to increase more rapidly so a black hole can form.

Such a black hole would immediately evaporate, sending out a unique pattern of radiation.

Particle collisions may form BHs

E.g. Dimopoulos & Landsberg '01, Giddings & Thomas '01

Motivation: Holography (AdS/CFT)

- Holography
 - \bigcirc BH entropy $\propto A_{
 m Hor}$

 - Gravity in D dims \Leftrightarrow local FT in D - 1 dims

Model heavy ion collisions
 through BH collisions in 5D
 Bantilan & Romatschke '14

Motivation: Fundamental BH properties

Cosmic censorship

Lehner & Pretorius '10, Figueras, Kunesch, Tunyasuvunakool et al. '16, '17

Stability of AdS Bizon & Rostworowski '11

0

2. Numerical relativity in D dimensions

The spacetime split of general relativity

Einstein equations:

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu} \quad \Leftrightarrow \quad R_{\mu\nu} = 8\pi \left(T_{\mu\nu} - \frac{1}{D-2}Tg_{\mu\nu}\right) + \frac{2}{D-2}\Lambda g_{\mu\nu}$$

•
$$(D-1)+1$$
 decomposition

$$g_{\alpha\beta} = \begin{pmatrix} -\alpha^2 + \beta_m \beta^m & \beta_j \\ \hline & \beta_i & \gamma_{ij} \end{pmatrix}$$

Spallal IIICLIIC

$$\alpha = Lapse, \quad \beta^i = shift$$

 $\gamma_{ij} = spatial metric$

Extrinsic curvature $K_{\alpha\beta} := - \bot \nabla_{\beta} n_{\alpha}$, $\bot^{\mu}{}_{\alpha} = \delta^{\mu}{}_{\alpha} - n^{\mu} n_{\alpha}$ 0

Energy momentum tensor $\rho = T_{\mu\nu} n^{\mu} n^{\nu} , \quad j_{\alpha} = -\perp^{\mu}{}_{\alpha} T_{\mu\nu} n^{\nu} , \quad S_{\alpha\beta} = \perp T_{\alpha\beta}$

Arnowitt, Deser & Misner '62, York '77

The ADM version of the Einstein eqs.

Introduction of the extrinsic curvature:

 $\mathcal{L}_{\boldsymbol{m}}\gamma_{ij} = -2\alpha K_{ij}$

0

0

$$\perp^{\mu}{}_{\alpha}\perp^{\nu}{}_{\beta}$$
 projection

 $\mathcal{L}_{\boldsymbol{m}}K_{ij} = -D_i D_j \alpha + \alpha (\mathcal{R}_{ij} + KK_{ij} - 2K_{im}K^m{}_j) + 8\pi\alpha \left(\frac{S-\rho}{D-2}\gamma_{ij} - S_{ij}\right) - \frac{2}{D-2}\Lambda\gamma_{ij}$

"Evolution equations"

 $n^{\mu}n^{
u}$ projection

 $\mathcal{R} + K^2 - K^{mn} K_{mn} = 2\Lambda + 16\pi\rho$

"Hamiltonian constraint"

"Momentum constraints"

The BSSN system

Goal: Modify ADM eqs. to get a strongly hyperbolic system

Shibata & Nakamura PRD 52 (1995), Baumgarte & Shapiro PRD gr-qc/9810065

Use (i) conformal decomposition, (ii) trace split, (iii) aux. variables

$$\gamma := \det \gamma_{ij}, \quad \chi = \gamma^{-1/(D-1)}, \quad K = \gamma^{mn} K_{mn},$$
$$\tilde{\gamma}_{ij} = \chi \gamma_{ii} \qquad \Leftrightarrow \quad \tilde{\gamma}^{ij} = \frac{1}{\chi} \gamma^{ij}$$
$$\tilde{A}_{ij} = \chi \left(K_{ij} - \frac{1}{D-1} \gamma_{ij} K \right) \qquad \Leftrightarrow \quad K_{ij} = \frac{1}{\chi} \left(\tilde{A}_{ij} + \frac{1}{D-1} \tilde{\gamma}_{ij} K \right)$$
$$\tilde{\Gamma}^{i} = \tilde{\gamma}^{mn} \tilde{\Gamma}^{i}_{mn}$$

Auxiliary constraints

 $\tilde{\gamma} = 1, \qquad \tilde{\gamma}^{mn} \tilde{A}_{mn} = 0, \qquad \mathcal{G}^i \equiv \tilde{\Gamma}^i - \tilde{\gamma}^{mn} \tilde{\Gamma}^i_{mn} = 0.$

The BSSN equations

$$\mathcal{H} := \mathcal{R} + \frac{D-2}{D-1}K^2 - \tilde{A}^{mn}\tilde{A}_{mn} - 16\pi\rho - 2\Lambda = 0,$$
$$\mathcal{M}_i := \tilde{\gamma}^{mn}\tilde{D}_m\tilde{A}_{ni} - \frac{D-2}{D-1}\partial_i K - \frac{D-1}{2}\tilde{A}^m_i\frac{\partial_m\chi}{\chi} - 8\pi j_i = 0,$$

$$\begin{split} \partial_t \chi &= \beta^m \partial_m \chi + \frac{2}{D-1} \chi (\alpha K - \partial_m \beta^m) \,, \\ \partial_t \tilde{\gamma}_{ij} &= \beta^m \partial_m \tilde{\gamma}_{ij} + 2 \tilde{\gamma}_{m(i} \partial_j) \beta^m - \frac{2}{D-1} \tilde{\gamma}_{ij} \partial_m \beta^m - 2 \alpha \tilde{A}_{ij} \,, \\ \partial_t K &= \beta^m \partial_m K - \chi \tilde{\gamma}^{mn} D_m D_n \alpha + \alpha \tilde{A}^{mn} \tilde{A}_{mn} + \frac{1}{D-1} \alpha K^2 + \frac{8\pi}{D-2} \alpha [S + (D-3)\rho] - \frac{2}{D-2} \alpha \Lambda \,, \\ \partial_t \tilde{A}_{ij} &= \beta^m \partial_m \tilde{A}_{ij} + 2 \tilde{A}_{m(i} \partial_j) \beta^m - \frac{2}{D-1} \tilde{A}_{ij} \partial_m \beta^m + \alpha K \tilde{A}_{ij} - 2 \alpha \tilde{A}_{im} \tilde{A}^m_{\,\,j} \\ &+ \chi \left(\alpha \mathcal{R}_{ij} - D_i D_j \alpha - 8\pi \alpha S_{ij} \right)^{\text{TF}} \,, \\ \partial_t \tilde{\Gamma}^i &= \beta^m \partial_m \tilde{\Gamma}^i + \frac{2}{D-1} \tilde{\Gamma}^i \partial_m \beta^m - \tilde{\Gamma}^m \partial_m \beta^i + \tilde{\gamma}^{mn} \partial_m \partial_n \beta^i + \frac{D-3}{D-1} \tilde{\gamma}^{im} \partial_m \partial_n \beta^n \\ &- \tilde{A}^{im} \left[(D-1) \alpha \frac{\partial_m \chi}{\chi} + 2 \partial_m \alpha \right] + 2 \alpha \tilde{\Gamma}^i_{mn} \tilde{A}^{mn} - 2 \frac{D-2}{D-1} \alpha \tilde{\gamma}^{im} \partial_m K - 16\pi \frac{\alpha}{\chi} j^i - \sigma \mathcal{G}^i \partial_m \beta^m \,. \end{split}$$

Note: there exist slight variations of the exact equations

0

 \bullet Problem: For large D Cartoon ghostzones require lots of memory

Dimensional reduction: Modified Cartoon

- Solution: Use symmetry to relate "off-domain" to "on-domain"
 1) Coordinates: Xⁱ = (x^î, z, w^a) ~~ Xⁱ = (x^î, \rho, \phi, w⁵, ..., w^{D-1})
 2) Tensor components: T_{iφ} = ∂X^α/∂X^β/∂φ T_{αβ} = -wT_{iz} + zT_{iw}, w := w⁴
 3) By symmetry T_{iφ} = 0 ~~ T_{iw} = w/z T_{iz}
 4) Computational domain is w = 0 ~~ T_{iw} = 0
- Play same game for other tensor components, scalars, vectors and deriv's using also that Lie deriv's along \$\mathcal{\xi} = z \frac{\partial_w}{\omega} w \frac{\partial_z}{\omega}\$ vanish
 \$\Rightarrow\$ express all \$w^a\$ components and deriv's in terms of components and deriv's in the computational domain and one new func.

• E.g.:
$$\partial_w T_{iw} = \frac{T_{iz} - \delta_{iz} T_{ww}}{z}$$

; works for metric, ADM, BSSN variables

Pretorius gr-qc/0407110; Yoshino & Shibata PTPS 189/269; Cook et al 1603.00362

Initial data

• Conformal metric $\gamma_{ij} = \psi^4 \bar{\gamma}_{ij}$ Lichnerowicz '44, York '71 Conformal traceless split of the extrinsic curvature Assume K = 0, $\bar{\gamma}_{ij} = f_{ij}$, $\lim_{r \to \infty} \psi = 0$ 0 In words: Traceless E.Curv., conformal flatness, assymptotic flatness Analytic solution of momentum constraints Bowen & York '80 • Puncture data: $\psi = \psi_{BL} + u$, numerically solve Ham. constr. Brandt & Bügmann '97, Ansorg et al. '04, "TwoPunctures" Generalized to higher dimensions Zilhao et al. '11

3. Results in D=4

Does matter matter?

• Hoop conjecture \Rightarrow kinetic energy triggers BH formation

Einstein + minimally coupled, massive complex scalar field "Boson stars" Pretorius & Choptuik '10

- BH formation threshold $\gamma_{\rm thr} = 2.9 \pm 10 \% \sim 1/3 \gamma_{\rm hoop}$
- Model point particle collision by BH collisions
- Similar results for collisions of perfect fluid balls
 East & Pretorius '13, Rezzolla & Tanaki '13

Collisions of BHs in D=4

Orbital hang-up: Campanelli et al. PRD (2006)
 Equal-mass BHs, Boost $\gamma = 1/\sqrt{1-v^2}$ Impact parameter b = L/P

How are scattering threshold and radiated GW energy affected?

Collisions of BHs in D=4

Orbital hang-up: Campanelli et al. PRD (2006)
 Equal-mass BHs, Boost $\gamma = 1/\sqrt{1-v^2}$ Impact parameter b = L/P

How are scattering threshold and radiated GW energy affected?

Collisions of BHs in D=4

 Orbital hang-up: Campanelli et al. PRD (2006)
 Equal-mass BHs, Boost $\gamma = 1/\sqrt{1-v^2}$ Impact parameter b = L/P

How are scattering threshold and radiated GW energy affected?

Boosted BH head-on collisions in D=4

- BSSN, Cactus, Carpet, Moving Puncture, TwoPunctures, AHFinderDirect
- Equal-mass BHs, no spin $\lim_{\beta \to 1} E_{rad} = 14 \pm 3 \%$
- Agrees well with perturbative studies Berti et al PRD 1003.0812

Sperhake et al PRL 0806.1738; Healy et al 1506.06153

Scattering threshold

 $\bullet \quad b < b_{\text{scat}} \quad \Rightarrow \quad \text{Merger} \\ b > b_{\text{scat}} \quad \Rightarrow \quad \text{Scattering}$

Numerical study: $b_{\text{scat}} = \frac{2.5 \pm 0.05}{v} M$ Shibata et al PRD 0810.4735

Limit from Penrose construction: $b_{\rm scat} = 1.685 \ M$ Yoshino & Rychkov PRD hep-th/0503171

Impact of structure of the colliding BHs?
 → Collide spinning BHs

Grazing collisions in D=4

Spins: aligned, zero, anti aligned Sperhake et al PRL 1211.6114

 \bullet $b_{
m scat}, E_{
m rad}$: spin effects washed out as v
ightarrow c

3. Results in D>4

GW extraction in D>4

- Generalization of Regge-Wheeler-Zerilli-Moncrief to higher D Kodama-Ishibashi formalism Kodama & Ishibashi hep-th/0305147, hep-th/0308128
 Applications in NR: Witek et al 1006.3081, 1011.0742, 1406.2703
- Landau-Lifshitz pseudo tensor:
 Yoshino & Shibata PRD '09
- Generalization of the Newman-Penrose scalars:
 Peeling properties of Weyl tensor: Godazgar & Reall 1201.4373
 Numerical implementation: Cook & Sperhake '1609.01292

GW extraction in D>4

Weyl-tensor based extraction in higher D; Cook & Sperhake 1609.01292

Construct null frame: Gram-Schmidt starting with

$$l = -\frac{\partial}{\partial r}, \quad k = \frac{\partial}{\partial u} - \frac{1}{2}\frac{\partial}{\partial r}, \quad m_{(\alpha)} = \frac{\partial}{\partial \phi^{\alpha}}$$

• Analog of Newman-Penrose scalar Ψ_4 :

$$\Omega'_{(\alpha)(\beta)} = C_{ABCD} \, k^A \, m^B_{(\alpha)} \, k^C \, m^D_{(\beta)}$$

Mass loss

0

$$\dot{M}(u) = -\lim_{r \to \infty} \frac{r^{D-2}}{8\pi} \int_{S^{D-2}} \left(\int_{-\infty}^{u} \Omega'_{(\alpha)(\beta)}(\tilde{u}, r, \phi^{\gamma}) d\tilde{u} \right)^2 d\omega$$

Use modified cartoon to accommodate extra dimensions

Collisions starting from rest

Initial data: Generalized Brill-Lindquist data

$$K_{IJ} = 0, \qquad \gamma_{IJ} = \psi^{4/(D-3)} \,\delta_{IJ}$$

$$\psi = 1 + \frac{\mu_{\mathcal{A}}}{4\left[\sum_{K} (X^{K} - X^{K}_{\mathcal{A}})^{2}\right]^{(D-3)/2}} + \frac{\mu_{\mathcal{B}}}{4\left[\sum_{K} (X^{K} - X^{K}_{\mathcal{B}})^{2}\right]^{(D-3)/2}}$$

BH mass M, horizon radius R_h :

$$\mu = \frac{16\pi M}{(D-2)\mathcal{A}_{D-2}}, \quad \mu = R_h^{D-3}, \quad \mathcal{A}_{D-2} = \frac{2\pi^{(D-1)/2}}{\Gamma\left(\frac{D-1}{2}\right)},$$

 \bigcirc Note: gravity falls off $\propto 1\,/\,r^{D-2}$

Radiated energy

Compare: Point particle calculations

Berti, Cardoso & Kipapa 1003.0812

Radiated energy

Radiated energy: $E_{rad}(t)$ for q = 1

Heaviside and Delta function in the limit $D \rightarrow \infty$?

Radiated GW energy in head-on collisions

Radiated GW energy in head-on collisions

$$D = 4: \lim_{v \to 1} E/M = 14 \pm 3\%$$

$$D = 5: \lim_{v \to 1} E/M = 12.8\%$$

$$D = 6: \lim_{v \to 1} E/M = 14.2\%$$

D=5: Non-conformally flat initial data

 $D = 5: \lim_{v \to 1} E/M = 12.8\% \qquad D = 5: \lim_{v \to 1} E/M = 10.1\%$ • Recall shockwave result: $E/M = \frac{1}{2} - \frac{1}{D}$ Coelho et al 1203.5355

Testing the AH finder

• D = 5 Tangherlini BH

h/r_S	1/8	1/16	1/32
$M_{ m hor}/M_{ADM}$	1.001380	1.000237	1.000008
Q	$Q_2 = 4.00$	Q = 4.99	

 \bigcirc D = 5 Myers Perry BH

$a/\sqrt{\mu}$		0.1			0.9	
$h/r_{ m S}$	1/16	1/32	1/64	1/32	1/48	1/64
$M_{ m hor}/M$	1.0005025	1.0001200	1.0000287	1.0012295	1.0003776	1.0000498
$j_{ m hor}$	0.1007076	0.1001868	0.1000571	0.8979883	0.8991569	0.8995459
Q	$Q_2 = 4$	$Q_M = 4.02$	$Q_J = 4.19$	$Q_2 = 2.86$	$Q_M = 2.60$	$Q_J = 3.00$

Orbiting BH binaries in D=6

Binaries

	$x_0/r_{ m S}$	$j_{ m gl}$	$h/r_{ m S}$	$M_{ m hor}/M$	$j_{ m hor}$	$E_{\rm rad}/M$	$t_{ m m}/r_{ m S}$
A1	3.185	0.1646	1/64	0.9986	0.1597	1.969×10^{-3}	137
A2	3.185	0.1646	1/96	0.9984	0.1577	1.975×10^{-3}	136
A3	3.185	0.1646	1/128	0.9984	0.1573	1.975×10^{-3}	135
B1	6.186	0.1271	1/96	1.0014	0.1215	1.376×10^{-3}	836
B2	6.186	0.1362	1/64	0.9986	0.1373	1.471×10^{-3}	2158
B3	6.186	0.1362	1/96	0.9994	0.1356	$1.549 imes 10^{-3}$	1738
B4	6.186	0.1362	1/128	0.9997	0.1352	1.558×10^{-3}	1612
B5	6.186	0.1408	1/96	_	_	$5.7 imes 10^{-5}$	_

• Gravity in D > 4

- Solution Rapid fall-off \Rightarrow slow orbits and dynamics
- \bigcirc No stable timelike circular orbits \Rightarrow plunge or scatter

Orbiting BH binaries in D=6

- \bigcirc Without fine-tuning $\lesssim 1$ orbit
- Barely any inspiral signal
- GW energy $1.3 \times 10^{-3} \dots 2 \times 10^{-3} M$ About O(10) less than in D = 4
- Final spin $j \approx 0.12 \dots 0.16$ Cf. in D = 4: $j \approx 0.7$

Conclusions

- D = 4 well understood
 - \bigcirc Maximal radiation $E_{
 m max}pprox 0.5~M$
 - Scattering threshold $b_{\rm scat} \approx \frac{2.5}{v} M$
 - Zoom-whirl behavior
- \bigcirc D > 4 : work in progress
 - Wave extraction and horizon finding in place
 - \bigcirc Collisions from rest: Particle limit reliable only at high q
 - Solution Boosted head-on collisions in D = 5, 6
 - $D = 5: \lim_{v \to 1} E/M \approx 10 \dots 13\%$
 - $D = 6: \lim_{v \to 1} E/M \approx 14\%$

Orbiting binaries: slow dynamics, low GW emission