Boson-Star Binaries and Gravitational Waves

Ulrich Sperhake

DAMTP, University of Cambridge

Frontiers in Numerical Relativity (FNR 2022) University of Jena, 28 July 2022

Who really deserves the credit...

Robin Croft

Thomas Helfer

Bo-Xuan Ge

Miren Radia

Talk at 18:00 Initial data for unequal-mass boson-star collisions

Tamara Evstafyeva

Eugene Lim

Katy Clough

Interlocutor

https://www.grchombo.org

Overview

- Introduction and Motivation
- Gravitational Afterglow of Boson Stars
- (Tumbling) Towards accurate Boson-Star Binary Waveforms
- Pan-pan!
- Conclusions

1. Introduction and motivation

The idea of boson stars

"Gravitational-electromagnetic entities" or Geons

Wheeler 1955

PHYSICAL REVIEW

VOLUME 97, NUMBER 2

JANUARY 15, 1955

Geons*

JOHN ARCHIBALD WHEELER Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received September 8, 1954)

Associated with an electromagnetic disturbance is a mass, the of equations of self-consistent geon; mass and radius values.

gravitational attraction of which under appropriate circumstances 4. Transformations and interactions of electromagnetic geons; is capable of holding the disturbance together for a time long in evaluation of refractive index barrier penetration integral for comparison with the characteristic periods of the system. Such spherical geon; photon-photon collision processes as additional

- Energy = mass gravitates \rightarrow Compact (equilibrium?) objects
- Geons are not equilibrium configurations
- Dark matter candidates: QCD axions, ALPs, dark photons,...
- Complex fields (scalar, vector,...) 0
 - \rightarrow Genuine equilibrium states; $T_{\alpha\beta}$ stationary!
- First shown for scalar fields \rightarrow "Boson stars" 0 Feinblum & McKinley PR 168 (1968), Kaup PR 172 (1968), Ruffini & Bonazzola PR 187 (1969)

A boson star zoo

- Mini BSs (no self-interaction) Kaup PR (1968) and others
- Solitonic" BSs (self-interacting scalar field) → more compact
 Colpi+ PRL (1986), Lee PRD (1987), ...
- Proca stars Brito+ Phys.Lett.B (2016)
- ℓ -boson stars (multiple scalar fields) Alcubierre+ CQG (2018)
- Multi-oscillating BSs Choptuik+ PRL (2019)
- Thin-shell BSs (one scalar with false vacuum state)
 Collodel & Doneva 2203.08203
- Higher-spin fields Jain & Amin 2109.04892
- Multi-field BSs Sanchis-Gual+ PRL (2021)

May condense from local over-densities Widdicombe+ JCAP (2018)
 Focus here: Single-scalar, solitonic and mini BSs

• GR + minimally coupled complex scalar field φ

$$S = \int \sqrt{-g} \left\{ \frac{1}{16\pi G} R - \frac{1}{2} [g^{\mu\nu} \nabla_{\mu} \bar{\varphi} \nabla_{\nu} \varphi + V(\varphi)] \right\} \, \mathrm{d}x^4$$

$$T_{\alpha\beta} = \partial_{(\alpha}\bar{\varphi}\,\partial_{\beta)}\varphi - \frac{1}{2}g_{\alpha\beta}[g^{\mu\nu}\partial_{\mu}\bar{\varphi}\,\partial_{\nu}\varphi + V(\varphi)]$$

- Potential; analogous to EOS: $V_{\min}(\varphi) = m^2 |\varphi|^2$, $V_{\text{soli}}(\varphi) = m^2 |\varphi|^2 \left(1 - 2\frac{|\varphi|^2}{\sigma_0^2}\right)^2$, or ...
- Spherically symmetric equilibrium models

Ansatz: $\varphi(t,r) = A(r)e^{i\omega t}$

Regular solutions only for countably infinite values $\omega_0 < \omega_1 < \omega_2 < \dots$ (ground state, excited states)

• E.g. Maximal-mass mini boson star (Kaup limit)

 $\omega_0 = 0.853 \, m \,, \qquad M = 0.633 \, M_{\rm Pl}^2 / m$

• Excited states unstable:

collapse to BH, dispersion or migration to stable ground-state BS Balakrishna, Seidel, Suen PRD (1998)

Mass-Radius curves similar to Tolman-Oppenheimer-Volkoff stars

Mass-Radius curves similar to Tolman-Oppenheimer-Volkoff stars

unstable

stable

Spinning Boson Stars

Scalar BSs cannot spin perturbatively Kobayashi+ PRD (1994)

Spinning scalar BSs exist with but have quantized spin
 Schunck & Mielke Phys.Lett.A (1998)

Spinning scalar BSs likely unstable in contrast to

spinning Proca stars! Sanchis-Gual+ PRL (2019)

Possibly due to toroidal structure: scalar field vanishes at origin

- What happens in scalar BS inspiral and merger?
 - Kerr BH
 - Non-spinning BS; angular momentum shed
 - Total dispersal
 - Spinning BS with exact angular momentum?

2. Gravitational Afterglow of BSs

The Configuration

Croft, Helfer, Ge, Radia, Evstafyeva, Lim, US & Clough 2207.05690

Equal-mass eccentric (grazing) collision of two mini BSs

of compactness ~ 0.025

	Run	N	$d_{ m init} \; [m^{-1}]$	$b [m^{-1}]$	v_x	$ig M \; [M_{ m Pl}^2 \; m^{-1}]$
low	1	256	80	8	0.1	0.395(0)
medium	2	320	80	8	0.1	0.395(0)
high	3	384	80	8	0.1	0.395(0)
ultra-high	4	448	80	8	0.1	0.395(0)

GRChombo code Radia+ CQG (2022), Andrade+ JOSS (2022)

- Full AMR
- CCZ4 formulation
- Moving puncture gauge

Initial data improved superposition: No Malaise!

Helfer+ PRD (2018), CQG (2021), Tamara's talk at 18:00

Snapshots of the time evolution

The merger remnant

- Boson-star like remnant
- Does it spin?

Compute Angular-momentum measure including curvature! Croft gr-qc/2203.13845; see also Clough CQG (2021)

• *L* inside sphere of $r \le 60 m^{-1}$

The merger remnant

Leading order decay: exponential with $t_{half} \approx 4\,000 \ m^{-1}$ $m = 10^{-14} \text{ eV} \Rightarrow \approx \text{LISA band:} t_{half} \approx 4 \min$ $m = 10^{-25} \text{ eV} \Rightarrow t_{half} = \mathcal{O}(\text{Myr})$

0

0

Oscillatory part due to dynamics of post-merger remnant

Power Spectrum

- Compute Fourier spectrum of afterglow (2,0) multipole
- (2,2) multipole looks very similar
- Dominant mode $f \approx 0.006 \, m$
- Signs of beating
- For reference: $10^{-14} \text{ eV} \approx 2.42 \text{ Hz}$
- Cf. Palenzuela+ PRD (2017) :
 Fundamental frequency of remnant

Radiated energy

- Radiated GW energy and power
- Power peak at merger
- Barely drops in afterglow
- $E_{\rm tot}/M \approx 4 \times 10^{-4}$

(squishy BSs)

But keeps growing!!!

Contraction of the second

Animation

Credits: Thomas Helfer

(2,2) and (2,0) multipoles synchronize as ang.momentum drops.

Coincidence or causal relation?

3. Binary BS inspiral

BS binary setup

- Potential $V(\varphi) = m^2 |\varphi|^2 \left(1 2\frac{|\varphi|^2}{\sigma_0^2}\right)^2$, $\sigma_0 = 0.2$
- Equal mass $A_{\rm ctr} := |\varphi_{\rm ctr}| = 0.17 \, M_{\rm Pl}$
- Velocity v_{tan} , v_{rad}
- Distance $2x_0$
- Lean code
 - Cactus / Carpet
 - AHFinderDirect
 - BSSN
 - Moving Puncture Gauge
 - ONO-Malaise initial data

BS binary setup

• Potential
$$V(\varphi) = m^2 |\varphi|^2 \left(1 - 2\frac{|\varphi|^2}{\sigma_0^2}\right)^2$$
, $\sigma_0 = 0.2$

• Equal mass $A_{\rm ctr} := |\varphi_{\rm ctr}| = 0.17 M_{\rm Pl}$

• Velocity v_{tan} , v_{rad}

• Distance $2x_0$

Gravitational-Wave Strain

$$v_{\text{tan}} = 0.172, \quad v_{\text{rad}} = 0.002, \quad x_0 = 6.1446$$

4. Pan-pan

Disclaimer

- Warning: Only gamble with time you can afford to lose!!!
- E Lim: "Uli's Ahab problem"
- There might be no solution...

What's the problem?

- We model complex scalar fields with $\operatorname{Re}[\varphi]$, $\operatorname{Im}[\varphi]$
- Recall single boson star: $\varphi(t,r) = A(r)e^{i\omega t}$ Time evolution: A(t,r) = A(r), $\omega = \text{const}$

Amplitude + phase easier than Re + Im

• Problem: Phase not defined at $\varphi = 0$

 \Rightarrow Singular evolution equation for φ

I tried...

Summary of observations

- We model complex scalar fields with $\operatorname{Re}[\varphi]$, $\operatorname{Im}[\varphi]$
- Recall single boson star: $\varphi(t,r) = A(r)e^{i\omega t}$ Time evolution: A(t,r) = A(r), $\omega = \text{const}$

Amplitude + phase easier than Re + Im

Problem: Phase not defined at $\varphi = 0$

 \Rightarrow Singular evolution equation for φ

- I tried... and failed.
 - Amplitude + phase
 - Log measures
 - Fluid analogy for scalar fields
 - Riemann sphere with patches

5. Summary

Summary

- Motivation: Dark matter, BSs as proxies
- Clean problem
- Long-lived BS afterglow
- Long, accurate inspirals not easy but looks doable
- Find better formalisms?