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Outline

• Theory: How to/why automate LPT?!

• How ALPT can help with the HQET matching!



Automation?!LPT in the Schrödinger Functional

A typical diagram
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LPT challenges

� Diagram Level
� Schrödinger functional enhances number of

diagrams even at 1-loop.

� Vertex Level
� SF boundary conditions lead to background field.
� Many actions in use, many Feynman rules.

With automation I mean automatic generation of

Feynman diagrams and

Feynman rules!

We want to evaluate expressions like this one:



The Schrödinger Functional

M. Lüscher, P. Weisz, R. Narayanan, U. Wolff, 1992. S. Sint, 1996, M. Lüscher 2006.
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�
(x)
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P± = 1/2(1± γ0)

ζ(x) =
�

y

K̃(x, y)ψ(y), ζ �(x) =
�

y

K̃ �(x, y)ψ(y),

ζ(x) =
�

y

ψ(y)K(y,x), ζ �(x) =
�

y

ψ(y)K �(y,x),

ψ(x+ L k̂) = eiθkψ(x).

P+ψ(x)|x0=0 = ψ(x)P−|x0=0 = 0

P−ψ(x)|x0=T = ψ(x)P+|x0=T = 0,



The Schrödinger Functional

M. Lüscher, P. Weisz, R. Narayanan, U. Wolff, 1992. S. Sint, 1996, M. Lüscher 2006.
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�
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This induces a background field,

Uµ(x) = exp{g0qµ(x)}Vµ(x).

Uµ(x+ k̂L) = Uµ(x),

Uk(x)|x0=0 = eC(x), Uk(x)|x0=T = eC
�(x).



Diagram Generation
For example, take O = ψ1(x) γ0γ5 ψ2(x) ζ2(y) γ5 ζ1(z).

Split up gauge and fermion averages, �O� = �[O]F �G.

First perform fermion
 Wick contractions,

�O� = � ψ1(x) γ5 ψ2(x) ζ2(y) γ5 ζ1(z) �G

= � [ζ1(z)ψ1(x)]F γ5 [ψ2(x)ζ2(y)]F γ5 �G.

Then the
gauge average,

�f�G =
1

Z

�
D[U ]e−SG[U ]ZF [U ]f [U ],

ZF [U ] =

�
D
�
ψ, ψ

�
e−SF [ψ,ψ,U].



Fermion Wick Contractions
Key observation:

All basic fermion Wick contractions may be written in terms of

S = (D +m)−1the propagator (for a given gauge field)

K,K �, . . .and the boundary kernels

M. Lüscher, P. Weisz, 1996.

δ

δψ(x)
SF = (D +m)ψ(x), 0 < x0 < T.Where

For example
[ψ(x)ψ(y)]F = S(x, y),

[ψ(x)ζ(z)]F =
�

y

S(x, y)K(y, z).



ALPT - The Comic

Your favorite observable
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Fermion Wick contractions
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(plus many more!)

Expand in powers of g0
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Gluon Wick contractions
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Perturbative Expansion
Now, expand

S(x, y) = S(0)(x, y) + g0S
(1)(x, y) + . . .

K(x,y) = K(0)(x,y) + g0K
(1)(x,y) + . . .

and perform the gluon Wick contractions.

M. Lüscher, P. Weisz, 1996.

�
D(0) +m+ g0D

(1) + . . .
��

S(0)(x, y) + g0S
(1)(x, y) + . . .

�
= δxy

by solvingS(i)(x, y)We may obtain

order by order.



Fermion Actions
We assume that the fermion action looks like this

SF =
�

i

ci ψ(xi) ΓiUi(xi, yi)ψ(yi),

U(x, y) = UlUl−1 . . . U1,

Ui = Us[i]µ[i](x[i]), U−µ(x) = U †
µ(x− µ̂),

s[i] µ̂[i] = x[i− 1]− x[i], x[0] = y.

For a given parallel transporter U(x, y)
x[i] y → xthe points define a path .

2. Lattice Regularization

the limit a → 0, such that the full action reads

S
W
F = a

4 �

x

�
ψ(x)(γµ∇̃µ + m0)ψ(x) − a r ψ(x)∇∗∇ψ(x)

�
, (2.6)

where 0 < r ≤ 1 can be chosen at will. This action does not give rise to doublers.
Generally, irrelevant terms with the correct symmetries may be included in the lattice

action to modify the theory at non-zero lattice spacing a without changing the continuum
limit. This can be used for example to speed up the convergence of the lattice theory in
the limit a → 0 (c.f. [LSSW96] for a discussion of O(a)-improvement in the Schrödinger
functional). The point we want to make here is that various lattice formulations of the
continuum theory are possible, each of which has different properties at finite a and a
different perturbative expansion in the sense of (1.21). Our aim is to set up a framework
for lattice perturbation theory that can handle rather general actions. We assume a
typical bilinear fermion action, given by

SF [U, ψ, ψ] =
�

i

ψ(xi) wi Γi Ui(xi, yi) ψ(yi). (2.7)

Here, wi are complex weights, Γi spin matrices in the Pauli or Dirac algebra, and Ui

parallel transporters on the lattice. A generic parallel transporter U(x, y) (being the

U5

U4

U3 U2

U1

ψ(x)

ψ(y)

w Γ
x [4]

x [3]
x [2] x [1]

Figure 2.1.: Single parallel transporter contributing to a bilinear quark action.

lattice version of (1.15)) is a product of links Ui and may be fully specified by giving
a starting point x0 = y and a sequence of signed directions C = (s[1]µ[1], . . . , s[l]µ[l]).
These directions lead us, starting form y, to the lattice point x. Since some of them may
be negative, we have to take some care on how to define the corresponding sequence of
links Ui connecting x and y,

U(x, y) = Ul Ul−1 . . . U1. (2.8)
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Fermion Actions
We assume that the fermion action looks like this

SF =
�

i

ci ψ(xi) ΓiUi(xi, yi)ψ(yi),

U(x, y) = UlUl−1 . . . U1,

Ui = Us[i]µ[i](x[i]), U−µ(x) = U †
µ(x− µ̂),

s[i] µ̂[i] = x[i− 1]− x[i], x[0] = y.

For a given parallel transporter U(x, y)
x[i] y → xthe points define a path .

3. Automated Lattice Perturbation Theory in the Schrödinger Functional

We may now define αj = �
k δj,uk but they have the same meaning as in (3.48) Plugging

(3.52) into (3.53), we get

U (r)(x, y) =
�

a

L

�3r �

k1,a1,µ1,t1

. . .
�

kr,ar,µr,tr

q
a1
µ1(k1; t1) . . . q

ar
µr

(kr; tr)

×
�

0<u1≤...≤ur≤l





Iar . . .� �� �

αl factors

Vl . . . V1





e

�r

j=1 iφaj (tj)s̃[uj ]/2

× r!
α1! . . . αl!

r�

j=1
s[uj ] δt[uj ],tj

δµ[uj ],µj
e

i kj x̃[uj ]
. (3.54)

For illustration of this formula, one of the O(g3
0) contributions to the expansion (3.54)

U5
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U3 U2

U1

x

y

x [4]

x [3]
x [2] x [1]

q2
(q4)2

Figure 3.5.: Pictorial representation of an individual contribution to the perturbative
expansion of a Wilson line at order g3

0.

of the Wilson line that was shown in figure 2.1 is depicted in figure 3.5.

Trivial Background Field

If we set Vµ(x) ≡ 1, (3.54) simplifies to

U (r)(x, y) =
�

a

L

�3r �

k1,a1,µ1,t1

. . .
�

kr,ar,µr,tr

q
a1
µ1(k1; t1) . . . q

ar
µr

(kr; tr)

×Iar Iar−1 . . . Ia1

�

0<u1≤...≤ur≤l

r!
α1! . . . αl!

r�

j=1
s[uj ] δt[uj ],tj

δµ[uj ],µj
e

i kj x̃[uj ]
.
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Parallel Transporters

... but the whole parallel transporter has not...

U(x, y) =
�

r

gr0
r!

U (r)(x, y) =
�

nl

gnl
0

nl!
qnl
l Vl . . .

�

n1

gn1
0

n1!
qn1
1 V1.

Each link as a simple expansion,

Uµ(x) = exp{g0 qµ(x)}Vµ(x).

General strategy:

Bring the contributions to a standard form.
Define a multiplication rule and construct       link by link.U (r)

M. Lüscher, P. Weisz, 1986. A. Hart, G.M. von Hippel, et. al., 2009. S. Takeda, U. Wolff, 2007.



pastor

1) Create a XML input file.
2) Parse the file to generate C++ programs.
3) Run the programs.

The basic steps are

User input:
• Fermion and gluon action in symbolic form.
• Observables in terms of propagators and boundary kernels.

Output:
All contributions (including        improvement) up to         .O(a) O(g20)



Data Analysis

C. Useful Formulae and Methods

where
b(x0) = E x0 − iC, E = −i{C

� − C}/T. (C.10)

The choices of C, C � above give E a simple form,

E = −γ
√

3λ̃8, γ = 1
LT

�
η + π

3

�
. (C.11)

The background field then has the properties

V (t) Ia = Ia V (t) e
iφa(t)

, (C.12)
e

ia2E
Ia = Iae

ia2E
e

iφ�
a , (C.13)

where the phases φ, φ� are listed in table C.1.

a φ�
a φa(t)

1 −3 a2γ −3aγt + a
L(η[3

2 − ν] − π
3 )

3 0 0
4 −3 a2γ −3aγt + a

L(η[3
2 + ν] − 2π

3 )
6 0 a

L(2ην − π
3 )

8 0 0

Table C.1.: Phases φa, φ�
a as in [Tak09]. Note that φ2 = −φ1, φ5 = −φ4, φ7 = −φ6, and

analog equations hold for φ�
a.

C.3. Extrapolation of Perturbative Data
If we evaluate an observable at one loop with pastor, we obtain numerical estimates
f(I), up to round-off errors, for a range of lattice resolutions I = L/a. We assume that
f represents an observable that has at most a logarithmic divergence. The data is then
expected to have the asymptotic expansion [LW86]

f(I) =
∞�

n=0

an + bn log I

In
. (C.14)

In some cases, one may restrict some of the coefficients. If the observable is known to
have a continuum limit, we may drop b0. Furthermore, a1 and b1 may be set to zero if we
deal with an O(a)-improved quantity. One is usually interested in obtaining estimates
for the first few coefficients ai, bi. A method to extract these is described in [LW86],
where multiple data points are combined to improve the estimates successively, up to a
point where round-off errors can no longer be neglected and become comparable to the
systematic uncertainty.

We found it more convenient to work with another (in certain cases equivalent) method
proposed in [BWW00]. Here, one performs a number of fits with a fit function like (C.14),
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An observable with at most a logarithmic divergence looks like this

C. Useful Formulae and Methods

where
b(x0) = E x0 − iC, E = −i{C

� − C}/T. (C.10)

The choices of C, C � above give E a simple form,

E = −γ
√

3λ̃8, γ = 1
LT

�
η + π

3

�
. (C.11)

The background field then has the properties

V (t) Ia = Ia V (t) e
iφa(t)

, (C.12)
e

ia2E
Ia = Iae

ia2E
e

iφ�
a , (C.13)

where the phases φ, φ� are listed in table C.1.

a φ�
a φa(t)

1 −3 a2γ −3aγt + a
L(η[3

2 − ν] − π
3 )

3 0 0
4 −3 a2γ −3aγt + a

L(η[3
2 + ν] − 2π

3 )
6 0 a

L(2ην − π
3 )

8 0 0

Table C.1.: Phases φa, φ�
a as in [Tak09]. Note that φ2 = −φ1, φ5 = −φ4, φ7 = −φ6, and

analog equations hold for φ�
a.

C.3. Extrapolation of Perturbative Data
If we evaluate an observable at one loop with pastor, we obtain numerical estimates
f(I), up to round-off errors, for a range of lattice resolutions I = L/a. We assume that
f represents an observable that has at most a logarithmic divergence. The data is then
expected to have the asymptotic expansion [LW86]

f(I) =
∞�

n=0

an + bn log I

In
. (C.14)

In some cases, one may restrict some of the coefficients. If the observable is known to
have a continuum limit, we may drop b0. Furthermore, a1 and b1 may be set to zero if we
deal with an O(a)-improved quantity. One is usually interested in obtaining estimates
for the first few coefficients ai, bi. A method to extract these is described in [LW86],
where multiple data points are combined to improve the estimates successively, up to a
point where round-off errors can no longer be neglected and become comparable to the
systematic uncertainty.

We found it more convenient to work with another (in certain cases equivalent) method
proposed in [BWW00]. Here, one performs a number of fits with a fit function like (C.14),

90

M. Lüscher, P. Weisz, 1996.

We extract the coefficients using successive fits.
A. Bode, P. Weisz, U. Wolff, 2000.

Round-off errors can be estimated using long double precision.



Using pastor as an Aid for the

Matching of HQET and QCD



Flavor Currents

... and for the axial vector current ...

In total16 matching coefficients for the currents (plus 3 in the action)!

ZHQET

A , ZHQET

A
, c(i)

A

�
V HQET

R

�

0

(x) = ZHQET

V

�
V stat

0
+

2�

i=1

c(i)
V
V (i)
0

(x)

�
,

V stat

0
(x) = ψl(x)γ0ψh(x),

V (1)

0
(x) = ψl(x)

1

2
γi

�
∇S

i −←−∇S
i

�
ψh(x),

V (2)

0
(x) = ψl(x)

1

2
γi

�
∇S

i +
←−∇S

i

�
ψh(x)

�
V HQET

R

�

k
(x) = ZHQET

V

�
V stat

k +
6�

i=3

c(i)
V
V (i)
k (x)

�
,

V (3)

k (x) = ψl(x)
1

2
γkγi

�
∇S

i −←−∇S
i

�
ψh(x),

V (4)

k (x) = ψl(x)
1

2

�
∇S

k −←−∇S
k

�
ψh(x),

V (5)

k (x) = ψl(x)
1

2
γkγi

�
∇S
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i

�
ψh(x),

V (6)

k (x) = ψl(x)
1

2

�
∇S

k +
←−∇S

k

�
ψh(x)



Good Matching Conditions

With correctly matched parameters, we expect

How big are the corrections really?

Very important question if we want to use 

X in a matching condition!

X
QCD(mh) = X

stat +O(1/mh),

X
QCD(mh) = X

stat + cXX
1/mh + ωkinX

kin + ωspinX
spin +O(1/m2

h).



Matching the Vector Current
We define

which looks like this:

t = 0 t = T

V0(x)

m3 = z/L m2 = 0

m1 = 0

fV0
1 (x0; θ, z = Lm3) = − 1

2

�

x

�ζ1 γ5 ζ3 V0(x) ζ
�
2 γ5 ζ

�
1�,

Vµ(x) = ψ3(x)γµψ2(x), ζi = L−3/2
�

x

ζi(x)

γ5γ5



The Full Observable
We also need the 

boundary-to-boundary correlator

f1(θ, z) = −�ζ �2 γ5 ζ �3 ζ3 γ5 ζ2�

to construct

Question: Is this a good observable for the matching?

Lüscher, Sint, Sommer, and Weisz, Nucl.Phys., B478:365– 400, 1996.

ΦV0(θ, z) = ZV
fV0
1 (T/2; θ, z)�
f1(θ, z)f1(θ, 0)

.

t = 0 t = T

m3 = z/L

m1 = 0

γ5γ5



The Static Approximation

We define

One may then expect that up to one loop

ΦV0(z) = (1 +B
stat
A g

2
0)XV(z/L) +O(1/z).

M. Kurth, R. Sommer, 2001.

XV(µ) = Z
stat
A,lat(µ)Z

stat
V/AX

bare
V , X

bare
V =

�
f
V0
1

�stat
(T/2; θ)

�
f stat
1 (θ)f1(θ, 0)

,

Z
stat
A,lat(µ) = 1− γ0 log(aµ) g

2
0 +O(g40).



Tree Level
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One Loop - Theory
We define the quantity

Y (1)
V = ΦV0,(1)(z)−

�
Bstat

V − γ0 log(z) +
�
Zstat
V/A

�(1)
�
X(0)

V ,

and may expect that

(“lat” = lattice minimal subtraction)

Y (1)
V (z)

1/z→0−−−−→ X(1)
V,lat = Xbare,(1)

V − γ0 log(a/L)X
bare,(0)
V .



One Loop - Results
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5.2. Perturbative Matching

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Φ
A

1
,(
0
)

1/z

θ = 0.0
θ = 0.5
θ = 1.0

Figure 5.7.: ΦA1 at tree level in the continuum limit. The point size is bigger than the
error.

its static partner in appendix C.3.1.
We define the one loop quantities

Y (1)
V = ΦV0,(1)(z) −

�
Bstat

V − γ0 log(z) +
�
Zstat

V/A
�(1)�

X(0)
V , (5.43)

Y (1)
A = ΦA1,(1)(z) −

�
Bstat

A − γ0 log(z) +
�
Zstat

V/A
�(1)�

X(0)
A , (5.44)

such that

Y (1)
V (z) 1/z→0−−−−→ Xbare(1)

V − γ0 log(a/L)Xbare(0)
V = X(1)

V,lat, (5.45)

Y (1)
A (z) 1/z→0−−−−→ Xbare(1)

A − γ0 log(a/L)Xbare(0)
A = X(1)

A,lat. (5.46)

The fit functions included in the plots are of the form

Y (1)
V (z) = X(1)

V,lat + c1/z + c2/z2, (5.47)

Y (1)
A (z) = X(1)

A,lat + c1/z + c2/z2, (5.48)

for the solid lines. The dashed lines are a linear fit in 1/z, setting c2 = 0. The data
points at z = 4 are not included in the fits. Even though the fit is only indicative, since

71

The fit functions
have the form

.

Very small
1/z, 1/z2

corrections
(note the scale)!



Performance
Diagram count

QCD static

30 29

22 21

5. Applications in HQET
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Figure 5.8.: ΦV0 at one loop level in the continuum limit.

points at z = 4 are not included in the fits. Even though the fit is only indicative, since

possible terms of the form log(z)/zn
are not included, one can anticipate that the higher

order corrections corresponding to c2 are rather small. We did not attempt to fit the

logarithmic terms due to the limited available data.

In the case of ΦA1 , a value of θ = 0 seems to minimize the higher order corrections in

1/z both tree level and one loop. For ΦV0 , the value θ = 0.5 seems to be a good compro-

mise between the corrections at the two orders in perturbation theory we investigated.

Performance

For the evaluation of all 30 loop diagrams for fV0
1 , fA1

1 , 22 for f1, plus 29 and 21 for

the static counterparts, about two weeks real time including idle time for jobs waiting

in the queue were required on the PC farm in Zeuthen for all values for the parameters

combined. The farm consists of Westmere, Nehalem, and Harpertown blade systems

with clock speeds varying from 2.66 GHz to 3.08 GHz.

5.2.3. Cut-off Effects of Step Scaling Functions

The last application deals with the scaling step (5.6). We want to investigate the one

loop cut-off effects of two of the step scaling functions (5.7) that were used in [BdMGS10].
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Figure 5.6.: ΦV0 at tree level in the continuum limit. The point size is bigger than the

error.

θ (∆ΦA1)(0) (∆ΦV0)(0)

0.5 0.7% 1.7%

1.0 2.4% 8.2%

Table 5.4.: 1/z corrections for ΦV0 and ΦA1 at tree level, z = 10.

is easily seen by inserting the tree level propagators.

The continuum limit at tree level was extracted from computations with L up to 200,

again using the fitting procedure explained in appendix C.3, neglecting round-off errors.

One Loop

The observables f1, ΦV0 , and ΦA1 were calculated at one loop level for z = 4, 6, 8, 10
(and at z = 0 for f1), with lattice resolutions up to L/a = 40, and for θ = 0.0, 0.5, 1.0.

Furthermore, we evaluated the static counterparts f stat
1 , ΦV0,stat

and ΦA1,stat
for lattices

with L/a up to 28. No bigger lattice sizes are required for the HQET quantities, since

their continuum limit is easier to obtain due to a weaker a/L-dependence. The continuum

values are presented in figures 5.6 and 5.7, the data for 1/z = 0 is again the static value

as will be explained shortly. The extraction of the continuum values is done with the

usual method, the output of the analysis program used is given for ΦV0 at z = 6 and for
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Total time (incl. idle) on DESY PC farm in Zeuthen: Two weeks.



Conclusions/Outlook
‣ Improve pastor.

- Better support for Abelian background.

- Smearing.
- Staggered quarks.

- Chirally twisted boundary conditions.

- Two loops?!

‣ More applications.

- One loop matching of all components of 
the currents

This work has been supported by the DFG SFB TR9 Computergestützte Theoretische Teilchenphysik and the REA of the EuropeanUnion 
under Grant Agreement number PITN-GA-2009- 238353 (ITNSTRONGnet).



Appendix



Definitions
Okin(x) = ψh(x)∇

∗
k∇kψh(x),

Ospin(x) = ψh(x)σ ·B(x)ψh(x),

σk =
1

2
�ijkσij ,

Bk(x) =
i

2
�ijkFij(x).
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Figure 4.2.: Relative round-off error for diagrams contributing to f1 at z = 8, θ = 0.5.
To guide the eye, two fit functions of the form y(L/a) = b (L/a)5 with fit
parameter b are included.

differences should only come from and can indeed be explained by round-off errors. As
stated before the evaluation of diagrams of the type “1” as shown in figure 4.1 requires
O(L3T 2) additions. The rising of the relative errors in the figure is compatible with this
behavior, as suggested by the fit functions.

Since the diagrams of type “2” have only one vertex, the number of additions decreases
to O(L3T ) and the round-off errors are smaller. The spread of the errors is rather large
and we refrain from performing a fit in this case.

4.2.1. Concerning Round-Off Errors

The pastor C++ back end may be instructed at compile time to use the data type
long double instead of double, such that the round-off error of any observable can be
estimated by performing calculations with both data types and comparing the results.
For all calculations that will be presented in chapter 5, we estimated the round-off error
in this fashion. For a representative set of observables, calculations in both levels of
precision were performed up to sufficiently large lattice sizes L/a. The magnitude of the
relative difference δ was assumed to represent the round-off error and fitted using the
function

δ(L/a) = b (L/a)5
. (4.23)
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4.2. Cross Checks With Known Perturbative Results

According to (2.38), we may now write [DMGPS07] up to order 1/mh

[fA]R = ZHQET

A Zζh
Zζl

e−mbarex0
�
f stat

A + c(1)

A f stat

δA + ωkinfkin

A + ωspinf spin

A

�
, (4.19)

[f1]R = Z2

ζh
Z2

ζl
e−mbareT

�
f stat

1 + ωkinfkin

1 + ωspinf spin

1

�
, (4.20)

[k1]R = Z2

ζh
Z2

ζl
e−mbareT

�
f stat

1 + ωkinfkin

1 − 1
3ωspinf spin

1

�
, (4.21)

with f stat

δA as introduced in (3.2).

4.2. Cross Checks With Known Perturbative Results
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diagram 1b
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T
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Figure 4.1.: Diagrams involved in the cross checks, numbered as in [KS02].

As a first check, we compared data calculated with pastor to known results for f1 and
fA at order g2

0
from the calculations performed for [KS02]. All available diagrams were

compared for a subset of the available lattice spacings and all of them were in complete
agreement within round-off errors. For brevity, we will present the comparison of the
loop diagrams shown in figure 4.1, which are relevant for the correlation function f1 (4.4).
The solid fermion lines touching the boundary are a shorthand for O(g2

0
) contributions

of
H(x) = a7

�

y,z
S(x, y)K(y, z)P+, H̃(x) = a7

�

y,z
P−K̃(z, y)S(y, x). (4.22)

The numerical values for these diagrams were provided by the authors of [KS02] and
used to check against data calculated in pastor. The magnitude of the relative difference
in the numerical results of the two calculations for z = 8, θ = 0.5 is plotted for a
number of lattice sizes which are relevant for practical applications in figure 4.2. The
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Per-diagram comparison with data by Kurth and Sommer.



MC Cross Checks

4.3. Cross Checks with Monte Carlo Data

Then, b was increased by ∼ 50% to give a safe estimate. The fits included in figure 4.2

suggest that this procedure is valid.

4.3. Cross Checks with Monte Carlo Data
With the pastor package, one can generate diagrams for a broad class of observables

with ease. To gain more confidence in the software setup, we compared pastor results

for a number of correlation functions to quenched Monte Carlo data at small couplings,

β = 50, 100 (corresponding to g2
0 = 0.12 and g2

0 = 0.06, respectively). The simulations

were performed on the APEnext machines in Zeuthen before they were decommissioned.

We investigated the correlation functions fA, f stat
A , f

spin
A , fkin

A , f1, f stat
1 , f

spin
1 , fkin

1 ,

f stat
δA , f

spin
δA , kV , fP , and k1, as defined in section 4.1. The improvement coefficient c̃t

(2.71) was set to its one loop value. All quantities are calculated for L = T = 4, 6 and

θh = θl = θ ∈ {0.0, 0.5, 1.0}. The relativistic correlation functions are evaluated for

two different masses for the flavor we labeled heavy, given by the hopping parameters

κh ∈ {κc, 0.1}, where κc is the two loop critical value defined in analogy to (2.28). The

light quark mass is as always kept at κc, the relation between κ and the bare mass is

given by

κ = 1
2(a m0 + 4) . (4.24)

The Monte Carlo histories contain O(104) measurements, a binned jackknife analysis

with bins of size 50 is used to extract the expectation values and extrapolations. The

estimated statistical errors are negligible compared to the systematic uncertainty of the

truncation in the g0-expansion that will be introduced shortly.

We denote a generic observable out of the set given above with f . The perturbative

expansion

f(g0) = f
(0) + g

2
0 f

(1) + O(g4
0) (4.25)

is obtained using pastor. The Monte Carlo result is given by fMC(g0), and the two

runs at different g0 provide us with estimates for f (1)
,

f̃
(1)(g0) = g

−2
0

�
f

MC(g0) − f
(0)

�
. (4.26)

These are both valid approximations if g0 is small. However, we may define an improved

estimate by extrapolating linearly in g2
0 to zero. We denote the extrapolated value f̃

(1)
ext .

The results of these extrapolations, together with f̃ (1)
for both g2

0 = 0.12 and g2
0 = 0.06,

as well as the exact pastor results for the one loop term are presented in figures D.2

trough D.7. A fit to the Monte Carlo results of the form

f̃
(1)(g0) = f

(1) + c1 g
2
0 + c2 g

4
0 (4.27)

is performed and included in the plots. The results for f̃ (1)(0.06) and the extrapolation

f̃ (1)(0), as well as the pastor result f (0)
and the fit parameters c1 and c2 are given

in tables 4.1-4.4. The only observable that shows a significant g4
0-term is f stat

δA (c.f.
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MC Cross Checks

D. Plots of the Cross Check
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Figure D.2.: Various HQET correlation functions at L = 6 for θ = 0.0 (open boxes),

θ = 0.5 (open circles) and θ = 1.0 (open triangles). The one loop data

is depicted as filled diamonds . The statistical error is smaller than the

symbol size.
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Figure D.4.: Various QCD correlation functions at L = 4, z = 0 for θ = 0.0 (open boxes),
θ = 0.5 (open circles) and θ = 1.0 (open triangles). The one loop data is
depicted as filled diamonds. The statistical error is smaller than the symbol
size.
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 Vertices - Details
The full result reads

U (r)(x, y) =
� a

L

�3r �

k1,a1,µ1,t1

. . .
�

kr,ar,µr,tr

qa1
µ1
(k1; t1) . . . q

ar
µr
(kr; tr)

× Iar . . . Ia1

�

0<u1≤...≤ur≤l

V (0)A
{u}

eiEB
{u}

ei/2(C
{u}·Φ�+D{u}·Φ)

× r!

α1! . . . αl!

r�

j=1

s[uj ] δt[uj ],tj δµ[uj ],µj
eikj x̃[uj ].

This looks horrible, but can be constructed link by link
defining an order-by-order multiplication

[Uµ(x)U(x, y)](r) =
r�

s=0

U (s)
µ (x)×U (r−s)(x, y).



The XML Input

A.3. A First Calculation

A.3.1. The XML Input File
The XML input file containing fV0

1 , f1 and their static counterparts can be found in
the subdirectory named codegen/example_project/xml. Documentation for the XML
format to be used is included in the pastor package, in the subdirectory doc. The
document tags.pdf is generated automatically by parsing the python script that is used
for evaluating the XML input and extracting its documentation. Thus also user-defined
additions to pastor will be included here if they are implemented properly.

We will only paste a part of the XML input provided in the pastor package here
to give the reader an impression of what the input looks like. To illustrate the use of
two different actions, we present the input for fV0,stat

1 , copying verbatim from the file
phi_v0.xml.

<process >
<name >f1v0stat </name >
<tex_comment ><!-- Descriptive LaTeX comment -->
[Left out for brevity .]

</ tex_comment >
<background_field >trivial </ background_field >
<gauge_action >wilson </ gauge_action >
<!-- We have a product of four projectors , P_+ and P_ - in the
diagram , two of which can be dropped . They are represented as
a sum of Dirac matrices at the boundaries , and each of
them comes with a factor of 0.5. Then , we take the factor
1/2 from the definition into account and end up with
a prefactor of (0.5)^3 = 0.125. -->
<factor >0.125 </ factor >
<trace >
<boundary >

<where >0</where > <!--x_0 = 0-->
<spin >dirac </spin >
<spins >15 -14</ spins >
<!-- 2 * P_+ * gamma_5 * P_ - = -->
<!-- 2 * gamma_5 * P_ - = gamma_5 - gamma_5 * gamma_0 -->

</ boundary >
<propagator >

<thetax >theta </ thetax > <!-- user parameter: theta -->
<thetay >theta </ thetay >
<thetaz >theta </ thetaz >
<spin >dirac </spin >
<action >HQET_stat </ action >
<!--from and to are optional tags , helping pastor to

generate more efficient code -->
<from >1</from >
<to>x0 </to>

</ propagator >
<insertion >

<position >x0 </ position > <!-- user parameter: x_0 -->
<spin >dirac </spin >
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Construction of a Vertex in Pictures

2. Lattice Regularization

the limit a → 0, such that the full action reads

S
W
F = a

4 �

x

�
ψ(x)(γµ∇̃µ + m0)ψ(x) − a r ψ(x)∇∗∇ψ(x)

�
, (2.6)

where 0 < r ≤ 1 can be chosen at will. This action does not give rise to doublers.
Generally, irrelevant terms with the correct symmetries may be included in the lattice

action to modify the theory at non-zero lattice spacing a without changing the continuum
limit. This can be used for example to speed up the convergence of the lattice theory in
the limit a → 0 (c.f. [LSSW96] for a discussion of O(a)-improvement in the Schrödinger
functional). The point we want to make here is that various lattice formulations of the
continuum theory are possible, each of which has different properties at finite a and a
different perturbative expansion in the sense of (1.21). Our aim is to set up a framework
for lattice perturbation theory that can handle rather general actions. We assume a
typical bilinear fermion action, given by

SF [U, ψ, ψ] =
�

i

ψ(xi) wi Γi Ui(xi, yi) ψ(yi). (2.7)

Here, wi are complex weights, Γi spin matrices in the Pauli or Dirac algebra, and Ui

parallel transporters on the lattice. A generic parallel transporter U(x, y) (being the

U5

U4

U3 U2

U1

ψ(x)

ψ(y)

w Γ
x [4]

x [3]
x [2] x [1]

Figure 2.1.: Single parallel transporter contributing to a bilinear quark action.

lattice version of (1.15)) is a product of links Ui and may be fully specified by giving
a starting point x0 = y and a sequence of signed directions C = (s[1]µ[1], . . . , s[l]µ[l]).
These directions lead us, starting form y, to the lattice point x. Since some of them may
be negative, we have to take some care on how to define the corresponding sequence of
links Ui connecting x and y,

U(x, y) = Ul Ul−1 . . . U1. (2.8)
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A parallel transporter like this:

Will yield   

3. Automated Lattice Perturbation Theory in the Schrödinger Functional

We may now define αj = �
k δj,uk but they have the same meaning as in (3.48) Plugging

(3.52) into (3.53), we get

U (r)(x, y) =
�

a

L

�3r �
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. . .
�

kr,ar,µr,tr
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e

i kj x̃[uj ]
. (3.54)

For illustration of this formula, one of the O(g3
0) contributions to the expansion (3.54)

U5

U4

U3 U2

U1

x

y

x [4]

x [3]
x [2] x [1]

q2
(q4)2

Figure 3.5.: Pictorial representation of an individual contribution to the perturbative
expansion of a Wilson line at order g3

0.

of the Wilson line that was shown in figure 2.1 is depicted in figure 3.5.

Trivial Background Field

If we set Vµ(x) ≡ 1, (3.54) simplifies to

U (r)(x, y) =
�

a

L

�3r �

k1,a1,µ1,t1

. . .
�

kr,ar,µr,tr
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.
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terms like this one:



Parse (and Compile)

hal9000 | example_project $ ~/pastor-build/codegen/parse.py xml/phi_v0.xml

[...]

hal9000 | example_project $ cd source
hal9000 | source $ ./configure

[...]

hal9000 | source $ make

GNU autotools make your life easy!



Run the Programs
# Base path for the executables
BasePath /Users/dirk/tmp/pastor_build/codegen/example_project/source/
# Path for output and log files
WorkDir /Users/dirk/tmp/pastor_build/codegen/example_project/run/
# Bool (yes|no) if the propagators should be written 
# to hard disk and their location
Propagators no -
# subdirectories and names for the observables
SubDir f1/.    f1_loop
SubDir f1/tree f1_tree
SubDir f1/db   f1_db
SubDir f1/dm   f1_dm
# Parameters can be given in various ways ...
# 4 to 8 in steps of 2
Parameter L 4:8:2
# formulae
Parameter T = L
Parameter x0 = T/2
# arrays
Parameter theta [0.0, 0.5, 1.0]
Parameter z [0, 1]

f1_small_L.get file contents:

hal9000 | example_project $ ~/pastor-build/codegen/run.py xml/f1_small_L.get


