Relativistic heavy quarks on the lattice

Christine Davies University of Glasgow HPQCD collaboration

ECT* workshop April 2012

Charm and bottom physics

Lattice QCD calculations important because:

ple hadronic weak decay matrix elements are key to Triangle constraints

has many gold-plated states for accurate tests/

 K^+

K

 $\overline{B}_s \rightarrow D_s e^-$

ALEPH

 $V_{qq'}$

+ m_Q dete

critical! tests of errors + Its using different

IP

 \overline{B}_{s}

recis^{*}

Need

Issues with handling 'heavy' quarks on the lattice:

 $L_q = \overline{\psi}(D \!\!\!/ + m)\psi \to \overline{\psi}(\gamma \cdot \Delta + ma)\psi$

 Δ is a finite difference on the lattice - leads to discretisation errors. What sets the scale for these?

For light hadrons the scale is Λ_{QCD} For heavy hadrons the scale can be m_Q

 $E = E_{a=0}(1 + A(m_Q a)^2 + B(m_Q a)^3 + ...)$ hadron energy assuming O(m_Qa) improved

 $m_c a \approx 0.4, m_b a \approx 2$ for $a \approx 0.1 \text{fm}$

can use improved light quark action for c on fine lattices. Less clear for b - non rel. actions have $(\Lambda a)^n$ errors

best approach to c and b not necessarily same

Charm quarks in lattice QCD - heavy or light?

Advantages of relativistic light quark method:

• $E_{sim} = m$

• PCAC relation (if enough chiral symmetry) gives Z = 1 and other currents can also be renormalised nonperturbatively.

• same action as for u, d, s, so cancellation in ratios

Best action to date:

Highly improved staggered quarks (HISQ) HPQCD Errors: $\alpha_s(am)^2, (am)^4$ + small taste-changing HISQ based on 'asqtad' improved staggered quarks smeared link reduces high-momentum gluon exchange taste errors + 'Naik' 3-link term improves derivative.

HISQ repeats fattening with (SU(3)/U(3)) reunitarisation (so NO tadpole-improvement). Coefficient of Naik term becomes $1 + \epsilon$ to remove $(am)^4$ errors in speed of light. $\epsilon = -\frac{27}{40}(am)^2 + \dots$ HPQCD hep-lat/0610092

Quark mass ratios from lattice QCD

Determine m_c/m_s using HISQ for both - allows connection from heavy to light for first time

0910.3102

 $\frac{m_c}{m_s} = 11.85(16) \quad \text{use for accurate } m_s$ if m_c known

HPQCD/HISQ 1004.4018

Fermilab/ MILC (coarse+fine lattices)

Error	m_{D_s}	f_{D_s}
statistical/valence tuning	0.094%	0.57%
r_1/a	0.025%	0.15%
r_1	0.051%	0.57%
a^2 extrapoln	0.044%	0.40%
$m_{q,\text{sea}}$ extrapoln	0.048%	0.34%
finite volume	0%	0.10%
m_{η_s}	0.056%	0.13%
em effects in D_s	0.036%	0.10%
em and annihln in m_{η_c}	0.076%	0.00%
em effects in η_c	-	-
missing c in sea	0.01%	0%
Total	0.16%	1.0%

Decay constant of the η_c

Not directly

Surprisingly close, but *less than* $f_{J/\psi} = 407(5) \text{MeV}$

Bottom quarks in lattice QCD - heavy or light?

increased noise in heavy-light over charm - an issue for all

Many options:

- Use HQET methods e.g. with step-scaling (Alpha)
- Use nonrelativistic method at b: Fermilab - same clover action as for c RHQ - coefficients ma-dependent NRQCD - disc. nonrel. expansion of L_q (now improved through $\alpha_s v_b^4$ and results on MILC 2+1+1 HISQ lattices) R. Dowdall, HPQCD, later today
- Use relativistic method and extrapolate to b HISQ, TM

success for c makes this worth exploring HISQ on MILC 2+1: a=0.15 down to 0.05fm Data below m_c to ~m_b

Determination of heavy quark masses

HPQCD + Chetyrkin et al, 0805.2999; HPQCD, 1004.4285

Current-current correlator method: match time-moments of heavy-heavy meson correlators to energy-derivative moments at $q^2 = 0$ of heavy quark vac. pol. calculated in continuum QCD pert. th. (thru α_s^3)

In continuum use J=V, but for lattice staggered quarks take J=PS (goldstone) since local and normalised from PCAC relation.

$$G(t) = a^{6} \sum_{\substack{\vec{x} \\ t = T/2}} (am_{0h})^{2} \langle 0|j_{5}(\vec{x},t)j_{5}(0,0)|0\rangle$$

$$f_{\eta_{h}} \text{ correlator}$$

$$G_{n} = \sum_{\substack{t = -T/2+1}} (t/a)^{n} G(t)$$

 $R_{n,latt} = G_4 / G_4^{(0)} \quad n = 4$ = $\frac{am_{\eta_h}}{2am_{0h}} (G_n / G_n^{(0)})^{1/(n-4)} \quad n = 6, 8, 10 \dots$

extrapolate to a=0 (and physical sea quark masses) and then compare to continuum:

$$\begin{aligned} R_{n,cont} &= g_4/g_4^0 \quad n = 4 \\ &= \frac{m_{\eta_h}}{2\overline{m}_h(\mu)} (g_n/g_n^{(0)})^{1/(n-4)} \quad n = 6, 8, 10 \dots \\ &\downarrow \\ z(\mu) &\downarrow \\ extraction allows \qquad g_n/g_n^0 = 1 + \sum_i c_i(\mu/\overline{m}(\mu)) \alpha_{\overline{MS}}(\mu)^i \\ extraction of m \\ at c and b and in between \qquad fit allows determination of $\alpha_s \end{aligned}$$$

Fit results at 5 values of a, allowing for disc. errors and higher orders in pert. th. Parameterise z as a function of m_{η_b} . Fix c and b from m_{η_c} and m_{η_b} .

Heavy-strange masses

Difference between heavy-strange and heavyonium mapped out as a function of m_{Hs} (as proxy for quark mass). Sea mass dependence very weak.

 $m_{B_s} - m_{\eta_h}/2$

= 0.658(11) GeV

error a bit worse than NRQCD

	f_{B_s}	$m_{B_s} - m_{\eta_b}/2$
Monte Carlo statistics	1.30%	1.49%
$m_{H_s} \rightarrow m_{B_s}$ extrapolation	0.81	0.05
r_1 uncertainty	0.74	0.33
$a^2 \rightarrow 0$ extrapolation	0.63	0.76
$m_{\eta_s} \rightarrow m_{\eta_s, \text{phys}}$ extrapolation	0.13	0.18
r_1/a uncertainties	0.12	0.17
Total	1.82%	1.73%

Heavy-strange decay constants – extrapolating to b

Extrapolating heavyonium to b

disc. errors much larger now ..

HPQCD, in prep.

 $f_{\Upsilon,expt} = 0.689(5) \text{GeV}$

Extrapolating heavy-charm to B_c

HPQCD, in prep.

Summary plot for decay constants

More work on vectors underway

Experiment sees f_+ and maps in q^2 bins

 $D \to K, D \to \pi$ CLEO 0906.2983

see e.g Bourrely et al, 0807.2722

Transforming q^2 to z

$$z = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

allows simple series parameterisation of shape - obtain $V_{cs}f_{+}(0)$ $F(q^2) = \overline{QCD}^+ a_1 z + a_2 z^2 f^+(q^2) , \text{ value } f_+(0) \equiv f_0(0)$

<u>Techniques</u> improving: <u> $\frac{1}{2}$ </u> $\frac{1}{2}$ $\frac{1}{2}$ multiple T values; phase at boundary to tune q^2 (to 0); use of z expansion to fit and extrapolate shape to chiral/contnm limit

 $\frac{G_F^2 p_K^3}{24-3} |V_{cs}|^2 |f_+(q^2)|^2$

Updates on $f_+(0)$ 2011

Updates on $f_+(q^2)$ 2011

HPQCD PRELIMINARY

J. Koponen, LAT11

Very little dependence on spectator quark - implications for B/B_s form factors. (see Fermilab/MILC 1202.6346)

Updates on $f_+(q^2)$ 2011

 $\rightarrow K$

HPQCD PRELIMINARY

v. high stats - 16000 corrs x 4T 1-2% errors allow accurate comparison of shape to expt J. Koponen, HPQCD in prep.

Need to look at more form factors ...vector and axial form factors for

 $D_s \rightarrow \phi l \nu$: G. Donald, HPQCD in prep.

Comparison of expt and lattice bin by bin

Going forward ...

HPQCD making a=0.03 fm $72^{3}x192$ lattices Now $m_c a \approx 0.1$ $m_b a \approx 0.5$

Preliminary results for heavyonium consistent with previous 'heavy HISQ' analysis.

Conclusions

• Charm physics in good shape. 1-2% precision possible with improved relativistic actions such as HISQ. Need more results with such formalisms .. e.g. TM

• Bottom physics still a problem.

NRQCD currently has sizeable renormln error Fermilab/RHQ has heavy quark disc. error HQET methods in practice hard?

Should get 1% accurate s/l ratios on lattices at chiral pt ... Extrapolation to b from c with HISQ/TM. Promising for masses + decay constants. Now move to semileptonic ffs. Needs extremely fine lattices to do well and e.g. 4q operators harder ...

 \overline{ALL} – need more tests of errors using known quantities. Look forward to results on N_f=2+1+1 lattices ... Dowdall 3pm