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Outline

• Heavy-hadron axial couplings: g1,2,3

• Heavy hadron chiral perturbation theory 
[David Lin’s talk on Tuesday]

• QCD calculation of axial couplings: details and 
results

• Combine LQCD and HHχPT to control all 
systematic uncertainties

• Strong decay widths



Chiral dynamics of heavy hadrons

• Axial couplings defined in static limit

• Heavy-light mesons and baryons: dynamics amenable 
to HQ and chiral expansions [Wise; Burdman & Donoghue; Cheng et al.]
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We now calculate the matrix element �P ∗d|Aµ−(χPT)|Pu�. Expressing the mesonic part of the current (19) using the

P and P
∗
fields, we find

A
µ−(χPT)

= g1 trD

�
Hdγ

µγ5H
u
�
+ ...

= g1 trD

�
P

∗†
dνγ

νγµγ5 (−P
uγ5)

1− /v

2

�
+ ...

= −2 g1 P
∗µ†
d P

u
+ ..., (27)

where we have only shown the piece that contributes to the matrix element considered here. By inserting the field

operators (22) into Eq. (27), we immediately obtain, at zero residual momentum,

�P ∗d
(0, s)|A−(χPT)

µ (0)|Pu
(0)�|LO = −2 g1 ε

∗
µ(s). (28)

Next, we consider the sl = 1 baryon field S
ij
µ , for which the free part of the kinetic term in Eq. (8) is equal to

LS = S
ν
ij [−ivµ∂

µ
+∆]S

ij
ν

=

�

i≥j

(2− δij)S
ν
ij [−ivµ∂

µ
+∆]S

ij
ν . (29)

In the following we always assume that the flavor indices on the fields S
ij

and Sij are ordered as i ≥ j. We find the

canonical anticommutation relations

{Sµ ij
(x, t)α, Sν kl β(x

�
, t)} = − 1

(2− δij)v0
δikδ

j
l

�
1 + /v

2

�

αβ

(g
µ
ν − v

µ
vν) δ

3
(x− x�

). (30)

The field operators can be written as

Sµ ij
(x) =

1�
(2− δij)v0

�
d
3
k

(2π)3

6�

s=1

aij
(S)

(k, s)Uµ
(s)e

−ik·x
,

Sµ ij(x) =
1�

(2− δij)v0

�
d
3
k

(2π)3

6�

s=1

a(S)†
ij (k, s)Uµ(s)e

ik·x
, (31)

where k0 = v · k+
1

v0∆, and the basis spinors satisfy the spin sum

6�

s=1

U
µ
α (s)U

ν
β(s) = −(g

µν − v
µ
v
ν
)

�
1 + /v

2

�

αβ

. (32)

Note that Uµ(s) is not a Rarita-Schwinger spinor, but rather contains the degrees of freedom of both spin-1/2 and

spin-3/2 baryons. The creation and annihilation operators satisfy the anticommutation relations

{aij
(S)

(k, s), a(S)†
kl (k�

, s
�
)} = (2π)3δikδ

j
lδss�δ

3
(k− k�

). (33)

Here we define single-particle states via

|Sij
(k, s)� =

√
v0a(S)†

ij (k, s)|0�, (34)

which corresponds to the following normalization:

�Sij
(k, s)|Skl

(k�
, s

�
)� = v

0
(2π)3δikδjlδss�δ

3
(k− k�

). (35)

Using the expression (19) for the axial current, and the mode decomposition (31), we find the following leading-order

matrix element of the axial current:

�Sdd
(0, s)|Aµ−(χPT)

(0)|Sdu
(0, s

�
)�|LO = − i√

2
g2 vλ �λµνρ Uν(s)Uρ(s

�
). (36)

Finally, we consider the sl = 0 baryon field T
ij
. The free part of the kinetic term in Eq. (8) is equal to

LT = ivµ T ij∂
µ
T

ij

= 2 ivµ

�

i>j

T ij∂
µ
T

ij
. (37)
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For the T and T fields, we also assume in the following that the flavor indices are ordered (i > j). We obtain the
canonical anticommutation relations

{Tij(x, t)α, Tkl β(x
�, t)} =

1

2v0
δikδ

j
l

�
1 + /v

2

�

αβ

δ3(x− x�), (38)

and the field operators can be written as

Tij(x) =
1√
2v0

�
d3k

(2π)3

2�

s=1

aij
(T )

(k, s)U(s)e−ik·x,

Tij(x) =
1√
2v0

�
d3k

(2π)3

2�

s=1

a(T )†
ij (k, s)U(s)eik·x, (39)

where k0 = v · k, and the basis spinors satisfy the spin sum

2�

s=1

Uα(s)Uβ(s) =

�
1 + /v

2

�

αβ

. (40)

The creation and annihilation operators satisfy the anticommutation relations

{aij
(T )

(k, s), a(T )†
kl (k�, s�)} = (2π)3δikδ

j
lδss�δ

3(k− k�). (41)

Again, we define single-particle states via

|T ij(k, s)� =
√
v0a(T )†

ij (k, s)|0�, (42)

which are normalized as

�T ij(k, s)|T kl(k�, s�)� = v0(2π)3δikδjlδss�δ
3(k− k�). (43)

Now we have all the ingredients to obtain the leading-order S-T transition matrix element of the axial current:

�Sdd(0, s)|Aµ−(χPT)(0)|T du(0, s�)�|LO = −g3 U
µ
(s) U(s�). (44)

To go beyond leading order, we need to replace g1, g2, g3 in Eqs. (28), (36), (44) by “effective axial couplings” (g1)eff ,
(g2)eff , and (g3)eff :

�P ∗d(0, s)|Aµ−(χPT)(0)|Pu(0)� = −2 (g1)eff ε∗µ(s)

�Sdd(0, s)|Aµ−(χPT)(0)|Sdu(0, s�)� = − i√
2
(g2)eff vλ �λµνρ Uν(s)Uρ(s

�),

�Sdd(0, s)|Aµ−(χPT)(0)|T du(0, s�)� = −(g3)eff U
µ
(s) U(s�). (45)

The next-to-leading order expressions in the partially quenched SU(4|2) theory (for m(val)

u = m(val)

d and m(sea)

u =

m(sea)

d ), calculated via the perturbative expansion of the path integral, have been derived in Ref. [20] and are given
by

(g1)eff = g1 −
2 g1
f2

I(m(vs)

π ) +
g31
f2

�
4H(m(vs)

π , 0)− 4 δ2V SHη�(m(vv)

π , 0)

�
+ (analytic terms)

(g2)eff = g2 −
2 g2
f2

I(m(vs)

π ) +
g32
f2

�
3

2
H(m(vs)

π , 0)− δ2V SHη�(m(vv)

π , 0)

�

+
g2 g23
f2

�
2H(m(vs)

π , −∆)−H(m(vv)

π , −∆)− 2K(m(vs)

π , −∆, 0)

�
+ (analytic terms)

(g3)eff = g3 −
2 g3
f2

I(m(vs)

π ) +
g33
f2

�
H(m(vs)

π , −∆)− 1

2
H(m(vv)

π , −∆)

+
3

2
H(m(vv)

π , ∆) + 3H(m(vs)

π , ∆)−K(m(vs)

π , ∆, 0)

�

+
g3 g22
f2

�
−H(m(vs)

π , ∆)−H(m(vv)

π , ∆) +H(m(vs)

π , 0)− δ2V SHη�(m(vv)

π , 0)

�
+ (analytic terms).

(46)

∼ ĝ ∼ gπ ∼ gB∗Bπ
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form two multiplets with J = 1/2 and J = 3/2, and are described by a Dirac spinor field B
ij and a Rarita-Schwinger

spinor field B
∗ij
µ . These sl = 1 fields are symmetric in flavor: Bij = B

ji and B
∗ij
µ = B

∗ji
µ . For two quark flavors one

has (using the notation for bottom baryons)

B =

�
Σ+

b
1√
2
Σ0

b
1√
2
Σ0

b Σ−
b

�
, (2)

and similarly for B
∗
µ. Again, because of heavy-quark spin symmetry, the J = 1/2 and J = 3/2 baryons with sl = 1

are degenerate, and the corresponding fields can be combined into a single field [7, 28]

S
ij
µ = S

ji
µ =

�
1

3
(γµ + vµ)γ5B

ij +B
∗ij
µ , (3)

satisfying v
µ
S
ij
µ = 0 and 1+/v

2 S
ij
µ = S

ij
µ . The sl = 0 baryons have J = 1/2 and can be described by a Dirac spinor

field T
ij , which is antisymmetric in i and j and satisfies the constraint 1+/v

2 T
ij = T

ij . For two quark flavors, one has

T =
1√
2

�
0 Λb

−Λb 0

�
. (4)

In SU(2) chiral perturbation theory, the pions are described by an SU(2)-valued field Σ = exp(2iΦ/f), which
transforms under global SU(2)L × SU(2)R transformations as

Σ → L ΣR
†
. (5)

For the purposes of heavy-hadron chiral perturbation theory, it is convenient to also introduce the field ξ = exp(iΦ/f),
so that Σ = ξ2. The field ξ transforms as

ξ → L ξ U † = U ξ R†
, (6)

where the transformation matrix U(x) is a function of L, R and Φ(x), implicitly defined through the above equations.
Under the vector subgroup L = R = V , the field ξ transforms as ξ → V ξV †. Therefore, the natural transformation
laws for the heavy-hadron fields also involve the matrix U :

H
i → U

i
jH

j
,

S
ij
µ → U

i
kU

j
lS

kl
µ ,

T
ij → U

i
kU

j
lT

kl
. (7)

The leading-order heavy-hadron chiral perturbation theory Lagrangian is then given by [5–8]

L =
f
2

8
(∂µΣ†)ij∂µΣ

ji − i trD
�
Hiv · DH

i
�
− iS

µ
ijv · DS

ij
µ + iT ijv · DT

ij

+∆S
µ
ijS

ij
µ + g1trD

�
Hi(A

µ)ijγµγ5H
j
�
− ig2�µνσλS

µ
kiv

ν(A σ)ij(S
λ)jk

+
√
2g3

�
S
µ
ki(Aµ)

i
jT

jk + T ki(A
µ)ijS

jk
µ

�
+ (mq terms) + (1/mQ terms), (8)

where trD denotes the trace in Dirac space, and the covariant derivatives are defined as

Dµ
H

i = ∂µ
H

i + (V µ)ijH
j
,

Dµ
S
ij
ν = ∂µ

S
ij
ν + (V µ)ikS

kj
ν + (V µ)jkS

ik
ν ,

Dµ
T

ij = ∂µ
T

ij + (V µ)ikT
kj + (V µ)jkT

ik
, (9)

with the vector and axial-vector fields

V µ=
1

2

�
ξ†∂µξ + ξ∂µξ†

�
,

A µ=
i

2

�
ξ†∂µξ − ξ∂µξ†

�
. (10)

The H and T fields are rescaled such that their masses do not appear in the Lagrangian. The quantity ∆ is the
mass difference between the S and T baryons. This mass difference does not vanish in the chiral limit nor in the
heavy-quark limit. From experiment, one has ∆ ≈ 200 MeV [13, 29].
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H-L hadrons in lattice QCD

• Light quark mass dependence of H-L(L) observables 
controlled by pion loops, coupled through g1,2,3 

• Very important for control of current lattice QCD 
calculations at unphysical quark masses 
Examples so far this week:

• ETMC: chiral extrapolation of fBs/fB is dominant 
systematic uncertainty

• FNAL/MILC: B, D semi-leptonic FFs, gπ major 
systematic uncertainty

• HPQCD: requires prior in B meson properties



Current knowledge of g1

• Experimental extraction of g1 from 

• g1=0.5(?) [Arnesen et al.] 

• Lattice calculations for g1

• Need fully quantified uncertainties

31

V. COMPARISON WITH PREVIOUS RESULTS FOR THE AXIAL COUPLINGS

We begin this section by discussing previous lattice calculations of the heavy-meson axial current matrix elements
and the corresponding extractions of g1. A summary of results is shown in Table XI. All of the past works used an
order-a improved Wilson action [42] for the light quarks, and variants of the Eichten-Hill action [22, 23] for the static
heavy quark. The first lattice estimate for g1 was obtained in the pioneering work of Ref. [14], using a 123× 24 lattice
and quenched gauge fields, where the fermion determinants in the path integral weight are set to 1, which means
that the vacuum-polarization effects of the light quarks are neglected. In Ref. [14], the average of (g1)eff from two
different valence pion masses (760 MeV, 900 MeV) was taken as the result for g1. Quenched calculations of g1 were
also reported in Refs. [15] and [16]. The results for g1 in these works were obtained by extrapolating data for (g1)eff ,

at pion masses in the range of about 550 to 850 MeV, linearly in [m(vv)
π ]2 to m(vv)

π = 0.

Reference nf , action [m(vv)
π ]

2
(GeV

2
) g1

De Divitiis et al., 1998 [14] 0, clover 0.58 - 0.81 0.42± 0.04± 0.08

Abada et al., 2004 [15] 0, clover 0.30 - 0.71 0.48± 0.03± 0.11

Negishi et al., 2007 [16] 0, clover 0.43 - 0.72 0.517± 0.016

Ohki et al., 2008 [17] 2, clover 0.24 - 1.2 0.516± 0.005± 0.033± 0.028± 0.028

Bećirević et al., 2009 [18] 2, clover 0.16 - 1.2 0.44± 0.03+0.07
−0.00

Bulava et al., 2010 [19] 2, clover 0.063 - 0.49 0.51± 0.02

This work 2 + 1, domain wall 0.052 - 0.12 0.449± 0.047 stat ± 0.019 syst

TABLE XI. Comparison of lattice QCD results for the mesonic axial coupling g1. Also shown are the numbers of dynamical

light-quark flavors nf , the fermion lattice action, and the range of valence pion masses used in the calculation.

Since calculations without sea quarks have uncontrolled systematic errors, more recent lattice calculations of g1
have been performed with dynamical flavors, albeit only for nf = 2. The first of these was done in Ref. [17], using
two different lattices of sizes 123×24 and 163×32, and pion masses in the range 490 - 1100 MeV. Stochastic all-to-all
propagators were used to reduce the statistical uncertainties. In Ref. [17], the data for the axial-current matrix elements
(g1)eff was fitted using different approaches: linear in m2

π, linear+quadratic in m2
π, or linear+quadratic+logarithmic

in m2
π, using the average of g1 from the linear and the linear+quadratic+logarithmic fits as the final result. A second

unquenched calculation was published in Ref. [18], using three different lattice spacings and pion masses in the range
from 400 to 1100 MeV. In Ref. [18], the coupling g1 was obtained from a linear+logarithmic fit of (g1)eff . Recently,
the axial couplings of orbitally excited heavy-light mesons were also included [43]. Another nf = 2 calculation of g1
was reported in Ref. [19], with three different lattice spacings and pion masses down to 250 MeV. In Ref. [19], the
result of an extrapolation of (g1)eff linear in m2

π was given as the value of g1.
The coefficient of the chiral logarithm used in the fits of the axial-current matrix elements (g1)eff in Refs. [17]

and [18] was set equal to that of the strong decay P ∗ → P π in SU(2) HHχPT [44], because the corresponding
loop contributions for the axial current matrix elements were not known at that time. The NLO expression for the
strong-decay amplitude in SU(2) HHχPT is proportional to

M(P ∗ → P π) ∝ g1

�
1− 4g21

m2
π

(4πfπ)2
log

m2
π

µ2
+ c̃ m2

π

�
. (98)

We have recently derived the NLO expressions for the axial-current matrix elements in SU(2), SU(3), SU(4|2), and
SU(6|3) HHχPT [20]. As discussed in Ref. [20], the chiral expansion of the axial-current matrix elements contains an
additional tadpole loop contribution, which modifies the coefficient of the logarithm. In the SU(2) case, one has

(g1)eff = g1

�
1− (2 + 4g21)

m2
π

(4πfπ)2
log

m2
π

µ2
+ c m2

π

�
. (99)

Because g1 ≈ 0.5, the coefficient of the logarithm in Eq. (99) is numerically about 3 times larger than the coefficient
of the logarithm in Eq. (98). The logarithm makes (g1)eff as a function of m2

π curve downward when m2
π is decreased

(see Fig. 10). The results for g1 from the previous unquenched lattice calculations, which incorrectly used Eq. (98)
or did not include any logarithm in the fits, would be significantly lower if the correct HHχPT formula (99) had been
used instead. We have attempted fits to the data of [17–19] using Eq. (99), obtaining values of g1 that are about 10
to 20% lower than what is published in these works. Note, however, that HHχPT is not expected to converge in the

D∗ → Dπ, D∗ → Dγ
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upper range of the pion masses in [17, 18]. For the data used in the present work, incorrect fits linear in m2
π or using

Eq. (98) give values for g1 that are higher than the correct result, Eq. (90), by 12% and 8%, respectively.

Next, we move to the discussion of various theoretical estimates of the axial couplings g1, g2, g3 based on approxi-

mations, models, and experimental data. A comparison of these estimates to our QCD results is shown in Table XII.

The nonrelativistic quark model (NRQM) predicts g1 = gudA , g2 = 2gudA and g3 =
√
2gudA [5], where gudA = 1 is the axial

coupling of the single-quark transition u → d. Interestingly, if gudA is set to 0.75, the value needed to reproduce the

experimental value of the nucleon axial charge, one obtains g1 = 0.75, g2 = 1.5, g3 = 1.06, still significantly larger than

our QCD results. The predicted ratios of the axial couplings in the NRQM are, however, consistent with our lattice

determination. The relativistic quark models of Refs. [45] and [46] give g1 = 1/3 and g1 = 0.6± 0.1, respectively.

Reference Method g1 g2 g3

Yan et al., 1992 [5] Nonrelativistic quark model 1 2
√
2

Colangelo et al., 1994 [45] Relativistic quark model 1/3 . . . . . .

Bećirević, 1999 [46] Quark model with Dirac eq. 0.6± 0.1 . . . . . .

Guralnik et al., 1992 [47] Skyrme model . . . 1.6 1.3

Colangelo et al., 1994 [48] Sum rules 0.15 - 0.55 . . . . . .

Belyaev et al., 1994 [49] Sum rules 0.32± 0.02 . . . . . .

Dosch and Narison, 1995 [50] Sum rules 0.15± 0.03 . . . . . .

Colangelo and Fazio, 1997 [51] Sum rules 0.09 - 0.44 . . . . . .

Pirjol and Yan, 1997 [52] Sum rules . . . <
�

6− g23 <
√
2

Zhu and Dai, 1998 [53] Sum rules . . . 1.56± 0.30± 0.30 0.94± 0.06± 0.20

Cho and Georgi, 1992 [54] B[D∗ → D π], B[D∗ → D γ] 0.34± 0.48 . . . . . .

Arnesen et al., 2005 [57] B[D∗
(s)→D(s)π], B[D∗

(s)→D(s)γ], Γ[D
∗
] 0.51 . . . . . .

Li et al., 2010 [58] dΓ[B → π�ν] < 0.87 . . . . . .

Cheng, 1997 [30] Γ[Σ∗
c → Λc π], NRQM 0.70± 0.12 1.40± 0.24 0.99± 0.17

This work Lattice QCD 0.449± 0.051 0.84± 0.20 0.71± 0.13

TABLE XII. Comparison of our lattice QCD results for the axial couplings g1, g2, and g3 with other determinations as reported

in the literature [all results are shown in our normalization, see Eq. (11)]. Here, NRQM stands for nonrelativistic quark model.

Where decay widths or branching fractions are listed under “Method”, these are experimental inputs. As discussed in the

main text, the axial couplings extracted from experimental data are defined away from the static limit in some cases. When

a reference contained multiple results for the same coupling and did not specify which one is the most reliable, we quote here

the range from the lowest result minus its uncertainty up to the highest result plus its uncertainty.

Another theoretical approach for estimating the axial couplings is the large-Nc limit of QCD, where Nc is the

number of colors. In the limit Nc → ∞, one finds that the baryonic couplings satisfy the relation [47, 59]

g2
g3

����
Nc=∞

=

�
3

2
≈ 1.22. (100)

For comparison, our lattice QCD result for this ratio is

g2
g3

= 1.19(26), (101)

and the nonrelativistic quark model predicts g2/g3 =
√
2 ≈ 1.41.

The axial couplings have also been estimated using sum rules [48–53], with results as shown in Table XII. For the

heavy-meson coupling g1, most sum rule determinations are smaller than our lattice QCD result, and much smaller

than the NRQM value. In contrast, the values of g2 and g3 obtained using sum rules in Ref. [53] are larger than our

lattice results.

Experimental data for various heavy-hadron decay processes has also been used to determine the axial couplings.

In Ref. [54], electromagnetic interactions were included in HHχPT, and the coupling g1 was extracted from the

measured branching fractions B[D∗ → D π] and B[D∗ → D γ] at tree level, finding g1 = 0.43 ± 0.61 for mc = 1.5
GeV and g1 = 0.34± 0.48 for mc = 1.7 GeV. Note that these values for g1 are not defined in the static limit; they are

effective values corresponding to the D∗Dπ coupling. A similar calculation, which additionally included the leading

nonanalytic effects in the radiative decays, is reported in Ref. [55]. The complete 1/mQ and loop corrections in both

• All over the place!
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and the double ratio (needed because of the non-zero
S − T mass splitting)

R3(t, t
�) =

�
1

3
C

µµ

Tdu→Sdd
(t, t�) 1

3
Cνν

Sdd→Tdu
(t, t�)

1

3
C

µµ

Sdd
(t) CTdu(t)

. (4)

Here, µ, ν, ρ are the Lorentz indices from the axial current
or the interpolating fields for P ∗ and S and are summed
over when repeated. Using (1) and the spectral decom-
position of the correlators, one finds that

Ri(t, t/2) = (gi)eff +O(e−δit), (5)

where the δi are related to the energy gaps of the lowest
contributing excited states.

The calculations presented in this work make use
of lattice gauge field configurations generated by the
RBC/UKQCD collaboration [11] with 2 + 1 flavors of
light quarks, implemented with a domain-wall action that
realizes lattice chiral symmetry. The details of the en-
sembles included in our analysis can be found in Ta-
ble I. We computed domain-wall light-quark propagators

for a range of unitary (am(val)

u,d
= am

(sea)

u,d
) and partially

quenched (am(val)

u,d
< am

(sea)

u,d
) quark masses. As shown in

the lower part of the table, we have data with (valence)
pion masses ranging from 227 to 352 MeV, two lattice
spacings, a = 0.085, 0.112 fm, and a large lattice volume
of (2.7 fm)3. The sea-strange-quark masses are about
10% above the physical value, and we assign a 1.5% sys-
tematic uncertainty to our final results to account for
this, based on the size of the effect on similar observables
as studied in Ref. [11]. For the light-quark propagators,
we used gauge-invariant Gaussian smeared sources to im-
prove the overlap of the hadron interpolating fields with
the ground states. We constructed the three-point func-
tions CH→H�(t, t�) using light-quark propagators with
smeared sources at (x, 0) and (x, t) and a local sink at the
current insertion point (x�, t�), for various separations t as
shown in Table I. The bare lattice axial current requires
a finite renormalization ZA to match the continuum cur-
rent, Aµ = ZA uγµγ5d. We used nonperturbative results
for ZA obtained by the RBC/UKQCD collaboration [11].

The action for the static heavy quark is a modified
form of the Eichten-Hill action [12] in which the stan-
dard gauge links are replaced by HYP smeared [13] gauge
links, resulting in improved statistical signals for the cor-
relators [14]. To study heavy-quark discretization ef-
fects and optimize the signals, we generated data for
nHYP = 1, 2, 3, 5, 10 levels of HYP smearing. Our final
results for the axial couplings only use nHYP = 1, 2, 3.

In Fig. 1, we show examples of numerical results for the
ratios (2), (3), and (4). We observed plateaus in Ri(t, t�)
as a function of t�, and we averaged the ratios in this re-
gion, which is essentially equivalent to taking Ri(t, t/2).
We denote these averages as Ri(t). To obtain the ground-
state contributions according to (5), one needs to calcu-
late limt→∞ Ri(t). To this end, we performed fits of the

Ensemble a (fm) L3 × T am(sea)

u,d m(ss)

π (MeV)

A 0.1119(17) 243 × 64 0.005 336(5)

B 0.0849(12) 323 × 64 0.004 295(4)

C 0.0848(17) 323 × 64 0.006 352(7)

Ensemble am(val)

u,d m(vs)

π (MeV) m(vv)

π (MeV) t/a

A 0.001 294(5) 245(4) 4, 5, ..., 10

A 0.002 304(5) 270(4) 4, 5, ..., 10

A 0.005 336(5) 336(5) 4, 5, ..., 10

B 0.002 263(4) 227(3) 6, 9, 12

B 0.004 295(4) 295(4) 6, 9, 12

C 0.006 352(7) 352(7) 13

TABLE I. Details of gauge field ensembles (upper section,
see also Ref. [11]) and “measurements” (lower section). The
superscripts v, s on mπ indicate the masses of the quarks in
the pions, equal to am(val)

u,d or am(sea)

u,d .
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FIG. 1. Ratios Ri(t, t
�) as a function of the current insertion

time slice t�, for t/a = 10, at a = 0.112 fm, am(val)

u,d = 0.002,
nHYP = 3.

data using the functional form Ri(t) = (gi)eff −Ai e
−δi t

with parameters (gi)eff , Ai and δi, depending on the lat-

tice spacing a, the quark masses am(val)

u,d
, am(sea)

u,d
, and the

smearing parameter nHYP. This functional form only in-
cludes the leading contributions from excited states, but
was able to fit the data well, as shown in Fig. 2. We used
the results and uncertainties for the gap parameters δi
from the fits at the coarse lattice spacing to constrain the
fits at the fine lattice spacing, where we have fewer values
of t/a. To estimate the systematic uncertainties caused
by higher excited states, we calculated the shifts in (gi)eff
at the coarse lattice spacing when removing one or two
data points with the smallest t/a (= 4, 5) or adding a sec-
ond exponential with natural Bayesian constraints to the
fits. Repeated fits of Ri(t) for a bootstrap ensemble al-
lowed the calculation of the covariance matrices describ-
ing the correlations of the results for (gi)eff from common
ensembles of gauge field configurations.
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this in detail when giving the numerical results in Sec. IV. Our final axial coupling results only make use of data

generated with nHYP = 1, 2, 3.

As mentioned in Sec. II C, to perform the contractions for the three-point functions (53), we required pairs of light-

quark propagators with sources located at the same spatial point and separated by t/a steps in the time direction.

The numbers of measurements (propagator pairs) for each value of t/a are given in Table II. At the coarse lattice

spacing, our data come from typically 120 statistically independent gauge field configurations; at the fine lattice

spacing we used about 240 statistically independent gauge configurations of the am(sea)

u,d = 0.004 ensemble and 180 for

the am(sea)

u,d = 0.006 ensemble. In most cases, we have more measurements than configurations, because we generated

propagators from multiple spatial source points on the lattice. In those cases, we have averaged over the source

locations before the further analysis to remove possible autocorrelations.

L3 × T am(val)
u,d t/a Nmeas (approx.)

243 × 64 0.001 10 550

243 × 64 0.001 9, 8, 7, 6 240

243 × 64 0.001 5 460

243 × 64 0.001 4 120

243 × 64 0.002 10 880

243 × 64 0.002 9, 8, 7, 6, 4 240

243 × 64 0.002 5 480

243 × 64 0.005 10 960

243 × 64 0.005 9, 8, 7, 6, 4 240

243 × 64 0.005 5 480

323 × 64 0.002 12 1200

323 × 64 0.002 9, 6 480

323 × 64 0.004 12 1200

323 × 64 0.004 9, 6 480

323 × 64 0.006 13 700

TABLE II. Number of propagator pairs used for the three-point functions for various values of the source-sink separation t/a.

Within each of the three gauge field ensembles that we used, the data from different source-sink separations,

different valence quark masses, and different values of nHYP are correlated with each other. In our analysis, we

properly took into account these correlations using the statistical bootstrap procedure. The initial averaging over

source locations mentioned above was also required to reduce all data from the same ensemble to matching ordered

sets of measurements, as necessary to calculate the covariance matrices. It turned out that the correlations between

the am(val)

u,d = 0.001 and am(val)

u,d = 0.002/0.005 data at the coarse lattice spacing were very weak even though the data

came from the same ensemble of gauge field configurations. The reason was that all spatial source locations used for

the am(val)

u,d = 0.001 propagators were distinct from those used at am(val)

u,d = 0.002/0.005. In contrast, the data from

am(val)

u,d = 0.002 and am(val)

u,d = 0.005 came from almost identical source locations, resulting in very strong correlations

(these correlations were advantageous in constraining the quark-mass dependence in our chiral fits). Similarly, at the

fine lattice spacing, the data from am(val)

u,d = 0.002 and am(val)

u,d = 0.004 came from identical source locations, leading

to strong correlations.

For the axial current renormalization parameter, we use the values obtained nonperturbatively by the RBC/UKQCD

collaboration, which are [27]

ZA =

�
0.7019(26) for a = 0.112 fm,

0.7396(17) for a = 0.085 fm.
(74)
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integral, which is performed numerically using importance sampling. In the following, we assume that the Wick

rotation t → −it has been performed, so that t denotes the Euclidean time.

We calculate the following three-point functions, where � ... � denotes the path-integral over the gauge- and fermion

fields (for the domain-wall action used in this work, there is also an additional path integral over Pauli-Villars fields

[25, 35]):

C[P ∗d A P †
u]

µν
(t, t�) =

�

x

�

x�

� P ∗d µ
(x, t)Aν

(x�, t�) P †
u(0) �,

C[SddA Sdu]
µνρ
αβ (t, t�) =

�

x

�

x�

� Sdd µ
α (x, t)Aν

(x�, t�) S
ρ
du β(0) �,

C[SddA T du]
µν
αβ(t, t

�
) =

�

x

�

x�

� Sdd µ
α (x, t)Aν

(x�, t�) T du β(0) �,

C[T duA† Sdd]
µν
αβ(t, t

�
) =

�

x

�

x�

� T du
α (x, t)Aµ†

(x�, t�) S
ν
dd β(0) �. (53)

In addition, we calculate the two-point functions

C[Pu P †
u](t) =

�

x

� Pu
(x, t) P †

u(0) �,

C[P ∗d P ∗†
d ]

µν
(t) =

�

x

� P ∗d µ
(x, t) P ∗ ν†

d (0) �,

C[Sdd Sdd]
µν
αβ(t) =

�

x

� Sdd µ
α (x, t) S

ν
dd β(0) �,

C[Sdu Sdu]
µν
αβ(t) =

�

x

� Sdu ν
α (x, t) S

ν
du β(0) �,

C[T du T du]αβ(t) =
�

x

� T du
α (x, t) T du β(0) �. (54)

As an example, we show how the two-point function C[Sdd Sdd]
µν
αβ(t) is constructed in terms of quark propagators.

The lattice calculation is performed in the isospin limit of equal up and down quark masses. Inserting the definitions

of the interpolating fields, and performing the Grassmann integrals over the fermion fields explicitly, we have

C[Sdd Sdd]
µν
αβ(t) = �abc (Cγµ

)δγ �fgh (Cγν)ρσ

�

x

�
d̃aδ (x) d̃

b
γ(x)Q

c
α(x) d̃

g

ρ(0) d̃
f

σ(0)Q
h
β(0)

�

= �abc (Cγµ
)δγ �fgh (Cγν)ρσ

�

x

�
˜̃Gaf
(q)δσ(x, 0)

˜̃Gbg
(q)γρ(x, 0)G

ch
(Q)αβ(x, 0)

− ˜̃Gag
(q)δρ(x, 0)

˜̃Gbf
(q)γσ(x, 0)G

ch
(Q)αβ(x, 0)

�

U

= 2 �abc (Cγµ
)δγ �fgh (Cγν)ρσ

�

x

�
˜̃Gaf
(q)δσ(x, 0)

˜̃Gbg
(q)γρ(x, 0)G

ch
(Q)αβ(x, 0)

�

U
. (55)

Here,
˜̃G(q) denotes a smeared-source smeared-sink light-quark propagator and G(Q) a heavy-quark propagator. The

notation � ... �U indicates the path integral over the gauge fields U only. In the last step in Eq. (55) we have used

the symmetry of (Cγµ) and the antisymmetry of �abc to equate the two Wick contractions. Note that the two-point

function C[Sdu Sdu]
µν
αβ(t) contains only one Wick contraction, because the two light quarks have different flavors.

Therefore, in the isospin limit,

C[Sdu Sdu]
µν
αβ(t) =

1

2
C[Sdd Sdd]

µν
αβ(t). (56)

For the static lattice action we are using, the heavy quark propagator is equal to

G(Q)αβ(x, 0) = δx,0

�
1 + γ0

2

�

αβ

Ũ†
0 (x, t− a) Ũ†

0 (x, t− 2a) ... Ũ†
0 (x, 0), (57)

where Ũ0 is a spatially smeared gauge link in the temporal direction (more details will be given in Sec. III). Because the

static heavy-quark propagator (57) contains the Kronecker delta δx,0, the sums over x in all the correlation functions,
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integral, which is performed numerically using importance sampling. In the following, we assume that the Wick

rotation t → −it has been performed, so that t denotes the Euclidean time.

We calculate the following three-point functions, where � ... � denotes the path-integral over the gauge- and fermion

fields (for the domain-wall action used in this work, there is also an additional path integral over Pauli-Villars fields

[25, 35]):
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) =
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� T du
α (x, t)Aµ†

(x�, t�) S
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In addition, we calculate the two-point functions

C[Pu P †
u](t) =

�

x

� Pu
(x, t) P †

u(0) �,

C[P ∗d P ∗†
d ]
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(t) =

�

x

� P ∗d µ
(x, t) P ∗ ν†

d (0) �,

C[Sdd Sdd]
µν
αβ(t) =

�

x

� Sdd µ
α (x, t) S

ν
dd β(0) �,

C[Sdu Sdu]
µν
αβ(t) =

�

x

� Sdu ν
α (x, t) S

ν
du β(0) �,

C[T du T du]αβ(t) =
�

x

� T du
α (x, t) T du β(0) �. (54)

As an example, we show how the two-point function C[Sdd Sdd]
µν
αβ(t) is constructed in terms of quark propagators.

The lattice calculation is performed in the isospin limit of equal up and down quark masses. Inserting the definitions

of the interpolating fields, and performing the Grassmann integrals over the fermion fields explicitly, we have

C[Sdd Sdd]
µν
αβ(t) = �abc (Cγµ

)δγ �fgh (Cγν)ρσ
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d̃aδ (x) d̃
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β(0)

�
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(q)δρ(x, 0)

˜̃Gbf
(q)γσ(x, 0)G
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(Q)αβ(x, 0)
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U

= 2 �abc (Cγµ
)δγ �fgh (Cγν)ρσ
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(q)δσ(x, 0)

˜̃Gbg
(q)γρ(x, 0)G

ch
(Q)αβ(x, 0)
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. (55)

Here,
˜̃G(q) denotes a smeared-source smeared-sink light-quark propagator and G(Q) a heavy-quark propagator. The

notation � ... �U indicates the path integral over the gauge fields U only. In the last step in Eq. (55) we have used

the symmetry of (Cγµ) and the antisymmetry of �abc to equate the two Wick contractions. Note that the two-point

function C[Sdu Sdu]
µν
αβ(t) contains only one Wick contraction, because the two light quarks have different flavors.

Therefore, in the isospin limit,

C[Sdu Sdu]
µν
αβ(t) =

1

2
C[Sdd Sdd]

µν
αβ(t). (56)

For the static lattice action we are using, the heavy quark propagator is equal to

G(Q)αβ(x, 0) = δx,0

�
1 + γ0

2

�

αβ

Ũ†
0 (x, t− a) Ũ†

0 (x, t− 2a) ... Ũ†
0 (x, 0), (57)

where Ũ0 is a spatially smeared gauge link in the temporal direction (more details will be given in Sec. III). Because the

static heavy-quark propagator (57) contains the Kronecker delta δx,0, the sums over x in all the correlation functions,

Light quark

Static quark
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Here, m(vs)
π denotes the mass of a pion consisting of a valence and a sea quark, m(vv)

π denotes the mass of a pion

consisting of two valence quarks, and δ2V S = [m(vv)
π ]

2 − [m(vs)
π ]

2
. The functions I, H, Hη� and K, which arise from

the chiral loops and include the leading effects of the finite spatial volume, are defined in Ref. [20]. At the order

considered here, the analytic terms in Eq. (46) are linear functions of [m(vv)
π ]

2
and [m(vs)

π ]
2
.

C. Axial current matrix elements in lattice QCD

For the lattice QCD calculation, we construct interpolating fields for the heavy hadrons in terms of the quark fields

as follows:

P i
= Qaα (γ5)αβ q̃iaβ ,

P ∗i
µ = Qaα (γµ)αβ q̃iaβ ,

Sij
µ α = �abc (Cγµ)βγ q̃iaβ q̃jbγ Qcα,

T ij
α = �abc (Cγ5)βγ q̃iaβ q̃jbγ Qcα. (47)

Here, a, b, c are color indices, and α,β, γ are spinor indices. The light quark field of flavor i is denoted by qi (we will

also use the notation u = qu, d = qd), and the heavy quark (antiquark) field is denoted by Q (Q). The tilde on the

light quark fields indicates that these are smeared over multiple spatial lattice sites, in order to improve the overlap

of the interpolating fields with the corresponding ground-state hadrons and reduce excited state contamination. We

use gauge-invariant Gaussian smearing obtained by

q̃ =

�
1 +

σ2

4 nS
∆(2)

�nS

q, (48)

where ∆(2)
is a three-dimensional gauge-covariant lattice Laplacian which includes gauge links, σ is the smearing

width and nS is the number of smearing iterations.

The heavy quark Q is defined in the static limit, and we set v = 0. The static heavy-quark field Q satisfies

1 + γ0

2
Q = Q. (49)

Note that the interpolating field Sij
µ α couples to both the J = 1/2 and the J = 3/2 baryons with sl = 1, with exactly

the same relative amplitudes as (3).

We use the local 4-dimensional lattice axial current, where the quark and antiquark fields are evaluated at the same

lattice point. This current requires a finite renormalization factor ZA to match the continuum QCD current:

Aa(LQCD)
µ = ZA qi aα

1

2
(τa)ij(γµγ5)αβq

j
aβ . (50)

The value of ZA depends on the lattice action used, as well as the lattice spacing. We will come back to this in

Sec. III. As before, we will work with a specific flavor of the axial current:

A−(LQCD)
µ = ZA daα(γµγ5)αβuaβ . (51)

In the following, we will omit the superscript “−(LQCD)” in the axial current (51). Next, we define the overlap

factors, which describe the overlap of the operators corresponding to the interpolating fields (47) with the relevant

ground state hadrons in QCD. Here, we use the same notation and normalization of states as in Sec. II B:

�0|Pi
(0)|P i

(k)� = ZP i

�0|P∗i
µ (0)|P ∗i

(k, s)� = ZP∗i εµ(s)

�0|Sijµ α(0)|S
ij
(k, s)� = ZSij Uµ α(s)

�0|Tij
α (0)|T

ij
(k, s)� = ZT ij Uα(s). (52)

We stress that these states are now meant to be hadron states in (lattice) QCD, rather than in the chiral effective
theory.

We calculate Euclidean two-point functions of the interpolating fields (47), as well as Euclidean three-point functions

with an insertion of the axial current (51). These Euclidean correlation functions are obtained from the lattice path
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Aa(LQCD)
µ = ZA qi aα

1

2
(τa)ij(γµγ5)αβq

j
aβ . (50)

The value of ZA depends on the lattice action used, as well as the lattice spacing. We will come back to this in

Sec. III. As before, we will work with a specific flavor of the axial current:
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µ = ZA daα(γµγ5)αβuaβ . (51)

In the following, we will omit the superscript “−(LQCD)” in the axial current (51). Next, we define the overlap

factors, which describe the overlap of the operators corresponding to the interpolating fields (47) with the relevant

ground state hadrons in QCD. Here, we use the same notation and normalization of states as in Sec. II B:
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We calculate Euclidean two-point functions of the interpolating fields (47), as well as Euclidean three-point functions

with an insertion of the axial current (51). These Euclidean correlation functions are obtained from the lattice path
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and

C[Pu P †
u](t) =

1

2
|ZPu |2 e−EPu t + ... ,

C[P ∗d P ∗†
d ]µν(t) =

1

2
(vµvν − gµν) |ZP∗d |2 e−EP∗d t + ... ,

C[Sdd Sdd]
µν
αβ(t) = (vµvν − gµν)

�
1 + γ0

2

�

αβ

|ZSdd |2 e−ESdd t + ... ,

C[Sdu Sdu]
µν
αβ(t) = (vµvν − gµν)

�
1 + γ0

2

�

αβ

|ZSdu |2 e−ESdu t + ... ,

C[T du T du]αβ(t) =

�
1 + γ0

2

�

αβ

|ZTdu |2 e−ETdu t + ... . (61)

In the following, we remove the trivial spin-structure
� 1+γ0

2

�
αβ

, which comes purely from the heavy-quark propagator

(57), from all baryon correlation functions.
Because the lattice calculation is performed in the isospin limit (and in the static limit for the heavy quark), we

have the relations

EPu = EPd∗ ,

ZPu = ZPd∗ ,

ESdd = ESdu ,

ZSdd =
√
2 ZSdu (62)

[the factor of
√
2 in the last line comes from Eq. (56)]. As a consequence of the equality of energies, the t�-dependence

of the ground-state contribution in the three point functions C[P ∗d A P †
u]

µν(t, t�) and C[SddA Sdu]µνρ(t, t�) cancels
completely. For these three-point functions, the t-dependence as well as the Z factors in the ground state contribution
can be canceled by forming the ratios

R1(t, t
�) = −

1
3

�3
µ=1 C[P ∗d A P †

u]
µµ(t, t�)

C[Pu P †
u](t)

(63)

= (g1)eff + ... ,

and

R2(t, t
�) = 2

i
6

�3
µ,ν,ρ=1 �0µνρ C[SddA Sdu]µνρ(t, t�)

1
3

�3
µ=1 C[Sdd Sdd]µµ(t)

(64)

= (g2)eff + ... ,

where, as before, the ellipsis indicates contributions from excited states that vanish exponentially when all Euclidean
time separations are taken to infinity. To extract (g3)eff , we use the double ratio

R3(t, t
�) =

�����

�
1
3

�3
µ=1 C[SddA T du]µµ(t, t�)

� �
1
3

�3
µ=1 C[T duA† Sdd]µµ(t, t�)

�

�
1
3

�3
µ=1 C[Sdd Sdd]µµ(t)

� �
C[T du T du](t)

� (65)

= (g3)eff + ... .

The numerical results for (63), (64), and (65) and the subsequent analysis will be described in Sec. IV. In the following,
we discuss the contributions from excited states to the ratios. Again, we assume an infinite temporal extent of the
lattice; with a finite temporal extent T this means that the following discussion is only valid for source-sink separations
t that are smaller than T/2 by a sufficient distance (which is the case in our numerical calculations). We begin with
R1, and define

�0|Pu(0)|Pu
n � = ZP,n,

�0|P∗d
µ (0)|P ∗d

n (ε)� = ZP,n εµ,

�P ∗d
n |Aµ(0)|Pu

m(ε)� = −2A(PP∗)
nm ε∗µ, (66)

t,t�→∞−→ (g1)eff
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In the following, we remove the trivial spin-structure
� 1+γ0

2

�
αβ

, which comes purely from the heavy-quark propagator

(57), from all baryon correlation functions.
Because the lattice calculation is performed in the isospin limit (and in the static limit for the heavy quark), we
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EPu = EPd∗ ,

ZPu = ZPd∗ ,

ESdd = ESdu ,

ZSdd =
√
2 ZSdu (62)

[the factor of
√
2 in the last line comes from Eq. (56)]. As a consequence of the equality of energies, the t�-dependence

of the ground-state contribution in the three point functions C[P ∗d A P †
u]

µν(t, t�) and C[SddA Sdu]µνρ(t, t�) cancels
completely. For these three-point functions, the t-dependence as well as the Z factors in the ground state contribution
can be canceled by forming the ratios

R1(t, t
�) = −

1
3
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µ=1 C[P ∗d A P †

u]
µµ(t, t�)

C[Pu P †
u](t)

(63)

= (g1)eff + ... ,

and

R2(t, t
�) = 2

i
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�3
µ,ν,ρ=1 �0µνρ C[SddA Sdu]µνρ(t, t�)

1
3

�3
µ=1 C[Sdd Sdd]µµ(t)

(64)

= (g2)eff + ... ,

where, as before, the ellipsis indicates contributions from excited states that vanish exponentially when all Euclidean
time separations are taken to infinity. To extract (g3)eff , we use the double ratio

R3(t, t
�) =
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1
3
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1
3

�3
µ=1 C[T duA† Sdd]µµ(t, t�)
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1
3

�3
µ=1 C[Sdd Sdd]µµ(t)

� �
C[T du T du](t)

� (65)

= (g3)eff + ... .

The numerical results for (63), (64), and (65) and the subsequent analysis will be described in Sec. IV. In the following,
we discuss the contributions from excited states to the ratios. Again, we assume an infinite temporal extent of the
lattice; with a finite temporal extent T this means that the following discussion is only valid for source-sink separations
t that are smaller than T/2 by a sufficient distance (which is the case in our numerical calculations). We begin with
R1, and define

�0|Pu(0)|Pu
n � = ZP,n,

�0|P∗d
µ (0)|P ∗d

n (ε)� = ZP,n εµ,

�P ∗d
n |Aµ(0)|Pu

m(ε)� = −2A(PP∗)
nm ε∗µ, (66)

t,t�→∞−→ (g2)eff
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(vµvν − gµν) |ZP∗d |2 e−EP∗d t + ... ,

C[Sdd Sdd]
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αβ(t) = (vµvν − gµν)
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|ZSdu |2 e−ESdu t + ... ,

C[T du T du]αβ(t) =

�
1 + γ0

2
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αβ

|ZTdu |2 e−ETdu t + ... . (61)

In the following, we remove the trivial spin-structure
� 1+γ0

2

�
αβ

, which comes purely from the heavy-quark propagator

(57), from all baryon correlation functions.
Because the lattice calculation is performed in the isospin limit (and in the static limit for the heavy quark), we

have the relations

EPu = EPd∗ ,

ZPu = ZPd∗ ,

ESdd = ESdu ,

ZSdd =
√
2 ZSdu (62)

[the factor of
√
2 in the last line comes from Eq. (56)]. As a consequence of the equality of energies, the t�-dependence

of the ground-state contribution in the three point functions C[P ∗d A P †
u]

µν(t, t�) and C[SddA Sdu]µνρ(t, t�) cancels
completely. For these three-point functions, the t-dependence as well as the Z factors in the ground state contribution
can be canceled by forming the ratios

R1(t, t
�) = −

1
3

�3
µ=1 C[P ∗d A P †

u]
µµ(t, t�)

C[Pu P †
u](t)

(63)

= (g1)eff + ... ,

and

R2(t, t
�) = 2

i
6

�3
µ,ν,ρ=1 �0µνρ C[SddA Sdu]µνρ(t, t�)

1
3

�3
µ=1 C[Sdd Sdd]µµ(t)

(64)

= (g2)eff + ... ,

where, as before, the ellipsis indicates contributions from excited states that vanish exponentially when all Euclidean
time separations are taken to infinity. To extract (g3)eff , we use the double ratio

R3(t, t
�) =

�����

�
1
3

�3
µ=1 C[SddA T du]µµ(t, t�)

� �
1
3

�3
µ=1 C[T duA† Sdd]µµ(t, t�)

�

�
1
3

�3
µ=1 C[Sdd Sdd]µµ(t)

� �
C[T du T du](t)

� (65)

= (g3)eff + ... .

The numerical results for (63), (64), and (65) and the subsequent analysis will be described in Sec. IV. In the following,
we discuss the contributions from excited states to the ratios. Again, we assume an infinite temporal extent of the
lattice; with a finite temporal extent T this means that the following discussion is only valid for source-sink separations
t that are smaller than T/2 by a sufficient distance (which is the case in our numerical calculations). We begin with
R1, and define

�0|Pu(0)|Pu
n � = ZP,n,

�0|P∗d
µ (0)|P ∗d

n (ε)� = ZP,n εµ,

�P ∗d
n |Aµ(0)|Pu

m(ε)� = −2A(PP∗)
nm ε∗µ, (66)

t,t�→∞−→ (g3)eff
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where |Pu
n � denotes the n-th excited state with a non-zero overlap �0|Pu(0)|Pu

n �, and similarly for |P ∗d
n (ε)�. Because

of heavy-quark symmetry and isospin symmetry, all energies and Z-factors in the Pu sector are equal to those in the

P ∗d sector, and A(PP∗)
nm = A∗(PP∗)

mn . Note that

A(PP∗)
11 = (g1)eff . (67)

The complete spectral decomposition of R1 reads

R1(t, t
�
) =

�∞
n=1

�∞
m=1 ZP,n Z∗

P,m A(PP∗)
nm e−EP,n t e−EP,m(t−t�)

�∞
n=1

��ZP,n

��2e−EP,n t
. (68)

Showing only the contributions from the ground states and first excited states, we find that

R1(t, t
�
) = A(PP∗)

11 +

��ZP,2

ZP,1

��2(A(PP∗)
22 −A(PP∗)

11 ) e−δP t +
ZP,1Z

∗
P,2

|ZP,1|2 A(PP∗)
12 e−δP t� +

ZP,2Z
∗
P,1

|ZP,1|2 A∗(PP∗)
12 e−δP (t−t�)

1 +
��ZP,2

ZP,1

��2e−δP t
+ ... ,

(69)

with the energy gap δP = EP,2 − EP,1. For a given value of t, the smallest contamination from excited states is

obtained at the mid-point t� = t/2. Evaluating (69) at t� = t/2, we get

R1(t, t/2) = A(PP∗)
11 +

��ZP,2

ZP,1

��2(A(PP∗)
22 −A(PP∗)

11 ) e−δP t + 2 �
�
ZP,1Z

∗
P,2

|ZP,1|2 A(PP∗)
12

�
e−

1
2 δP t

1 +
��ZP,2

ZP,1

��2e−δP t
+ ... , (70)

where � denotes the real part. By using the Taylor expansion 1/(1+
��ZP,2

ZP,1

��2e−δP t) = 1−
��ZP,2

ZP,1

��2e−δP t+ ..., we obtain

R1(t, t/2) = A(PP∗)
11 +

����
ZP,2

ZP,1

����
2

(A(PP∗)
22 −A(PP∗)

11 ) e−δP t
+ 2 �

�
ZP,1Z∗

P,2

|ZP,1|2
A(PP∗)

12

�
e−

1
2 δP t

+ ... , (71)

where we have omitted terms that decay like e−
3
2 δP t or faster, and are therefore exponentially suppressed relative

to the terms shown in (71) at large t. The result for R2(t, t/2) has the same form (with suitable definitions of the

overlap factors and matrix elements):

R2(t, t/2) = A(SS)
11 +

����
ZS,2

ZS,1

����
2

(A(SS)
22 −A(SS)

11 ) e−δS t
+ 2 �

�
ZS,1Z∗

S,2

|ZS,1|2
A(SS)

12

�
e−

1
2 δS t

+ ... , (72)

with A(SS)
11 = (g2)eff and δS = ES,2 − ES,1. For the double ratio R3(t, t/2) we obtain, after Taylor-expanding the

square root and omitting terms that decay faster than e−δS t or e−δT t,

R3(t, t/2) = A(ST )
11 − A(ST )

11 |ZS,2|2e−δS t

2|ZS,1|2
− A(ST )

11 |ZT,2|2e−δT t

2|ZT,1|2

+�
�
A(ST )

21

ZS,2

ZS,1

�
e−

1
2 δS t

+ �
�
A(ST )

12

ZT,2

ZT,1

�
e−

1
2 δT t

+�
�
A(ST )

22

ZT,2Z∗
S,2

ZT,1Z∗
S,1

�
e−

1
2 (δS+δT )t

+ ... , (73)

with A(ST )
11 = (g3)eff and δS = ES,2 − ES,1, δT = ET,2 − ET,1. The t-dependent terms in the right-hand-sides of Eqs.

(71), (72), and (73) are the leading excited-state contributions to the extraction of (gi)eff from the ratio method.

III. LATTICE ACTIONS AND PARAMETERS

Our calculations are based on gauge field ensembles generated by the RBC/UKQCD collaboration. These ensem-

bles include 2 + 1 dynamical light quark flavors, implemented with a domain wall action [24–26]. The gluons are

implemented with the Iwasaki action [32, 33], which is known to reduce the residual chiral symmetry breaking of the

domain wall action [34].
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ZT,2Z∗
S,2

ZT,1Z∗
S,1

�
e−

1
2 (δS+δT )t

+ ... , (73)

with A(ST )
11 = (g3)eff and δS = ES,2 − ES,1, δT = ET,2 − ET,1. The t-dependent terms in the right-hand-sides of Eqs.

(71), (72), and (73) are the leading excited-state contributions to the extraction of (gi)eff from the ratio method.

III. LATTICE ACTIONS AND PARAMETERS

Our calculations are based on gauge field ensembles generated by the RBC/UKQCD collaboration. These ensem-

bles include 2 + 1 dynamical light quark flavors, implemented with a domain wall action [24–26]. The gluons are

implemented with the Iwasaki action [32, 33], which is known to reduce the residual chiral symmetry breaking of the

domain wall action [34].

with energy gap



Correlator ratios

• Ratios for varying operator insertion time

• Negligible t’ dependence away from source/sink

• No evidence for transition matrix elements 
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Source-sink separation
• Extract effective axial couplings (gi)eff from t 

extrapolation

• Constrain δi for a=0.086 fm from δi at a=0.112 fm

•

• Fitted gaps:
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and nHYP = 10 then gave

(g1)eff = 0.510± 0.011, A1 = 2.7± 3.6, δ1 = (1.08± 0.38) GeV,

(g2)eff = 0.998± 0.041, A2 = 1.8± 1.7, δ2 = (0.75± 0.29) GeV,

(g3)eff = 0.805± 0.034, A3 = 2.0± 1.0, δ3 = (0.66± 0.16) GeV. (84)

At the fine lattice spacing, it was necessary to remove the data points with the shortest separation t/a = 6 to
obtain acceptable fits. Therefore, the resulting gap parameter matches exactly the prior, and χ2/d.o.f. is undefined.
The central values of the overlap parameters Ai in (84) are larger than in (81), indicating a stronger overlap of the
interpolating fields with excited states at the fine lattice spacing. Different overlap factors were expected here, because
the smearing width of the light quark fields in physical units was different (we used the same smearing width in lattice
units for both lattice spacings). The fit curves are shown in the right-hand side of Fig. 4.

We then performed new fits to the data for all values of the quark masses and nHYP. For those fits, the parameters
(gi)eff(a,m, nHYP) were left unconstrained, but Gaussian priors were used for both li and Ai, with central values and
widths as taken from the initial fits (81) for the coarse lattice spacing and (84) for the fine lattice spacing. Examples
of these fits are shown in Fig. 5. The only assumption made by using the priors is that the dependence of li and Ai on
nHYP and on the quark masses is smaller than the width of the priors as determined by the statistical uncertainties
in (81) and (84). Given that these widths were 25 percent or larger in all cases, this appears to be a reasonable
assumption. As a test, we also performed unconstrained fits where possible, which gave consistent result but were less
stable. The results for (gi)eff(a,m, nHYP) are given in Tables III and IV, and plotted in Fig. 6. The central values
and uncertainties shown there are bootstrap averages and 68% widths, respectively, from repeated correlated fits of
the t-dependence for a bootstrap ensemble of data.
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FIG. 5. Fits of the t-dependence of R1(t), R2(t), R3(t), for nHYP = 3, using the functions defined in Eq. (79). The left-hand

side shows the a = 0.112 fm, am(val)

u,d = 0.002 data, and the right-hand side shows the a = 0.085 fm, am(val)

u,d = 0.002 data. In
both cases, the overlap parameters Ai and energy gaps δi were constrained using information from (81) and (84).

To estimate the systematic uncertainties caused by higher excited states, we calculated the shifts in (gi)eff for a

representative data set at the coarse lattice spacing (am(val)

u,d = 0.002, nHYP = 3) when removing one or two data
points with the smallest t/a (= 4, 5) from the fits, or adding a second exponential to the fit function,

Ri(t) = (gi)eff −Ai e
−δi t −Bi Ai e

−(δi+δ(2)i ) t. (85)

Because the available data was not sufficient to determine the new parameters Bi and δ(2)i , we used Gaussian priors
to constrain these parameters to physically reasonable values. The parameters Bi describe the amplitudes of the
second-excited-state contribution, relative to the first-excited-state contribution, and we set B̃i = 0, σ̃Bi = 2. For the

energy gaps a δ(2)i = el
(2)
i we used priors with central values equal to 2/3 times the fit results for δi in (81), and widths

of 100%. The fitted parameters (gi)eff and the corresponding shifts δ(gi)eff for the different cases are shown in Table
V. Since the shifts δ(gi)eff themselves have statistical uncertainties σδ(gi)eff , we choose to quote the maximum value
of

�
[δ(gi)eff ]2 + [σδ(gi)eff ]2 (86)

δi ∼ 0.7—1.0 GeV

Ri(t, a, mπ, nHYP) = (gi)eff(a,mπ, nHYP)−Ai(a,mπ, nHYP)e−δi(a,mπ,nHYP)t
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Chiral and continuum extrapolation
• Use NLO partially quenched SU(4|2) HHχPT at finite volume 

and include polynomial discretisation effects
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C. Extraction of the axial couplings g1, g2, and g3 using HHχPT fits of the data

In the previous section, we obtained results for the effective axial couplings (gi)eff(a,m, nHYP) at two different

lattice spacings a, multiple values for the quark masses am
(sea)

u,d and am
(val)

u,d , and multiple values for the heavy-quark

gauge-link smearing parameter nHYP (corresponding to multiple heavy-quark lattice discretizations). All data are for

a finite spatial volume of about (2.7 fm)
3
. In the following, we discuss how we extracted the axial couplings g1, g2, g3,

which are the parameters of the continuum heavy-hadron chiral perturbation theory Lagrangian (8), from the data

for (gi)eff(a,m, nHYP).

To fit the quark-mass and volume dependence of (gi)eff we use the next-to-leading order predictions from HHχPT
[20], which were already shown in Eq. (46). Here, we extend these formulae to include the leading effects of the

non-zero lattice spacing a. These leading effects are quadratic in a, with coefficients di, nHYP
that depend on nHYP.

We do not expect O(a) errors because of the chiral symmetry of the domain-wall action used for the light quarks

(neglecting the small effects caused by the residual chiral symmetry breaking at finite Ls [27]) and the automatic

O(a) improvement of the static heavy-quark action. Higher-order effects in the a- and mπ-dependence of (gi)eff are

discussed at the end of this section.

For (g1)eff , the fit function is given by
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Similarly, for (g2)eff and (g3)eff , we use
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The functions I, H, Hη� and K are the chiral loop corrections [20]. They include finite-volume effects and therefore

they also depend on the lattice size. Furthermore, these functions depend on the renormalization scale µ, but this

scale-dependence is absorbed by the fit parameters c
(vv)

i and c
(vs)

i , as we checked explicitly by varying µ in the fits.

We set the pion decay constant to f = 132 MeV and the S−T mass splitting in Eqs. (88) and (89) to ∆ = 200 MeV.

This value of ∆ is consistent with experiments [13, 29] and with our lattice data (we also checked that varying ∆
within a few percent does not significantly affect the results for the axial couplings). We calculated the covariances of

all correlated data points in Tables III and IV using bootstrap, and performed fully correlated fits using the inverse

of the covariance matrix in the definition of χ2
. This method propagates the uncertainties and correlations of (gi)eff ,

as obtained from the fits to the ratios Ri, into the extracted parameters gi of the HHχPT Lagrangian.

Results from fits of the (g1)eff data using the function (87) are given in Table VI and Fig. 7. The fit parameters are

g1, c
(vv)

1
, c

(vs)

1
, and {d1, nHYP

} (the latter for all values of nHYP that were included in the fit). We performed fits that
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The functions I, H, Hη� and K are the chiral loop corrections [20]. They include finite-volume effects and therefore
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This value of ∆ is consistent with experiments [13, 29] and with our lattice data (we also checked that varying ∆
within a few percent does not significantly affect the results for the axial couplings). We calculated the covariances of
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The functions I, H, Hη� and K are the chiral loop corrections [20]. They include finite-volume effects and therefore

they also depend on the lattice size. Furthermore, these functions depend on the renormalization scale µ, but this

scale-dependence is absorbed by the fit parameters c
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i and c
(vs)

i , as we checked explicitly by varying µ in the fits.

We set the pion decay constant to f = 132 MeV and the S−T mass splitting in Eqs. (88) and (89) to ∆ = 200 MeV.

This value of ∆ is consistent with experiments [13, 29] and with our lattice data (we also checked that varying ∆
within a few percent does not significantly affect the results for the axial couplings). We calculated the covariances of
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. This method propagates the uncertainties and correlations of (gi)eff ,

as obtained from the fits to the ratios Ri, into the extracted parameters gi of the HHχPT Lagrangian.

Results from fits of the (g1)eff data using the function (87) are given in Table VI and Fig. 7. The fit parameters are

g1, c
(vv)

1
, c

(vs)

1
, and {d1, nHYP

} (the latter for all values of nHYP that were included in the fit). We performed fits that

Loop functions

Partial quenching

Lattice spacing effects
depend on nHYP

g2,3 extrapolation 
is coupled
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FIG. 11. Like Fig. 10, but for the real part of (g2)eff .

29

0.4

0.6

0.8

1.0

1.2

0.000
0.025

0.050
0.075

0.100
0.125

0.150

0.000
0.025

0.050
0.075

0.100
0.125

0.150
[m(vv)

π ]2 (GeV2)

[m(vs)
π ]2 (GeV2)

�
[(
g 3
) e

ff
]

0.4

0.6

0.8

1.0

1.2

0.000
0.025

0.050
0.075

0.100
0.125

0.150

0.000
0.025

0.050
0.075

0.100
0.125

0.150
[m(vv)

π ]2 (GeV2)

[m(vs)
π ]2 (GeV2)

�
[(
g 3
) e

ff
]

0.000 0.025 0.050 0.075 0.100 0.125 0.150

m2

π (GeV2)

0.6

0.8

1.0

�
[(
g 3
) e
ff
]

a = 0.112 fm, nHYP = 3

0.4

0.6

0.8

1.0

1.2

0.000
0.025

0.050
0.075

0.100
0.125

0.150

0.000
0.025

0.050
0.075

0.100
0.125

0.150
[m(vv)

π ]2 (GeV2)

[m(vs)
π ]2 (GeV2)

�
[(
g 3
) e

ff
]

0.4

0.6

0.8

1.0

1.2

0.000
0.025

0.050
0.075

0.100
0.125

0.150

0.000
0.025

0.050
0.075

0.100
0.125

0.150
[m(vv)

π ]2 (GeV2)

[m(vs)
π ]2 (GeV2)

�
[(
g 3
) e

ff
]

0.000 0.025 0.050 0.075 0.100 0.125 0.150

m2

π (GeV2)

0.6

0.8

1.0

�
[(
g 3
) e
ff
]

a = 0.085 fm, nHYP = 3

0.4

0.6

0.8

1.0

1.2

0.000
0.025

0.050
0.075

0.100
0.125

0.150

0.000
0.025

0.050
0.075

0.100
0.125

0.150
[m(vv)

π ]2 (GeV2)

[m(vs)
π ]2 (GeV2)

�
[(
g 3
) e

ff
]

0.4

0.6

0.8

1.0

1.2

0.000
0.025

0.050
0.075

0.100
0.125

0.150

0.000
0.025

0.050
0.075

0.100
0.125

0.150
[m(vv)

π ]2 (GeV2)

[m(vs)
π ]2 (GeV2)

�
[(
g 3
) e

ff
]

0.000 0.025 0.050 0.075 0.100 0.125 0.150

m2
π (GeV2)

0.6

0.8

1.0

�
[(
g 3
) e
ff
]

a = 0

FIG. 12. Like Fig. 10, but for the real part of (g3)eff .
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Having obtained the results for (gi)eff , we then per-

formed fully correlated fits of the a-, m(vv)

π -, and m(vs)

π -
dependence. For (g1)eff , we used the function

(g1)eff = g1
�
1 + f1(g1,m

(vv)

π ,m(vs)

π , L) + d1,nHYP
a2

+ c(vv)
1

[m(vv)

π ]2 + c(vs)
1

[m(vs)

π ]2
�
, (6)

where g1, c
(vv)

1
, c(vs)

1
, {d1,nHYP

} are the free parameters.
For (g2)eff and (g3)eff , we performed coupled fits using

(gi)eff = gi
�
1 + fi(g2, g3,m

(vv)

π ,m(vs)

π ,∆, L) + di,nHYP
a2

+ c(vv)i [m(vv)

π ]2 + c(vs)i [m(vs)

π ]2
�

(7)

(for i = 2, 3), where the free fit parameters are g2, g3,

c(vv)
2

, c(vv)
3

, c(vs)
2

, c(vs)
3

, {d2,nHYP
, d3,nHYP

}. The functions
fi in (6) and (7) are the nonanalytic loop contributions
in partially quenched SU(4|2) HHχPT and can be found
in Ref. [10]. They also include the leading effects of
the finite lattice size L (because of our large volume,
the finite-volume corrections were smaller than 3% for
all data points). The functions fi depend on the renor-
malization scale µ, but this dependence is canceled ex-

actly by the µ-dependence of the counterterms c(vv)i and

c(vs)i . The parameters di,nHYP
for each nHYP describe the

leading effects of the non-zero lattice spacing, which are
multiplicative corrections proportional to a2 as a conse-
quence of the lattice chiral symmetry of the domain-wall
action. In (7), the quantity ∆ is the S−T mass splitting,
which we set to ∆ = 200 MeV in our fits, consistent with
experiments [15, 16] and our lattice data (note that ∆
does not vanish in the chiral or heavy-quark limits).

To determine for which values of nHYP the order-a2

corrections in (6) and (7) adequately describe the lattice
artefacts in the data, we started from fits that included
all values of nHYP, and then successively removed the
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FIG. 3. The (real parts of the) fitted function (g1)eff , (g2)eff ,
(g3)eff , evaluated in infinite volume and nHYP = 3, for the

unitary case m(vv)

π = m(vs)

π = mπ. The dashed line corre-
sponds to a = 0.112 fm, the dotted line to a = 0.085 fm,
and the solid line to the continuum limit. The shaded regions
indicate the 1σ statistical uncertainty. Also shown are the
data points, shifted to infinite volume (circles: a = 0.112 fm,
squares: a = 0.085 fm). The partially quenched data points

(open symbols), which have m(vv)

π < m(vs)

π , are included in

the plot at mπ = m(vv)

π , even though the fit functions actu-
ally have slightly different values for these points.

data with the largest values of nHYP. After excluding
nHYP = 10 and nHYP = 5, we obtained good quality-of-
fit values [Q = 0.70 for (g1)eff and Q = 0.92 for (g2,3)eff ],
and the results were stable under further exclusions. Our
final results for the axial couplings, taken from the fits
with nHYP = 1, 2, 3, are

g1 = 0.449± 0.047 stat ± 0.019 syst,

g2 = 0.84 ± 0.20 stat ± 0.04 syst,

g3 = 0.71 ± 0.12 stat ± 0.04 syst. (8)

Seperate fits of the data for each nHYP (1, 2, 3, 5, 10) gave
results consistent with (8). The estimates of the system-
atic uncertainties in (8) include the following: effects of
NNLO terms in the fits to the a- and mπ-dependence
(3.6%, 2.8%, 3.7% for g1, g2, g3, respectively, deter-
mined by performing fits including higher-order terms
with natural-sized Bayesian constraints), effects from the
unphysically large sea-strange-quark mass (1.5%), and
effects from higher excited states in the t → ∞ extrapo-
lations of Ri(t) (1.7%, 2.8%, 4.9%). The resulting mass-
and lattice-spacing dependence of the effective couplings
from the fits with (6) and (7) is shown in Fig. 3. Note
that the functions (g2)eff and (g3)eff develop small imag-
inary parts for pion masses below the S → Tπ threshold
at mπ = ∆ [10] (the lattice data are all above this

Chiral and continuum extrapolation

a=0.112 fm

a=0.086 fm

a=0
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included data with multiple values of nHYP, as well as individual fits including only data with one value of nHYP. The
fits that included multiple values of nHYP enforced a common continuum limit of the data with different nHYP, but
with separate a2-coefficients d1, nHYP

for each nHYP. While we know that the actual continuum limit for all values of
nHYP has to be the same (if we took a to zero in the numerical calculations), we only have data for two different values
of a, and one may question whether the approach of the continuum limit is described by a simple a2-dependence as
assumed in Eq. (87). In particular, one may be worried that large values of nHYP, which correspond to more spatially
extended heavy-quark actions, could lead to non-negligible contributions from higher powers of a. To investigate this,
we started from a fit that included all values of nHYP (1, 2, 3, 5, 10), and then successively removed the data with
the largest values of nHYP. As can be seen in Table VI and Fig. 7, the fit including the data from all values of nHYP

had a poor quality, Q = 0.17, and gave a somewhat low value for g1. After excluding nHYP = 10 and nHYP = 5, the
fits had a good quality and the results for g1 were stable under further exclusions of the largest nHYP-values. The fit
including nHYP = 1, 2, 3, which has Q = 0.70, gave the result

g1 = 0.449± 0.047 stat. (90)

Estimates of the systematic uncertainties in (90) will be given at the end of this section. The results from the fits
including only one value of nHYP were all consistent with (90), even for nHYP = 10. This suggests that higher powers
of a2 are actually negligible for the values of the lattice spacings considered here (a = 0.085 fm and a = 0.112 fm),
and the deviating value of g1 as well as the poor Q for the fit that included all values of nHYP simultaneously may
have actually been caused by technical issues with the covariance-fitting of highly correlated data [41]. We will return
to the discussion of higher-order discretization effects at the end of this section.

nHYP g1 d.o.f. χ2/d.o.f. Q

1, 2, 3, 5, 10 0.371(28) 30− 8 1.3 0.17

1, 2, 3, 5 0.401(39) 24− 7 1.2 0.29

1, 2, 3 0.449(47) 18− 6 0.75 0.70

1, 2 0.440(60) 12− 5 0.85 0.54

10 0.450(38) 6− 4 0.09 0.91

5 0.468(47) 6− 4 0.61 0.55

3 0.482(55) 6− 4 0.73 0.49

2 0.465(66) 6− 4 1.0 0.36

1 0.49(10) 6− 4 0.72 0.49

TABLE VI. Results for the mesonic axial coupling g1, obtained by fitting the data for (g1)eff using the function (87). The first
four rows show the results from fits which include data with multiple values of the heavy-quark smearing parameter nHYP.
The remaining rows show the results from fits with only one value of nHYP. The number of degrees of freedom (d.o.f.) is given
in the form (number of data points)−(number of fit parameters). The last column of the table gives the quality of the fit
Q = Γ

�
d.o.f./2, χ2/2

�
.

For the baryonic axial couplings, we performed simultaneous, fully correlated fits to the data for (g2)eff and (g3)eff
using the functions (88) and (89), with the fit parameters g2, g3, c

(vv)

2
, c(vv)

3
, c(vs)

2
, c(vs)

3
and {d2, nHYP

, d3, nHYP
} (the

latter for all values of nHYP that were included in the fit). As already discussed in the fits for (g1)eff , we performed
fits that included data with multiple values of nHYP, as well as individual fits including only data with one value of
nHYP. The results are shown in Table VII and Fig. 8. Again, we select the fit that includes nHYP = 1, 2, 3, which
gives

g2 = 0.84± 0.20 stat,

g3 = 0.71± 0.12 stat. (91)

This fit also had the highest value of the quality of fit, Q = 0.92. Estimates of the systematic uncertainties in (91)
will be given at the end of this section. As can be seen in Fig. 8, the results (91) are in fact consistent with the results
from all other fits within the statistical uncertainties, demonstrating that heavy-quark discretization errors are under
good control. The covariance matrix for g2 and g3 is

Cov =

�
0.040 0.011

0.011 0.014

�
. (92)

The corresponding likelihood function is plotted in Fig. 9.
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FIG. 7. Graphical representation of the fit results for g1 from Table VI. The horizontal axis corresponds to the different fits,
ordered (from left to right) in the same way as the rows in the table (from top to bottom). The line and shaded region in the
upper plot indicate the selected result and its uncertainty, which is taken from the third fit (the fit that includes data with
nHYP = 1, 2, 3).

nHYP g2 g3 d.o.f. χ2/d.o.f. Q

1, 2, 3, 5, 10 0.72(12) 0.635(90) 58− 16 0.94 0.57

1, 2, 3, 5 0.73(13) 0.61(11) 46− 14 1.1 0.31

1, 2, 3 0.84(20) 0.71(12) 34− 12 0.61 0.92

1, 2 0.81(22) 0.57(17) 22− 10 0.50 0.91

10 0.90(15) 0.75(11) 12− 8 0.64 0.64

5 0.98(19) 0.76(13) 12− 8 0.74 0.57

3 0.98(23) 0.74(15) 12− 8 0.54 0.71

2 0.91(23) 0.66(18) 12− 8 0.51 0.67

1 0.79(29) 0.61(27) 12− 8 0.42 0.74

TABLE VII. Results for the baryonic axial couplings g2 and g3, obtained by simultaneously fitting the data for (g2)eff and
(g3)eff using the functions (88) and (89). The first four rows show the results from fits which include data with multiple values
of the heavy-quark smearing parameter nHYP. The remaining rows show the results from fits with only one value of nHYP.
The number of degrees of freedom (d.o.f.) is given in the form (number of data points)−(number of fit parameters). The last
column of the table gives the quality of the fit Q = Γ

�
d.o.f./2, χ2/2

�
.

As another check, we performed fits of (gi)eff where we excluded all the partially quenched data (i.e keeping only

the unitary data with m(vv)

π = m(vs)

π ). In that case, only one analytic counterterm is needed for each coupling, and

we removed the terms c(vs)i [m(vs)

π ]2 from Eqs. (87), (88), and (89). These fits, again using nHYP = 1, 2, 3, then gave
g1 = 0.467 ± 0.056, g2 = 0.92 ± 0.22, and g3 = 0.72 ± 0.14, in full agreement with (90) and (91) and with slightly
larger uncertainties.

Plots of the functions (g1)eff , (g2)eff , and (g3)eff , with the parameters from the fits including the complete data
with nHYP = 1, 2, 3 [i.e. the fit that gives the results (90) and (91)] are shown in Figs. 10, 11, and 12. For the
figures, the functions were evaluated in infinite volume, for the lattice spacings a = 0.112 fm, a = 0.085 fm, and
a = 0. The right-hand sides of the figures show the values and uncertainties of the fitted functions for the unitary case

m(vv)

π = m(vs)

π , while the left-hand sides show the dependence on both m(vv)

π and m(vs)

π . At the two non-zero values
of a, the functions were evaluated for nHYP = 3 and the corresponding data points are also shown (in the continuum
limit, the functions for nHYP = 1, 2, 3 are all equal). To allow the inclusion in these plots, the data points were shifted
to infinite volume using

(gi)eff,data(m,L = ∞) = (gi)eff,data(m,L = 2.7 fm) + [(gi)eff,fit(m,L = ∞)− (gi)eff,fit(m,L = 2.7 fm)] , (93)

where we use the notation m = (m(vv)

π ,m(vs)

π ). The numerical values of the volume shifts are given in Table VIII. The
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FIG. 7. Graphical representation of the fit results for g1 from Table VI. The horizontal axis corresponds to the different fits,
ordered (from left to right) in the same way as the rows in the table (from top to bottom). The line and shaded region in the
upper plot indicate the selected result and its uncertainty, which is taken from the third fit (the fit that includes data with
nHYP = 1, 2, 3).

nHYP g2 g3 d.o.f. χ2/d.o.f. Q

1, 2, 3, 5, 10 0.72(12) 0.635(90) 58− 16 0.94 0.57

1, 2, 3, 5 0.73(13) 0.61(11) 46− 14 1.1 0.31

1, 2, 3 0.84(20) 0.71(12) 34− 12 0.61 0.92

1, 2 0.81(22) 0.57(17) 22− 10 0.50 0.91

10 0.90(15) 0.75(11) 12− 8 0.64 0.64

5 0.98(19) 0.76(13) 12− 8 0.74 0.57

3 0.98(23) 0.74(15) 12− 8 0.54 0.71

2 0.91(23) 0.66(18) 12− 8 0.51 0.67

1 0.79(29) 0.61(27) 12− 8 0.42 0.74

TABLE VII. Results for the baryonic axial couplings g2 and g3, obtained by simultaneously fitting the data for (g2)eff and
(g3)eff using the functions (88) and (89). The first four rows show the results from fits which include data with multiple values
of the heavy-quark smearing parameter nHYP. The remaining rows show the results from fits with only one value of nHYP.
The number of degrees of freedom (d.o.f.) is given in the form (number of data points)−(number of fit parameters). The last
column of the table gives the quality of the fit Q = Γ

�
d.o.f./2, χ2/2

�
.

As another check, we performed fits of (gi)eff where we excluded all the partially quenched data (i.e keeping only

the unitary data with m(vv)

π = m(vs)

π ). In that case, only one analytic counterterm is needed for each coupling, and

we removed the terms c(vs)i [m(vs)

π ]2 from Eqs. (87), (88), and (89). These fits, again using nHYP = 1, 2, 3, then gave
g1 = 0.467 ± 0.056, g2 = 0.92 ± 0.22, and g3 = 0.72 ± 0.14, in full agreement with (90) and (91) and with slightly
larger uncertainties.

Plots of the functions (g1)eff , (g2)eff , and (g3)eff , with the parameters from the fits including the complete data
with nHYP = 1, 2, 3 [i.e. the fit that gives the results (90) and (91)] are shown in Figs. 10, 11, and 12. For the
figures, the functions were evaluated in infinite volume, for the lattice spacings a = 0.112 fm, a = 0.085 fm, and
a = 0. The right-hand sides of the figures show the values and uncertainties of the fitted functions for the unitary case

m(vv)

π = m(vs)

π , while the left-hand sides show the dependence on both m(vv)

π and m(vs)

π . At the two non-zero values
of a, the functions were evaluated for nHYP = 3 and the corresponding data points are also shown (in the continuum
limit, the functions for nHYP = 1, 2, 3 are all equal). To allow the inclusion in these plots, the data points were shifted
to infinite volume using

(gi)eff,data(m,L = ∞) = (gi)eff,data(m,L = 2.7 fm) + [(gi)eff,fit(m,L = ∞)− (gi)eff,fit(m,L = 2.7 fm)] , (93)

where we use the notation m = (m(vv)

π ,m(vs)

π ). The numerical values of the volume shifts are given in Table VIII. The
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FIG. 8. Graphical representation of the fit results for g2 and g3 from Table VII. The horizontal axis corresponds to the different
fits, ordered (from left to right) in the same way as the rows in the table (from top to bottom). The lines and shaded regions in
the upper two plots indicate the selected results and their uncertainties, which are taken from the third fit (the fit that includes
data with nHYP = 1, 2, 3).
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FIG. 9. Likelihood function for g2 and g3, equal to L(g2, g3) = (2π)−1 det(Cov)−1/2 exp
�
− 1

2
(gi − g(0)i )[Cov−1]ij(gj − g(0)j )

�

where g(0)i are the central values of our fit results (91) and Cov is the covariance matrix (92). The dashed curve indicates the
standard error ellipse.

largest volume shift (2.8 percent) occurred for (g2)eff at m(vv)
π = 227 MeV.

m(vs)

π (MeV) m(vv)

π (MeV)
(g1)

(∞)
eff −(g1)

(L)
eff

(g1)
(∞)
eff

(g2)
(∞)
eff −(g2)

(L)
eff

(g2)
(∞)
eff

(g3)
(∞)
eff −(g3)

(L)
eff

(g3)
(∞)
eff

294 245 0.0057 0.015 0.0074

304 270 0.0040 0.0070 0.0027

336 336 0.0016 0.00037 −0.00079

263 227 0.0072 0.028 0.013

295 295 0.0031 0.00027 −0.0012

352 352 0.0013 0.00033 −0.00071

TABLE VIII. Size of the finite-volume corrections for the pion masses where we have data.

• Various choices of HQ actions to use in fits

• Heavy baryon couplings g2,3
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The functions (g2)eff and (g3)eff develop small imaginary parts for pion masses below the S → Tπ threshold at
mπ = ∆ [20] (the lattice data are all above the threshold). The extracted parameters g1,2,3 are real. Figures 11, and
12 show the real parts of (g2)eff and (g3)eff only, which have kinks at the thresholds.

The fit results for the parameters c(vv)i , c(vs)i , which describe the analytic contributions, were natural-sized, i.e. of
order 1/Λ2

χ with Λχ ≈ 4πfπ, for the renormalization scale µ = 4πfπ. The fit results for the parameters di, nHYP
, which

describe the lattices-spacing dependence, were also of natural size and consistent with zero within the statistical
uncertainties. The absence of significant a-dependence can also be seen in Figs. 10, 11, and 12.

The individual contributions from different classes of Feynman diagrams in HHχPT [20] to the fitted functions

(g1)eff , �[(g2)eff ], and �[(g3)eff ] (evaluated for a = 0, L = ∞, and m(vv)
π = m(vs)

π ) are shown in Figs. 13, 14. Note that
while the sum of all contributions (including the analytic terms) is independent of the renormalization scale µ, the
individual contributions are not, and the figures are based on the natural scale µ = 4πfπ. For the range of pion masses
considered here, the NLO contributions are significantly smaller than the LO contribution (which is equal to gi). This,

and the natural size of the fitted coefficients c(vv)i , c(vs)i , indicates that the chiral expansion of the axial-current matrix
elements is well-behaved here.

To estimate the size of systematic uncertainties caused by the missing NNLO terms in the fits to the quark-mass

and lattice-spacing dependence, we performed fits to the data using modified functions (gi)
(NLO+HO)
eff that include

higher-order analytic terms:

(gi)
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�
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Here, the functions (gi)
(NLO)
eff are as defined in Eqs. (87), (88), and (89). Because we do not have enough data to fit all

the parameters in Eq. (94), we constrained the parameters corresponding to the higher-order terms using Gaussian
priors centered around zero and with widths equal to some dimensionless factor w times the relevant natural scales:

c(vv,vv)i = 0 ± w/Λ4
χ,

c(vs,vs)i = 0 ± w/Λ4
χ,

c(vv,vs)i = 0 ± w/Λ4
χ,
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QCD/Λ
2
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= 0 ± w Λ2

QCD/Λ
2
χ,

hi, nHYP
= 0 ± w Λ4

QCD. (95)

Here we used Λχ = 4πfπ with fπ = 132 MeV, and ΛQCD = 300 MeV. The fit results for the axial couplings gi as a
function of the width factor w are given in Table IX. While the case w = 0 corresponds to the original NLO fits, in
the limit w → ∞ the new parameters would become unconstrained (because we have insufficient data, we are unable
to perform fits in this limit).

w g1 δσ(g1) g2 δσ(g2) g3 δσ(g3)

0 0.449(47) 0 0.84(20) 0 0.71(12) 0

1 0.449(47) 0.0020 0.84(20) 0.0023 0.71(12) 0.0045

5 0.452(48) 0.0089 0.84(20) 0.014 0.70(12) 0.017

10 0.455(50) 0.016 0.84(20) 0.024 0.70(12) 0.026

50 0.464(72) 0.054 0.82(22) 0.099 0.68(15) 0.094

100 0.452(94) 0.082 0.78(26) 0.17 0.63(21) 0.17

TABLE IX. Results of higher-order fits using Eq. (94) as a function of the width factor w defined in Eq. (95).

As can be seen in Table IX, the shifts in the central values of the axial couplings are smaller than the statistical
errors up to the very large width w = 100. This is a consequence of the smallness of the quantities m4

π/(4πfπ)
4,
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As can be seen in Table IX, the shifts in the central values of the axial couplings are smaller than the statistical
errors up to the very large width w = 100. This is a consequence of the smallness of the quantities m4

π/(4πfπ)
4,
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a2Λ2
QCDm

2
π/(4πfπ)

2, and a4Λ4
QCD for the pion masses and lattice spacings where we have data. The shifts in the

central values fluctuate statistically and can be close to zero even for large w (at least for g1). However, including the
higher-order terms leads to a systematic increase in the uncertainties of the fit parameters gi (as calculated from the
Hessian of χ2), as expected. Also shown in the table is the quantity

δσ(gi) =
�

σ2(gi)(NLO+HO) − σ2(gi)(NLO), (96)

where σ(gi)(NLO) is the original uncertainty of gi from the NLO fit, and σ(gi)(NLO+HO) is the new uncertainty of gi
from the higher-order fit (95). To calculate (96) we used more digits for σ(gi)(NLO) and σ(gi)(NLO+HO) than shown
in Table IX. Equation (96) gives the additional uncertainty in gi, calculated using quadrature, that results from the
higher-order terms. This additional uncertainty δσ(gi) scales roughly linearly with the width parameter w. For a
reasonable choice of w, the quantity δσ(gi) can be considered to be the systematic uncertainty in gi from the NLO
fit due to the missing NNLO terms. Here we choose the conservative value of w = 10 for this purpose. The resulting
estimates of relative systematic uncertainties can be found in Table X. There, we also show the estimates of the other
relevant sources of uncertainties: effects of higher excited states in the fits to Ri(t) as discussed in Sec. IVB, and the
effects the sea-strange-quark mass being about 10% above the physical value, as discussed in Sec. III. Including the
estimates of the total systematic uncertainties, our final results for the axial couplings, based on (90) and (91), are
then

g1 = 0.449± 0.047 stat ± 0.019 syst = 0.449± 0.051,

g2 = 0.84 ± 0.20 stat ± 0.04 syst = 0.84 ± 0.20,

g3 = 0.71 ± 0.12 stat ± 0.04 syst = 0.71 ± 0.13. (97)

Source g1 g2 g3

NNLO terms in fits of mπ- and a-dependence 3.6% 2.8% 3.7%

Higher excited states in fits to Ri(t) 1.7% 2.8% 4.9%

Unphysical value of m(sea)
s 1.5% 1.5% 1.5%

Total 4.2% 4.3% 6.3%

TABLE X. Estimates of systematic uncertainties in the axial couplings gi.
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FIG. 8. Graphical representation of the fit results for g2 and g3 from Table VII. The horizontal axis corresponds to the different
fits, ordered (from left to right) in the same way as the rows in the table (from top to bottom). The lines and shaded regions in
the upper two plots indicate the selected results and their uncertainties, which are taken from the third fit (the fit that includes
data with nHYP = 1, 2, 3).
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FIG. 9. Likelihood function for g2 and g3, equal to L(g2, g3) = (2π)−1 det(Cov)−1/2 exp
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(gi − g(0)i )[Cov−1]ij(gj − g(0)j )

�

where g(0)i are the central values of our fit results (91) and Cov is the covariance matrix (92). The dashed curve indicates the
standard error ellipse.

largest volume shift (2.8 percent) occurred for (g2)eff at m(vv)
π = 227 MeV.

m(vs)

π (MeV) m(vv)

π (MeV)
(g1)

(∞)
eff −(g1)

(L)
eff

(g1)
(∞)
eff

(g2)
(∞)
eff −(g2)

(L)
eff

(g2)
(∞)
eff

(g3)
(∞)
eff −(g3)

(L)
eff

(g3)
(∞)
eff

294 245 0.0057 0.015 0.0074

304 270 0.0040 0.0070 0.0027

336 336 0.0016 0.00037 −0.00079

263 227 0.0072 0.028 0.013

295 295 0.0031 0.00027 −0.0012

352 352 0.0013 0.00033 −0.00071

TABLE VIII. Size of the finite-volume corrections for the pion masses where we have data.
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a2Λ2
QCDm

2
π/(4πfπ)

2, and a4Λ4
QCD for the pion masses and lattice spacings where we have data. The shifts in the

central values fluctuate statistically and can be close to zero even for large w (at least for g1). However, including the
higher-order terms leads to a systematic increase in the uncertainties of the fit parameters gi (as calculated from the
Hessian of χ2), as expected. Also shown in the table is the quantity

δσ(gi) =
�

σ2(gi)(NLO+HO) − σ2(gi)(NLO), (96)

where σ(gi)(NLO) is the original uncertainty of gi from the NLO fit, and σ(gi)(NLO+HO) is the new uncertainty of gi
from the higher-order fit (95). To calculate (96) we used more digits for σ(gi)(NLO) and σ(gi)(NLO+HO) than shown
in Table IX. Equation (96) gives the additional uncertainty in gi, calculated using quadrature, that results from the
higher-order terms. This additional uncertainty δσ(gi) scales roughly linearly with the width parameter w. For a
reasonable choice of w, the quantity δσ(gi) can be considered to be the systematic uncertainty in gi from the NLO
fit due to the missing NNLO terms. Here we choose the conservative value of w = 10 for this purpose. The resulting
estimates of relative systematic uncertainties can be found in Table X. There, we also show the estimates of the other
relevant sources of uncertainties: effects of higher excited states in the fits to Ri(t) as discussed in Sec. IVB, and the
effects the sea-strange-quark mass being about 10% above the physical value, as discussed in Sec. III. Including the
estimates of the total systematic uncertainties, our final results for the axial couplings, based on (90) and (91), are
then

g1 = 0.449± 0.047 stat ± 0.019 syst = 0.449± 0.051,

g2 = 0.84 ± 0.20 stat ± 0.04 syst = 0.84 ± 0.20,

g3 = 0.71 ± 0.12 stat ± 0.04 syst = 0.71 ± 0.13. (97)

Source g1 g2 g3

NNLO terms in fits of mπ- and a-dependence 3.6% 2.8% 3.7%

Higher excited states in fits to Ri(t) 1.7% 2.8% 4.9%

Unphysical value of m(sea)
s 1.5% 1.5% 1.5%

Total 4.2% 4.3% 6.3%

TABLE X. Estimates of systematic uncertainties in the axial couplings gi.
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the strong and radiative decays were included in the analysis of Ref. [56]. There, the fit to experimental data for the
branching fractions B[D∗

(s) → D(s) π] and B[D∗
(s) → D(s) γ] gave two possible solutions for g1. The fit of Ref. [56] was

updated later by including experimental results for Γ[D∗], leading to g1 � 0.51 [57], where (unlike in Ref. [56]) g1 is
defined in the static limit.

Recently, g1 was also extracted from data for the B → π�ν form factors, giving results for g1 in the range from
0.02± 0.32 up to 0.73+0.14

−0.12 depending on the parametrizations of the form factor shape [58]. The measured widths of
the baryonic decays Σ∗

c → Λc π were used in Refs. [52] and [30] to estimate g3, with the result 0.99±0.17. The NRQM
relations then give g1 = g3/

√
2 = 0.70 ± 0.12 and g2 = g3/2 = 1.40 ± 0.24 [30]. However, as discussed in Sec. VI,

the value of “g3” extracted directly from Γ[Σ∗
c → Λc π] should really be considered as an effective value of the decay

coupling constant at mQ = mc, deviating from the static-limit axial coupling by corrections of order ΛQCD/mc ∼
30%.

VI. CALCULATION OF DECAY WIDTHS

In this section, we use our lattice QCD results for the axial couplings g2 and g3 to calculate various decay widths
of heavy baryons. At leading order in the chiral expansion, the widths for the strong decays S → T π are

Γ[S → T π] = c2f
1

6πf2
π

�
g3 +

κJ

mQ

�2 MT

MS
|pπ|3, (102)

where S and T now denote physical sl = 1 and sl = 0 heavy baryon states such as Σb and Λb, |pπ| is the magnitude
of the pion momentum in the S rest frame,

|pπ| =
�

[(MS −MT )2 −m2
π][(MS +MT )2 −m2

π]

2MS
, (103)

and cf is a flavor factor [61],

cf =






1 for Σ(∗)
Q → ΛQ π±,

1 for Σ(∗)
Q → ΛQ π0,

1/
√
2 for Ξ�(∗)

Q → ΞQ π±,

1/2 for Ξ�(∗)
Q → ΞQ π0.

(104)

The mQ = ∞ expression for Γ can be found for example in [52]. In Eq. (102), we included the term κJ/mQ to account
for the first-order corrections for a finite heavy-quark mass. The parameters κJ are related to the additional couplings
in the order-1/mQ HHχPT Lagrangian [62]. Terms suppressed by (mπ/Λχ)2 and (ΛQCD/mQ)2, which are omitted
from (102), lead to small systematic uncertainties in Γ.

To determine κ1/2 and κ3/2, we performed fits of experimental data [63] for the widths of the Σ++
c , Σ0

c (J = 1/2) and
the Σ∗++

c , Σ∗0
c (J = 3/2) using (102), where we constrained g3 to our lattice QCD result (97) and set mQ = 1

2MJ/ψ.
These fits are shown in Fig. 15 and gave the results

κ1/2 = 0.55(21) GeV, Cov(κ1/2, g3) = −0.025 GeV,

κ3/2 = 0.47(21) GeV, Cov(κ3/2, g3) = −0.025 GeV. (105)

The fit parameters κJ are correlated with g3, and therefore we also show the covariances in Eq. (105). The value of
the sum g3 +

κJ
mQ

in Eq. (102) is plotted as a function of 1/mQ in Fig. 16. For mQ = 1
2MJ/ψ, the values of g3 +

κJ
mQ

are determined dominantly by the experimental input used to fit κJ :
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6πf2
π

�
g3 +

κJ

mQ

�2 MT

MS
|pπ|3, (102)
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|pπ| =
�

[(MS −MT )2 −m2
π][(MS +MT )2 −m2

π]

2MS
, (103)

and cf is a flavor factor [61],

cf =





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Q → ΛQ π0,

1/
√
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1/2 for Ξ�(∗)
Q → ΞQ π0.

(104)
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FIG. 15. Experimental data for Γ[Σ(∗)
c → Λc π

±] from Ref. [63], along with fits using Eq. (102), for J = 1/2 (solid curve) and
J = 3/2 (dashed curve).
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FIG. 16. Value and uncertainty of the quantity (g3 + κJ/mQ), which enters in the strong decay width (102), as a function of
the inverse heavy-quark mass m−1

Q , for J = 1/2 (solid curve) and J = 3/2 (dashed curve). At m−1
Q = 0 the function is equal

to g3, which is given by our lattice QCD result (97). The vertical lines indicate our choices for the inverse bottom and charm
quark masses.

We can also make predictions for the radiative decay Ξ∗0
c → Ξ0

c γ, which is forbidden at tree level but can be

mediated by loops because of flavor-SU(3) breaking. Using HHχPT, it has been shown that the branching fraction

of this decay is related to the axial coupling g2 as follows [72]:

B[Ξ∗0
c → Ξ0

cγ] = (1.0± 0.3)× 10
−3 g22 . (107)

Combining this with our lattice QCD result for g2, Eq. (97), and our calculated strong decay width Γ[Ξ∗0
c →

Ξ0
cπ

0, Ξ+
c π−

] = 2.78(29) MeV, we obtain

B[Ξ∗0
c → Ξ0

cγ] = (7± 4)× 10
−4,

Γ[Ξ∗0
c → Ξ0

cγ] = (2.0± 1.1) keV. (108)

Next, we discuss the strong decays of bottom baryons. To calculate these widths, we evaluated (102) for mQ =
1
2MΥ.
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In this case the values of g3 +
κJ
mQ

are determined dominantly by the lattice result (97) for g3:

g3 +
κ1/2
1
2mΥ

= 0.822(87),

g3 +
κ3/2
1
2mΥ

= 0.805(87). (109)

Our calculated widths Γ[Σ(∗)
b → Λbπ±] as functions of the Σ(∗)

b −Λb mass difference are shown as the curves in Fig. 17.

Using the experimental values of the baryon masses [13, 63], we obtain the results for Γ[Σ(∗)
b → Λb π±] shown in Table

XIII, in agreement with the widths measured recently by the CDF collaboration [13].
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b → Λb π

±
as functions of the Σ(∗)

b − Λb mass difference. The curves (solid: Σb, dashed:

Σ∗
b) and shaded regions show our predictions and their uncertainties. The experimental data points are from CDF [13].

Hadron Ref. [52] Ref. [64] Ref. [61] Ref. [65, 66] Ref. [67] Ref. [68] Ref. [69] This work Experiment

Σ+
b . . . . . . . . . 6.0 . . . 4.35 3.5 4.2(1.0) 9.7+3.8+1.2

−2.8−1.1 [13]

Σ−
b . . . . . . . . . 7.7 . . . 5.77 4.7 4.8(1.1) 4.9+3.1

−2.1 ± 1.1 [13]

Σ∗+
b . . . . . . . . . 11.0 . . . 8.50 7.5 7.3(1.6) 11.5+2.7+1.0

−2.2−1.5 [13]

Σ∗−
b . . . . . . . . . 13.2 . . . 10.44 9.2 7.8(1.8) 7.5+2.2+0.9

−1.8−1.4 [13]

Ξ�
b . . . . . . . . . . . . . . . . . . 0.1 < 1.1 (CL=90%) . . .

Ξ∗
b . . . . . . . . . . . . . . . . . . 0.85 < 2.8 (CL=90%) . . .

Ξ∗+
c 1.2 - 4.1 1.81 3.04(37) 3.18(10) 2.7(2) . . . 1.13 2.44(26) < 3.1 (CL=90%) [70]

Ξ∗0
c 1.2 - 4.0 1.88 3.12(33) 3.03(10) 2.8(2) . . . 1.08 2.78(29) < 5.5 (CL=90%) [71]

TABLE XIII. Results in MeV for the total strong decay widths of charm and bottom baryons.

The decays Ξ�(∗)−
b → Ξ−

b π
0, Ξ0

b π
− and Ξ�(∗)0

b → Ξ−
b π

+, Ξ0
bπ

0 may also be allowed, depending on the mass differences.

The Ξ�(∗)
b baryons have not yet been observed experimentally, and therefore we require theoretical predictions for

their masses to calculate the decay widths. We use the experimental value of the Ξb mass from Ref. [63], and take

a spin-averaged Ξ�(∗)
b − Ξb splitting of 153(21) MeV, based on the lattice QCD calculation reported in Ref. [73]

(the spin-averaged splitting has smaller systematic uncertainties than the individual splittings). We also assume

M(Ξ∗
b)−M(Ξ�

b) ≈ M(Σ∗
b)−M(Σb) = 21(2) MeV [29]. This gives

M(Ξ�
b)−M(Ξb) = 139(21) MeV,

M(Ξ∗
b)−M(Ξb) = 160(21) MeV. (110)

Isospin breaking effects were not included in the calculation of the masses, and therefore we determine the isospin-

averaged decay widths. The mass splittings (110) are close to the decay thresholds, and because of the large uncer-

tainties we can only give upper bounds for the decay widths. To calculate the bounds, we generated Gaussian random

Decay widths

• Calculate (and predict) bottom and charm baryon 
decay widths

• Uses determinations of    
         masses from LQCD 
[Lewis & Woloshyn 09]
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a2Λ2
QCDm

2
π/(4πfπ)

2, and a4Λ4
QCD for the pion masses and lattice spacings where we have data. The shifts in the

central values fluctuate statistically and can be close to zero even for large w (at least for g1). However, including the
higher-order terms leads to a systematic increase in the uncertainties of the fit parameters gi (as calculated from the
Hessian of χ2), as expected. Also shown in the table is the quantity

δσ(gi) =
�

σ2(gi)(NLO+HO) − σ2(gi)(NLO), (96)

where σ(gi)(NLO) is the original uncertainty of gi from the NLO fit, and σ(gi)(NLO+HO) is the new uncertainty of gi
from the higher-order fit (95). To calculate (96) we used more digits for σ(gi)(NLO) and σ(gi)(NLO+HO) than shown
in Table IX. Equation (96) gives the additional uncertainty in gi, calculated using quadrature, that results from the
higher-order terms. This additional uncertainty δσ(gi) scales roughly linearly with the width parameter w. For a
reasonable choice of w, the quantity δσ(gi) can be considered to be the systematic uncertainty in gi from the NLO
fit due to the missing NNLO terms. Here we choose the conservative value of w = 10 for this purpose. The resulting
estimates of relative systematic uncertainties can be found in Table X. There, we also show the estimates of the other
relevant sources of uncertainties: effects of higher excited states in the fits to Ri(t) as discussed in Sec. IVB, and the
effects the sea-strange-quark mass being about 10% above the physical value, as discussed in Sec. III. Including the
estimates of the total systematic uncertainties, our final results for the axial couplings, based on (90) and (91), are
then

g1 = 0.449± 0.047 stat ± 0.019 syst = 0.449± 0.051,

g2 = 0.84 ± 0.20 stat ± 0.04 syst = 0.84 ± 0.20,

g3 = 0.71 ± 0.12 stat ± 0.04 syst = 0.71 ± 0.13. (97)

Source g1 g2 g3

NNLO terms in fits of mπ- and a-dependence 3.6% 2.8% 3.7%

Higher excited states in fits to Ri(t) 1.7% 2.8% 4.9%

Unphysical value of m(sea)
s 1.5% 1.5% 1.5%

Total 4.2% 4.3% 6.3%

TABLE X. Estimates of systematic uncertainties in the axial couplings gi.Γ[Ξ∗
c → Ξcγ]
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The details of the actions used in generating the ensembles can be found in Ref. [35]. Our analysis includes the
ensembles of size 243 × 64 and 323 × 64, which are described in Ref. [27]. These ensembles have lattice spacings of
approximately 0.112 and 0.085 fm, respectively, so that the spatial volume is about (2.7 fm)3 in both cases.

At the coarse lattice spacing, we used only the ensemble with am(sea)

u,d = 0.005, which is the lightest available
mass. At the fine lattice spacing, we used the ensemble with the lightest two available values of the sea quark mass,

am(sea)

u,d = 0.004 and am(sea)

u,d = 0.006. The values for the residual quark mass, which is the additive quark-mass
renormalization coming from the residual chiral symmetry breaking at finite extent of the fifth dimension Ls, are
approximately amres = 0.0032 at the coarse lattice spacing and amres = 0.00067 at the fine lattice spacing. The
sea-strange-quark masses are about 10% above the physical value [27], and we assign a 1.5% systematic uncertainty
to our final results for the axial couplings to account for this, based on the size of the effect on similar axial-current
observables as determined using mass reweighting in Ref. [27].

We calculated light quark propagators using exactly the same domain-wall action that was used by the RBC/UKQCD
collaboration for the sea quarks, with the same domain-wall height of aM5 = 1.8 and extent of the fifth dimension
Ls = 16. We used propagator sources smeared according to Eq. (48), with σ = 4.35 and nS = 30. As summarized

in Table I, we calculated propagators for valence quark masses am(val)

u,d both equal to and lighter than the sea quark

masses. The data with m(val)

u,d < m(sea)

u,d are referred to as “partially quenched”. Also shown in Table I, and plotted
in Fig. 1, are the corresponding masses of pions composed of the three different possible combinations of valence and
sea quarks. The lightest valence-valence pion mass is 227(3) MeV, at the fine lattice spacing.

L3 × T am(sea)
s am(sea)

u,d am(val)
u,d a (fm) m(ss)

π (MeV) m(vs)
π (MeV) m(vv)

π (MeV)

243 × 64 0.04 0.005 0.001 0.1119(17) 336(5) 294(5) 245(4)

243 × 64 0.04 0.005 0.002 0.1119(17) 336(5) 304(5) 270(4)

243 × 64 0.04 0.005 0.005 0.1119(17) 336(5) 336(5) 336(5)

323 × 64 0.03 0.004 0.002 0.0849(12) 295(4) 263(4) 227(3)

323 × 64 0.03 0.004 0.004 0.0849(12) 295(4) 295(4) 295(4)

323 × 64 0.03 0.006 0.006 0.0848(17) 352(7) 352(7) 352(7)

TABLE I. Parameters of the gauge field ensembles and quark propagators. The lattice spacing values are from Ref. [36].
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FIG. 1. The values of [m(vv)
π ]2 and [m(vs)

π ]2 used in our calculation. The dashed line indicates the unquenched casem(vv)
π = m(vs)

π .

For the heavy quark, we use a static action of the form given by Eichten and Hill [22], which corresponds to heavy-
quark propagators of the form (57). For the temporal gauge links in this action (or, equivalently, the propagators),
we use HYP smeared links [37] with smearing parameters α1 = α2 = α3 = 0.75. This leads to an exponential
improvement in the signal-to-noise ratio [23]. The smearing procedure can be iterated nHYP times, leading to a
broader smearing and further improvement of the signal-to-noise ratio. We generated data for nHYP = 1, 2, 3, 5, 10.
While all of these actions have the same continuum limit, the dependence of the results on the lattice spacing is
expected to be different for different values of nHYP. One may naively expect large discretization effects for large
values of nHYP, which correspond to a large spatial extent of the heavy-quark-gluon interaction vertex. We will discuss
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this in detail when giving the numerical results in Sec. IV. Our final axial coupling results only make use of data

generated with nHYP = 1, 2, 3.

As mentioned in Sec. II C, to perform the contractions for the three-point functions (53), we required pairs of light-

quark propagators with sources located at the same spatial point and separated by t/a steps in the time direction.

The numbers of measurements (propagator pairs) for each value of t/a are given in Table II. At the coarse lattice

spacing, our data come from typically 120 statistically independent gauge field configurations; at the fine lattice

spacing we used about 240 statistically independent gauge configurations of the am(sea)

u,d = 0.004 ensemble and 180 for

the am(sea)

u,d = 0.006 ensemble. In most cases, we have more measurements than configurations, because we generated

propagators from multiple spatial source points on the lattice. In those cases, we have averaged over the source

locations before the further analysis to remove possible autocorrelations.

L3 × T am(val)
u,d t/a Nmeas (approx.)

243 × 64 0.001 10 550

243 × 64 0.001 9, 8, 7, 6 240

243 × 64 0.001 5 460

243 × 64 0.001 4 120

243 × 64 0.002 10 880

243 × 64 0.002 9, 8, 7, 6, 4 240

243 × 64 0.002 5 480

243 × 64 0.005 10 960

243 × 64 0.005 9, 8, 7, 6, 4 240

243 × 64 0.005 5 480

323 × 64 0.002 12 1200

323 × 64 0.002 9, 6 480

323 × 64 0.004 12 1200

323 × 64 0.004 9, 6 480

323 × 64 0.006 13 700

TABLE II. Number of propagator pairs used for the three-point functions for various values of the source-sink separation t/a.

Within each of the three gauge field ensembles that we used, the data from different source-sink separations,

different valence quark masses, and different values of nHYP are correlated with each other. In our analysis, we

properly took into account these correlations using the statistical bootstrap procedure. The initial averaging over

source locations mentioned above was also required to reduce all data from the same ensemble to matching ordered

sets of measurements, as necessary to calculate the covariance matrices. It turned out that the correlations between

the am(val)

u,d = 0.001 and am(val)

u,d = 0.002/0.005 data at the coarse lattice spacing were very weak even though the data

came from the same ensemble of gauge field configurations. The reason was that all spatial source locations used for

the am(val)

u,d = 0.001 propagators were distinct from those used at am(val)

u,d = 0.002/0.005. In contrast, the data from

am(val)

u,d = 0.002 and am(val)

u,d = 0.005 came from almost identical source locations, resulting in very strong correlations

(these correlations were advantageous in constraining the quark-mass dependence in our chiral fits). Similarly, at the

fine lattice spacing, the data from am(val)

u,d = 0.002 and am(val)

u,d = 0.004 came from identical source locations, leading

to strong correlations.

For the axial current renormalization parameter, we use the values obtained nonperturbatively by the RBC/UKQCD

collaboration, which are [27]

ZA =

�
0.7019(26) for a = 0.112 fm,

0.7396(17) for a = 0.085 fm.
(74)


