

Introduction

- Will try to discuss briefly recent LHCb results for:
 - 1. Rare decay processes.
 - 2. B_s mixing observables.
 - 3. Mass measurements and spectroscopy.

$$B^0_{(d,s)} \to \mu^+ \mu^-$$

3/59

$B_s o \mu^+\mu^-$ and $B_d o \mu^+\mu^-$

- Sensitive to contributions from scalar + pseudo-scalar sector.
 - → Interesting to probe NP models with extended Higgs sector, e.g. MSSM, 2HDM, . . .
- e.g. in MSSM, branching fraction scales approximately as $\tan^6 \beta/M_A^4$
 - More generally:

$$\begin{split} \mathcal{B}(B_q^0 \to \mu^+ \mu^-) &\simeq \frac{G_F \alpha^2 M_{B_q^0}^3 f_{B_q^0}^{27} \tau_{B_q^0}}{64 \pi^3 \sin^4 \theta_W} |V_{tb} V_{tq}^*|^2 \left(1 - \frac{4 m_\mu^2}{M_{B_q^0}^2}\right)^{1/2} \times \\ & \left[M_{B_q^0}^2 \left(1 - \frac{4 m_\mu^2}{M_{B_0}^2}\right) |\mathcal{C}_{\mathcal{S}}|^2 + \left(M_{B_q^0} \ \mathcal{C}_P + \frac{2 m_\mu}{M_{B^0}} \ \mathcal{C}_{10} + \frac{2 m_\mu}{M_{B^0}} \ \mathcal{C}_{10}^{\prime} \right)^2 \right] \end{split}$$

- Set limit on the branching fraction using the CLs technique, dividing data into bins of BDT response and mass.
- BDT response and mass line-shape of the signal calibrated from data using $B \to hh'$ and $J/\psi/\psi(2S)/\Upsilon(1S) \to \mu^+\mu^-$ decays.

${\cal B}(B_{s} o \mu^{+}\mu^{-}) < 4.5 imes 10^{-9} \; (95\% \; { m C.L.})$

- Expected limit $\mathcal{B}(B_s \to \mu^+\mu^-) < 7.2 \times 10^{-9} \; (bkg + SM)$
- c.f. $\mathcal{B}(B_s \to \mu^+ \mu^-) < 22 \times 10^{-9}$ [ATLAS-CONF-2012-010] $\mathcal{B}(B_s \to \mu^+ \mu^-) < 7.7 \times 10^{-9}$ [CMS-BPH-11-020]

- LHCb sets a limit for $\mathcal{B}(B_s \to \mu^+\mu^-) < 4.5 \times 10^{-9} \ (95\% \ \mathrm{C.L.})$
- c.f. SM expectation of $(3.2 \pm 0.2) \times 10^{-9}$.
 - Best fit branching fraction estimated to be:

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (0.8 \ ^{+1.8}_{-1.3}) \times 10^{-9}$$

using a simultaneous maximumum likelihood fit to the $\mu^+\mu^-$ mass distribution in the 8 BDT bins.

• CDF: $(1.0^{+0.8}_{-0.6}) \times 10^{-8}$

Experimental limits and the SM prediction

- Experimental limits are now close to the SM prediction.
- May become increasingly important to understand the uncertainty on (and the central value for) the SM prediction.
- Several predictions available:

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9} \ (f_{B_s} = 225 \pm 4 \ \text{MeV}).$$

 $\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.7 \pm 0.4) \times 10^{-9} \ (f_{B_s} = 250 \pm 12 \ \text{MeV}).$

• For details see A. Buras [PLB 566 (2003)], with f_{B_s} from J. Laiho et al. [PRD 81 (2010)] and C. McNeile et al. [arXiv:1110.4510].

$$b \to s \ell^+ \ell^-$$
 processes

8 / 59

- Measure $\mathcal{B}(B_s \to \phi \mu^+ \mu^-)$ normalised using $B_s \to J/\psi \, \phi$ decays.
- With simple cut based analysis and strong PID requirements, observe:

$$77 \pm 10 \ B_s \rightarrow \phi \mu^+ \mu^-$$
 candidates.

Giving:

$${\cal B}(B_s o \phi \mu^+ \mu^-) = (0.78 \pm 0.10 ({
m stat}) \pm 0.06 ({
m syst}) \pm 0.28 ({\cal B})) imes 10^{-6} \ {
m (LHCb~Preliminary)}$$

- Lower than but still statistically compatible with the CDF result [PRL 107 (2011)].
- NB Can get to $\sim 10\%$ normalising to B_d modes.

□ > 4回 > 4 き > 4 き > き め < ○</p>

- Gives access to $\mathcal{C}_7^{(\prime)}$, $\mathcal{C}_9^{(\prime)}$ and $\mathcal{C}_{10}^{(\prime)}$.
- Sensitivity through branching fraction measurements and angular observables. Angular analysis can be sensitive to the chiral structure of the NP (e.g. S_3/A_T^2).
- Decay described by three angles and dimuon invariant mass squared $(\theta_{\ell}, \theta_{K}, \phi, q^{2})$.

- Analysis based on $1 \, \text{fb}^{-1}$.
- Observe 900 candidates ($BABAR + Belle + CDF \sim 600$).

Yield in q^2 -bins

Anatomy of the $B_d o K^{*0} \mu^+ \mu^-$ decay

Anatomy of the decay was explained in detail by Christoph yesterday.
 Described by 12 angular terms:

$$\begin{split} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} &\propto \left[J_1^s + J_1^c + \left(J_2^s + J_2^c\right)\cos2\theta_\ell + J_3\sin^2\theta_\ell\cos2\phi \right. + \\ & \left. J_4\sin2\theta_\ell\cos\phi + J_5\sin\theta_\ell\cos\phi \right. + \\ & \left. J_6\cos\theta_\ell + J_7\sin\theta_\ell\sin\phi + J_8\sin2\theta_\ell\sin\phi \right. + \\ & \left. J_9\sin^2\theta_\ell\sin2\phi \right. \right] \end{split}$$

- By folding in ϕ can cancel terms in the angular expression: \rightarrow Leaving $J_1^{s,c}$, $J_2^{s,c}$, J_3 , J_6 and J_9 .
- Relate $J_1^{s,c}$ & $J_2^{s,c}$ to F_L and $F_T = 1 F_L$ in the massless case.
- Some possibility to access J_4 , J_5 , J_7 and J_8 using other folding techniques. See A. Bharucha & W. Reece [arXiv:1002.4310].

◆ロト ◆団ト ◆草ト ◆草ト ■ りへで

T. Blake LHCb overview 12 / 59

$B_d \to K^{*0} \mu^+ \mu^-$ angular distribution after folding

- Take advantage of a symmetry of the system, by folding the distribution in ϕ , to reduce the number of free parameters.
- $\hat{\phi} = \phi + \pi$ if $\phi < 0$ and $\hat{\phi} = \phi$ if $\phi > 0$, leading to:

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \hat{\phi} \, \mathrm{d} q^2} &= \frac{9}{16 \pi} \left[\begin{array}{c} F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \end{array} \right. + \\ & \qquad \qquad F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) + \\ & \qquad \qquad \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) + \\ & \qquad \qquad S_3 (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2 \hat{\phi} + \\ & \qquad \qquad \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell + \\ & \qquad \qquad A_{Im} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2 \hat{\phi} \end{array} \right] \end{split}$$

13 / 59

New physics sensitivity to $\mathcal{C}_7^{(\prime)}$

- C_7 and C_7' are constrained by $b \to s \gamma$ processes. Even in the SM-like allowed region can still have large sensitivity to C_7' through A_T^2 .
- Where S_3 is related to theoretically clean observable A_T^2 through $S_3 = \frac{1}{2}(1 F_L)A_T^2$.

S. Descotes-Genon et. al. [arXiv:1104.334]

Non-SM like region SM-like region

Sensitivity to NP through A_{FB} and S_3

• Can be highly sensitive to NP contributions to $C_7^{(\prime)}$, $C_9^{(\prime)}$ and $C_{10}^{(\prime)}$. e.g. W. Almannshofer et. al. [arXiv:0801.1214v5], where $S_6 = -\frac{4}{3}A_{FB}$.

 q^2 (GeV²)

4 D > 4 A > 4 B > 4 B > B = 400 A

15 / 59

$B_d o K^{*0} \mu^+ \mu^-$ differential branching fraction

Theory prediction from C. Bobeth et al. [arXiv:1105.0376] (and references therein)

T. Blake LHCb overview 16 / 59

$B_d \to K^{*0} \mu^+ \mu^-$ differential branching fraction

CDF, PRL 108 (2012) Belle, PRL 103 (2009) BaBar prelim., Lake Louise 2012

17 / 59

$B_d \to K^{*0} \mu^+ \mu^-$ forward-backward asymmetry

$B_d \to K^{*0} \mu^+ \mu^-$ forward-backward asymmetry

T. Blake

$B_d \to K^{*0} \mu^+ \mu^-$ fraction of longitudinal polarisation of the K^{*0}

$B_d o K^{*0} \mu^+ \mu^-$ fraction of longitudinal polarisation of the K^{*0}

21 / 59

$B_d \to K^{*0} \mu^+ \mu^-$ transverse asymmetry

$B_d \to K^{*0} \mu^+ \mu^-$ transverse asymmetry

$B_d o K^{*0} \mu^+ \mu^-$ T-odd asymmetry

 A_{Im} expected to be $\mathcal{O}(10^{-3})$ in the SM

24 / 59

$B_d o K^{*0} \mu^+ \mu^-$ T-odd asymmetry

Why don't we go to the kinematic limit of $q^2 = (m_B - m_X)^2$?

- In our $B \to X \mu^+ \mu^-$ analyses we typically limit the range of q^2 to be less than the kinematically allowed region (e.g. $B_d \to K^{*0} \mu^+ \mu^-$, $0.05 < q^2 < 19.0 \, {\rm GeV}^2/c^4$). Why?
- Using $B^+ \to K^+ \mu^+ \mu^-$ as an example, at the end-point of the q^2 spectrum, $q^2 = (m_B m_{K^+})^2$, the K^+ ends up being soft and collinear with the B_d .
- → K⁺ has little or no impact parameter.
 - Experimentally it can be difficult to understand the efficiency at this point.

(□) (□) (□) (□) (□)

Zero-crossing point of the forward-backward asymmetry

- In the SM, A_{FB} varies with q^2 and changes sign at a well defined point where leading uncertainties from the $B \to K^{*0}$ form-factors cancel.
- Estimate zero-crossing point by fitting forward- and backward-going events separately.
- Gives: $q_0^2 = 4.9 + 1.3_{-1.1} \text{ GeV}^2/c^4$ (LHCb preliminary)
- c.f. SM predictions in the range $3.9 4.3 \,\text{GeV}^2/c^4$.

T. Blake

Other on-going $b \to s\ell^+\ell^-$ analyses

- On-going analyses for:
 - $B^+ \to K^+ \mu^+ \mu^-$ angular analysis (F_H and A_{FB}) and differential branching fraction (with ~ 1000 candidates).
 - $B_d o K_s^0 \mu^+ \mu^-$ differential branching fraction.
 - $B^+ \to K^{*+} \mu^+ \mu^-$ differential branching fraction.
 - $\Lambda_b \to \Lambda^{(*)} \mu^+ \mu^-$ differential branching fractions.
 - \mathcal{CP} asymmetries.
 - $B_d \rightarrow K^{*0} e^- e^-$ at low- q^2 .

and many more . . .

T. Blake

$$b \rightarrow d\ell^+\ell^-$$
 processes (?)

29 / 59

What can we do with $b \to d\mu^+\mu^-$ processes?

- Could also envisage models with FCNC outside the CKM structure: i.e. $b \to d$ versus $b \to s$ not suppressed by $|V_{td}/V_{ts}|^2$.
- ullet With a $\gtrsim 1\,{
 m fb}^{-1}$ data set LHCb can have sensitivity to some of the Cabibbo suppressed modes.

T. Blake

- Very rare decay with SM branching fraction of $(2\pm0.2)\times10^{-8}$.
 - Hai-Zhen et al. [Commun. Theor. Phys. 50].
- Previous best limit from Belle: $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) < 6.9 \times 10^{-8}$ [PRD 78 (2008)].

• LHCb observes 25.3 $^{+6.7}_{-6.4}$ candidates in 1 fb⁻¹.

$${\cal B}(B^+ o \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6 \pm 0.2) \times 10^{-8}$$

LHCb Preliminary

 \rightarrow Observation of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ at 5.2 σ (rarest observed B decay).

$B^+ o \pi^+ \mu^+ \mu^-$ (a few details)

- Branching fraction is normalised with respect to high statistics $B^+ \to J/\psi \, K^+$ sample.
- Multivariate selection is used to reject combinatorial background.
- Main challenges are to remove combinatorial background and background from $B^+ \to K^+ \mu^+ \mu^-$ with $K \to \pi$ mis-id and to account for partially reconstructed decays.
- NB Can use $B^+ \to J/\psi \, \pi^+$ to understand the fitting and take shapes where possible from the data.

Meson and Baryon lifetimes

B meson and baryon lifetimes

- Preliminary measurement have been made with 36 pb⁻¹ of integrated luminosty, using lifetime unbiased selection and trigger.
- NB B_s lifetime measured with $B_s \to J/\psi \, \phi$ candidates using a single exponential fit (i.e. ignoring $\Delta \Gamma_s$).

Example: Λ_b lifetime

• In 36 pb⁻¹ LHCb measures (Preliminary)

$$\begin{array}{lll} \tau(B^+\!\to\!J/\!\psi K^+) &=& 1.689 \pm 0.022 \pm 0.047 \; \mathrm{ps} \,, \\ \tau(B^0\!\to\!J/\!\psi K^{*0}) &=& 1.512 \pm 0.032 \pm 0.042 \; \mathrm{ps} \,, \\ \tau(B^0\!\to\!J/\!\psi K^0_\mathrm{S}) &=& 1.558 \pm 0.056 \pm 0.022 \; \mathrm{ps} \,, \\ \tau^\mathrm{single}(B^0_s\!\to\!J/\!\psi\phi) &=& 1.447 \pm 0.064 \pm 0.056 \; \mathrm{ps} \,, \\ \tau(\Lambda_b\to J/\!\psi\Lambda) &=& 1.353 \pm 0.108 \pm 0.035 \; \mathrm{ps} \,. \end{array}$$

which are compatible with but not quite competitive with world averages, e.g. $\tau_{A_b^0}=1.391^{~+0.038}_{~-0.037}$ (PDG).

 Systematic uncertainty is dominated by understanding of the event reconstruction efficiency with proper time. Observe a reduced efficiency for tracking with high-IP tracks.

$$\phi_s$$
, $\Delta\Gamma_s$ and Δm_s

• Measure Δm_s in flavour-tagged time-dependent analysis of $B_s \to D_s \pi$ events, where $D_s \to \phi \pi$ and $D_s \to K^+ K^- \pi$.

$$\mathcal{P}_{t}(t, q | \sigma_{t}, \eta) \propto \left\{ \Gamma_{s} e^{-\Gamma_{s} t} \frac{1}{2} \left[\cosh \left(\frac{\Delta \Gamma_{s}}{2} t \right) + q \left[1 - 2\omega(\eta) \right] \cos(\Delta m_{s} t) \right] \theta(t) \right\}$$

$$\otimes G(t, S_{\sigma_{t}} \sigma_{t}) \epsilon(t) \epsilon_{s}.$$

- Effective tagging efficiency, $\varepsilon_{\rm eff,SS}=1.3\pm0.4\%$ and $\varepsilon_{\rm eff,OS}=2.1\pm0.2\%$.
- In $0.34 \, \text{fb}^{-1}$:

$$\Delta m_s = 17.725 \pm 0.041 \pm 0.026 \, \mathrm{ps}^{-1}$$
 (LHCb Preliminary)

Dominant systematic is from z—scale of the detector.

Measuring ϕ_s

• Interference between mixing and decay gives rise to a \mathcal{CP} phase: $\phi_s = \phi_m - 2\phi_d$.

$$\phi_s^{\mathsf{SM}} = -2\mathsf{arg}\left(rac{V_{ts}\,V_{tb}^*}{V_{cs}\,V_{cb}^*}
ight) = 0.036 \pm 0.002\,\mathrm{rad}$$

Charles et al. [Phys. Rev. D84 (2011) 033005]

Measuring ϕ_s with $B_s \to J/\psi \, \phi$ and $B_s \to J/\psi \, f_0$

$$B_s \rightarrow J/\psi \phi$$
:

- Mixture of \mathcal{CP} -odd and \mathcal{CP} -even final state.
- Need to perform a time dependent angular analysis to separate \mathcal{CP} states and measure ϕ_s .

$$\begin{split} S(\vec{\lambda},t,\vec{\Omega}) &= \epsilon(t,\vec{\Omega}) \times \left(\frac{1+qD}{2}s(\vec{\lambda},t,\vec{\Omega}) + \frac{1-qD}{2}\overline{s}(\vec{\lambda},t,\vec{\Omega})\right) \otimes R_t \\ &\text{acceptance} &\text{flavour tagging} &\text{time resolution} \\ \vec{\lambda} &= (\Gamma_s,\Delta\Gamma_s,\Delta m_s,\phi_s,|A_0|^2,|A_\perp|^2,\delta_\parallel,\delta_\perp,|A_S|^2,\delta_S) \end{split}$$

$$B_s \rightarrow J/\psi \pi^+\pi^-$$
:

• Region of π^+ π^- mass around the f_0 gives a \mathcal{CP} -odd final state. Can measure ϕ_s from fits to the B_s and \overline{B}_s lifetime.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ■ りへで

- $B_s \to J/\psi \, \phi$: $\phi_s = 0.00 \pm 0.10 \pm 0.03 \, \mathrm{rad}$ $\Delta \Gamma_s = 0.12 \pm 0.02 \pm 0.01 \, \mathrm{ps}^{-1}$ (Preliminary) [LHCb-CONF-2012-002]
- $B_s \to J/\psi \, \pi^+ \pi^-$: $\phi_s = -0.02 \pm 0.17 \pm 0.02 \, \mathrm{rad}$ [LHCb-PAPER-2012-006]

Combination $\phi_s = 0.00 \pm 0.08 \pm 0.03 \,\mathrm{rad}$ (LHCb Preliminary)

• Two-fold ambiguity $\Delta\Gamma_s \to -\Delta\Gamma_s$ and $\phi_s \to \phi_s + \pi$ resolved using $B_s \to J/\psi \, K^+ K^-$ and S-wave interference. [LHCb-PAPER-2011-028]

Lifetime measurements and ϕ_s

- Can also constrain $\Delta\Gamma_s$ and ϕ_s using effective lifetime measurements of:
 - $B_s \rightarrow J/\psi f_0$ (CP-odd)

-
$$B_s o K^+K^-$$
 (CP-even)

with an untagged analysis.

$$au_{\mathcal{K}^+\mathcal{K}^-} = 1.44 \pm 0.10 \pm 0.01 \, \mathrm{ps}$$
 LHCb, PLB 707 (2012)

$$au_{J/\psi f_0} = 1.70^{+0.12}_{-0.11} \pm 0.03 \,\mathrm{ps}$$

CDF, PRD 84 (2011)

• LHCb update for $B_s \to K^+ K^-$ with $1\,{\rm fb^{-1}}$, using a lifetime unbiassed trigger and offline selection:

$$1.468 \pm 0.046 \text{(stat)}\,\mathrm{ps}$$

R. Fleischer et. al. [arXiv:1109.5115]

LHCb Preliminary
[LHCb-CONF-2012-001]

T. Blake

LHCb overview

Meson and Baryon masses

- LHCb profits from large tracking volume + large integral field.
- With a dedicated alignment programme can reach 2×10^{-4} on momentum scale (calibrated using $J/\psi \to \mu^+\mu^-$ decays).
- NB Momentum scale becomes dominant systematic for many high mass states (can also look at decays with small q-value).

• With 35 fb⁻¹ measure:

Quantity	LHCb measurement	Best previous measurement	PDG fit
$M(B^+)$	5279.38 ± 0.35	5279.10 ± 0.55 [4]	5279.17 ± 0.29
$M(B^0)$	5279.58 ± 0.32	5279.63 ± 0.62 [4]	5279.50 ± 0.30
$M(B_s^0)$	5366.90 ± 0.36	5366.01 ± 0.80 [4]	5366.3 ± 0.6
$M(\Lambda_b^0)$	5619.19 ± 0.76	$5619.7 \pm 1.7 $ [4]	_
$M(B^0) - M(B^+)$	0.20 ± 0.20	$0.33 \pm 0.06 [15]$	0.33 ± 0.06
$M(B_s^0) - M(B^+)$	87.52 ± 0.32	_	_
$M(\Lambda_b^0) - M(B^+)$	339.81 ± 0.72	_	_

[4] CDF, [PRL 96 (2006)], [15] BaBar, [PRD 78 (2008)]

• World best measurement of B^+ , B_d , B_s and Λ_b^0 masses.

- B_c^+ mass measured using $B_c^+ \to J/\psi \, \pi^+$ decays in 35 pb $^{-1}$ of integrated luminosity.
- Preliminary result:

$$M(B_c^+) = 6268.0 \pm 4.0 \pm 0.6 \,\mathrm{MeV}/c^2$$

c.f. PDG (2010) average of $6277 \pm 6\,\mathrm{MeV}/\mathit{c}^2$

Beautiful baryons

- Seven ground state b-baryons:
 - Σ_b^0 unobserved.
 - Ξ_b^{0} recently observed at CDF.
- Large b-Baryon production at the LHC: $\sigma(pp \to b\overline{b}X) = 75.3 \pm 5.4 \pm 13.0 \mu \mathrm{b}$ in $2 < \eta < 6$ [LHCb-PAPER-2010-002].
- Estimate $f_{\Lambda}/(f_u+f_d)$ using semileptonic decays $(\Lambda_c^+\mu^- \text{ vs } D^0\mu^- \text{ and } D^+\mu^-)$ to be ~ 0.4 at $(p_T=0)$ and ~ 0.25 $(p_T=10\,\text{GeV}/c)$. [LHCb-PAPER-2011-018]

• Using 0.62 fb⁻¹ measure (LHCb Preliminary):

$$\begin{split} M_{\Xi_b^-} &= 5796.5 \pm 1.2 \pm 1.2 \, \text{MeV}/c^2 \\ M_{\Omega_b^-} &= 6050.3 \pm 4.5 \pm 2.2 \, \text{MeV}/c^2 \\ M_{\Omega_b^-} - M_{\Xi_b^-} &= 253.9 \pm 4.8 \pm 1.2 \, \text{MeV}/c^2 \end{split}$$

Systematic uncertainty is dominated by the momentum scale.

- First observation by CDF, [PRL 107 (2011)].
- Search in the channel $\varXi_b^0 \to D^0 p K^-$, with 0.33 fb⁻¹.
- Observe hint of a signal with 2.6σ significance.

$$\Delta M_{\varXi_b^0} = M_{\varXi_b^0} - M_{\varLambda_b^0} = 181.8 \pm 5.5 \pm 0.5 \,\mathrm{MeV}/c^2$$
 $M_{\varXi_b^0} = 5802.0 \pm 5.5 \pm 1.7 \,\mathrm{MeV}/c^2$
 $M_{\varXi_b^0} = 5787.8 \pm 5.0 \pm 1.3 \,\mathrm{MeV}/c^2$
(LHCb Preliminary)

- Perform search for $B_{(s)}^{**}$ states in $B^{\pm}K^{\mp}$, $B^{\pm}\pi^{\mp}$ and $B^{0}\pi^{\pm}$ channels with 0.33 fb⁻¹.
- Photons from B* are not reconstructed → shifted Q-values.

$B_{(s)}^{**}$ masses

- No direct detrmination of quantum numbers. Matching to expected states from HQET.
- LHCb Preliminary result:

```
\begin{array}{lll} M_{B_{2}^{0}} &=& (5828.99 \pm 0.08_{\rm stat} \pm 0.13_{\rm syst} \pm 0.45_{\rm syst}^{B\, \rm mass}) \ {\rm MeV}/c^{2} \,, & Q_{B_{s1}^{0}} &=& (10.36 \pm 0.08_{\rm stat} \pm 0.13_{\rm syst}) \ {\rm MeV}/c^{2} \,, \\ M_{B_{s}^{*0}} &=& (5839.67 \pm 0.13_{\rm stat} \pm 0.17_{\rm syst} \pm 0.29_{\rm syst}^{B\, \rm mass}) \ {\rm MeV}/c^{2} \,, & Q_{B_{s2}^{*0}} &=& (66.82 \pm 0.13_{\rm stat} \pm 0.17_{\rm syst}) \ {\rm MeV}/c^{2} \,, \\ M_{B_{1}^{0}} &=& (5724.1 \pm 1.7_{\rm stat} \pm 2.0_{\rm syst} \pm 0.5_{\rm syst}^{B\, \rm mass}) \ {\rm MeV}/c^{2} \,, & Q_{B_{1}^{0}} &=& (259.6 \pm 1.7_{\rm stat} \pm 2.0_{\rm syst}) \ {\rm MeV}/c^{2} \,, \\ M_{B_{1}^{+}} &=& (5726.3 \pm 1.9_{\rm stat} \pm 3.0_{\rm syst} \pm 0.5_{\rm syst}^{B\, \rm mass}) \ {\rm MeV}/c^{2} \,, & Q_{B_{1}^{+}} &=& (261.4 \pm 1.9_{\rm stat} \pm 3.0_{\rm syst}) \ {\rm MeV}/c^{2} \,, \\ M_{B_{2}^{*0}} &=& (5738.6 \pm 1.2_{\rm stat} \pm 1.2_{\rm syst} \pm 0.3_{\rm syst}^{B\, \rm mass}) \ {\rm MeV}/c^{2} \,, & Q_{B_{2}^{*0}} &=& (319.9 \pm 1.2_{\rm stat} \pm 1.3_{\rm syst}) \ {\rm MeV}/c^{2} \,, \\ M_{B_{2}^{*+}} &=& (5739.0 \pm 3.3_{\rm stat} \pm 1.6_{\rm syst} \pm 0.3_{\rm syst}^{B\, \rm mass}) \ {\rm MeV}/c^{2} \,, & Q_{B_{2}^{*+}} &=& (319.9 \pm 3.3_{\rm stat} \pm 1.6_{\rm syst}) \ {\rm MeV}/c^{2} \,, \end{array}
```

- The masses of B_1^+ and B_2^{*+} are measured for the first time.
- NB Masses of Isospin partners are compatible.

LHCb overview

Semileptonic *b*-decays

Semileptonic *b*-decays at LHCb

- Semileptonic B_d , B^+ , B_s and Λ_b decays have been extensively used to understand $b\bar{b}$ production and $B_d/B^+/B_s/\Lambda_b$ hadronisation fractions in LHCb.
- Ongoing programme to measure:
 - 1. Exclusive Cabibbo favoured and suppressed decays (including B_s and Λ_b), probing form-factors and CKM parameters:
 - e.g. V_{ub} from $B_s \to K \mu \nu$. 2. Semileptonic asymmetry, A_{sl} .
- Can perform neurtino 'reconstruction' (with two-fold using ambiguity) using B pointing constraints to separate different semileptonic contributions.

c(harm)

Charm prospects at LHCb

- LHCb is not just a place to study B decays / production.
- Also have prolific charm production:

$$\sigma_{c\overline{c}} \sim 20 \times \sigma_{b\overline{b}}$$
.

 \rightarrow Charm mixing and CP violation $(y_{\mathcal{CP}}, A_{\Gamma}, A_{\mathcal{CP}})$, charm rare decays, charm semileptonic decays, charm masses and $D_{(s)}^{**}$ spectroscopy.

Outlook and Summary

Outlook

- Current analyses are based on 2010 dataset (36 pb $^{-1}$), Summer 2011 dataset (0.33 fb $^{-1}$) or full 2011 dataset (1 fb $^{-1}$).
- Updates of many analyses to the full 2011 dataset are ongoing.
- In 2012 expect to record an integrated luminosity of $\sim 1.5\,\mathrm{fb}^{-1}$ at $\sqrt{s}=8\,\mathrm{TeV}$.

T. Blake LHCb overview

Summary

BACKUP

The LHCb detector

The LHCb detector

Needle in a haystack?

Exotics: X(3872) and X(4140)

X3872 [LHCb-PAPER-2011-034]:

• Measure mass of prompt X(3872):

$$M_{X(3872)} = 3871.95 \pm 0.48 \pm 0.12 \,\text{MeV}/c^2$$

 Not yet at the level of Belle [PRD 84 (2011)].

X4140 [LHCb-PAPER-2011-033]:

- Search for X(4140) in $B^+ \to J/\psi \, \phi K^+$ decays in 0.37 fb⁻¹.
- Do <u>not</u> confirm excesses seen by CDF [arXiv:1101.6058].

$$B_d \to K^{*0} \gamma$$

$$A_{\mathcal{CP}}(B_d \to K^{*0}\gamma)$$

• SM prediction for CP asymmetry:

$$A_{CP} = -0.006 \pm 0.004 \text{ [arXiv:0406055]}$$

• Previous best measurement from BABAR:

$$b$$
 $-\frac{W}{t}$ s t t t t t

$$A_{CP} = -0.016 \pm 0.022 \pm 0.007$$
 [PRL 103 (2009)]

$$A_{C\mathcal{P}}(B_d \to K^{*0}\gamma) = A_{C\mathcal{P}}^{\text{RAW}}(B_d \to K^{*0}\gamma) - A_{\text{prod.}}(B_d) - A_{\text{det.}}(K\pi) \\ = 0.008 \pm 0.017(\text{stat}) \pm 0.009(\text{syst}) \text{ [Preliminary]}$$

• Also collecting large samples of B_s decays. Observe 240 $B_s \to \phi \gamma$ candidates in 0.37 fb⁻¹ [LHCb-PAPER-2011-042].

LHCb overview

Sensitivity to NP through rare decays

In the SM:

- $C_{S,P} \propto m_\ell m_b/m_W^2 \sim 0$.
- Helicity flipped operators $(C_i'O_i')$ suppressed by m_s/m_b .

(ロ) (部) (注) (注) 注 り(())

T. Blake LHCb overview 68 / 59

$B_d o K^{*0}\mu^+\mu^ m_{\mu^+\mu^-}$ versus $m_{K^+\pi^-\mu^+\mu^-}$

Partially reconstructed backgrounds

4 D > 4 A > 4 E > 4 E > E 9 Q A

T. Blake LHCb overview 69 / 59

Towards a measurement of γ

CKM picture

 CKM picture seems to describe nature remarkably well.

But Have just been discussing the possible effects from NP to loop-order processes. The picture from tree-level is much less complete . . .

How can we access γ

- Access CKM phase γ through interference of b → u and b → c transitions in decays with a common final state.
- One way is through $B^{\pm} \to DK^{\pm}$ decays, where the D^0 and \bar{D}^0 decay to common final states:
 - $D^0, \overline{D}{}^0 \to \pi^+\pi^-$ or K^+K^- (GLW) see e.g. [PLB 265 (1991)]
 - $D^0, \overline{D}^0 \to K^+\pi^- \text{ (ADS)}$ [PRL 78 (1997)]

- ADS mode is experimentally challenging:
 - It's a fully hadronic B decay with an effective branching fraction of 2×10^{-7} I

(□) (□) (□) (□) (□)

T. Blake LHCb overview

First observation of the ADS mode

• What do A_{ADS} and A_{CP+} tell us about γ ?

• Combine with GGSZ modes ($B^- \to DK^-$, $D \to K_s^0 \pi^+ \pi^-$) to estimate γ .

Anatomy of the $B_d o K^{*0} \mu^+ \mu^-$ decay

Anatomy of the decay was explained in detail by Christoph yesterday.
 Described by 12 angular terms:

$$\begin{split} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} &\propto \left[J_1^s + J_1^c + \left(J_2^s + J_2^c\right)\cos2\theta_\ell + J_3\sin^2\theta_\ell\cos2\phi \right. + \\ & \left. J_4\sin2\theta_\ell\cos\phi + J_5\sin\theta_\ell\cos\phi \right. + \\ & \left. J_6\cos\theta_\ell + J_7\sin\theta_\ell\sin\phi + J_8\sin2\theta_\ell\sin\phi \right. + \\ & \left. J_9\sin^2\theta_\ell\sin2\phi \right. \right] \end{split}$$

• Some possibility to access S_4 , S_5 , S_7 and S_8 using other folding techniques. See A. Bharucha & W. Reece [arXiv:1002.4310].

T. Blake

Opposite side flavour tagging and proper time resolution

- Opposite side tagging (μ , K, e and vertex charge) calibrated using $B_d \to D^{*-} \mu^+ \nu_\mu$, $B^+ \to J/\psi \, K^+$ and $B_d \to J/\psi \, K^{*0}$ events.
- Performance is typically $\varepsilon \mathcal{D}^2 \sim 2-3\%$.
- Work ongoing to improve tagging performance and to include same-sign tagging.
- Propertime resolution measured in data using prompt events ($\tau = 0$): $\sigma_{\tau} \sim 45 \, \text{fs}$ (c.f. $\sim 350 \, \text{fs}$ period of B_s).
- In practice per-event resolutions and mistag probabilities are used in time dependent + tagged analyses.

[LHCB-PAPER-2011-027]

$$\mathcal{P}_{t}(t, q | \sigma_{t}, \eta) \propto \left\{ \Gamma_{s} e^{-\Gamma_{s} t} \frac{1}{2} \left[\cosh \left(\frac{\Delta \Gamma_{s}}{2} t \right) + q \left[1 - 2\omega(\eta) \right] \cos(\Delta m_{s} t) \right] \theta(t) \right\}$$

$$\otimes G(t, S_{\sigma_{t}}, \sigma_{t}) \epsilon(t) \epsilon_{s}. \qquad \mathcal{B}_{s} \to \mathcal{D}_{r}^{+} \pi^{+}, \mathcal{D}_{r}^{+}$$

- Measure Δm_s in flavour-tagged time-dependent analysis of $B_s \to D_s^+ \pi^+$ and $B_s \to D_s^+ \pi^+ \pi^- \pi^+$ events, where $D_s^+ \to \phi \pi^-$ and $D_s^+ \to K^+ K^- \pi^-$,
- Effective tagging efficiency, $\varepsilon_{\rm eff} = 3.8 \pm 2.1\%$.
- In 36 pb^{-1} :

$$\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \,\mathrm{ps}^{-1}$$

• Dominant systematic is from *z*—scale of the detector.

