MATTHEW B WINGATE

ADVANCED QUANTUM
FIELD THEORY



These notes are for use with the Cambridge University Part III lecture course Advanced Quantum Field
Theory, given in the Department of Applied Mathematics and Theoretical Physics in Lent Term 2020.
They draw on the notes of previous lecturers, in particular Hugh Osborn and David Skinner.

This version was compiled 2 June 2020 (16:39).



Contents

Introduction 5

Path integral in quantum mechanics 7
Integrals and their diagrammatic expansions
LSZ reduction formula 25

Scalar field theory 29

Renormalization group 43

Quantum electrodynamics 49
Symmetries and path integrals 57
Nonabelian gauge theory 63
Conventions 75

Bibliography 77

11






Introduction

In this course, the second term of Quantum Field Theory, we have
three main goals: to introduce and use the path integral formula-
tion of QFT, to understand the need for regularization and renor-
malization of QFTs, and to begin investigating gauge theories.






Path integral in quantum mechanics

We begin our introduction to path integrals on familiar grounds,
quantum mechanics in 1 spatial dimension. We will show that
Schrodinger’s equation can be reexpressed as an integral over parti-
cle trajectories, appropriately weighted.

The Hamiltonian operator H depends on position and momen-
tum operators

H=H(%,p) with [£ p] =ih. (1.1)

Assume here that we can write the Hamiltonian as the sum of a
nonrelativisitic kinetic term and a potential term which depends

only on position
52
A= >m + V(). (1.2)

The Schrodinger equation governs the time evolution of states

in (1)) = Alp(s)). (1)

The formal solution can be expressed using the time evolution
operator X
[p() = e M p(0)). (1.4)

In the Schrodinger picture, states depend on time while oper-
ators are constant. From the latter statement, it follows that the
eigenbasis of operators are also constant. Let’s consider the posi-
tion operator £ and the fixed basis of position eigenstates {|x)}. We
define the wavefunction to be the complex-valued function

¥x 1) = (x[y(t) (1.5)

where the duplicate use of ¢ is standard notation. The action of the
Hamiltonian operator on the wavefunction is

A n
(x|Hlyp(t)) = <_2m8x2 + V(x)) Y(x,t). (1.6)

Our main goal is to replace Schrodinger’s differential equation
with an integral equation. We start by inserting (1.4) into (1.5), then
by inserting a complete set of initial positions xo:

F(x, 1) = (xle™ " p(0)
= [ dxo (xle ™" x0) (10 9(0))

= /j; dxo K(x, x0;t)¥ (x0,0) (1.7)



The last line defines the integration kernel K.
Now we repeat this process multiple times. Let us choose times
ty ...t, in between our initial time tg = 0 and a final time ¢,,1 = T:

O=tg<th <...<tpy <ty 1 =T
and factor the time evolution operator into n + 1 parts

e tHT/h _ =iH(ty1—tn)/hp=iH(tn—ty_1)/h ~iH(ti—to) /T (1.8)

We can use this expression in K(x, xo; T), inserting a complete set of
states between each exponential

oo - A
K(x,xO;T) :/ [der xr+1|€ Aty —tr /h|x> <X1|€71Htl/h|xO>.

(1.9)
What we have is an integral of amplitudes corresponding to all
possible positions for each t € {t1,...,t,}, that is, we integrate over
particle “paths” (Fig. 1.1).
To make further progress, let us first consider the free theory,
with V(%) = 0. Denoting the free kernel as Ky we have between any
two points x and x’

Ko(x,x';t) = (x| exp _ipt |x") (1.10)
Y 2mh

Inserting a complete set of momentum eigenstates
[es} dp
/ 27th p)ipl =1
and recalling these are plane waves, (x|p) = ¢/P*/", then
© dp ipt
1.4 — et Y /
Kol w50) = [ S tslep (~ ) ) 1)
_ [ dp ipzt ip(x—x')/h
B /700 2mth OF < 2mh> ¢ '

Completing the square with the substitution p’ = p —m(x — x’) /¢
we have

o) 12
K (x x"t) _ eim(x—x’)z/th/ d—p/exp 71?7/ t
02 —oo 27TH 2mh

. N2 m
— pim(x=x') /ZFlt\/;' (1.11)

lim Ko (x, ;) = §(x — x')
t—0

Note that

agreeing with (x|x’) = §(x — x').
For a nontrivial potential V(£) # 0, we need to use very small
time-steps. Recalling the Baker-Campbell-Hausdorff relation

eAeB = exp (A +B+3[AB]+.. ) £ eAtB (1.12)

Figure 1.1: An example of a path.



for small e < 1

¢AgeB = exp (GA +eB+ (’)(62)) . (1.13)
Turning this equation around, we have

(A+B) — pehpeB (1 4 0(e2)). (1.14)

Letting € = 1/n, raising (1.14) to the n-th power, and taking the
large n limit, we find

PN A A n
eAP = lim (eA/”eB/”) : (1.15)
We will use this to separate the kinetic and potential terms in the

Hamiltonian, in a way often referred to as the Suzuki-Trotter de-
composition

Take t,1 — t, = 6t for all r with Jt very small, and also take n very large, such that T = ndt. Then

exp< Hzl&) = exp(—izﬁ;é;) exp<—iv(§)5t) 14+ 0O((6t)2)]. (1.16)

Sandwiching this between position eigenstates, we have

]| _iHst ) = iV (x)ét ] ip2ot )
Xpi1| €XP 7 Xr) = exp 7 Xrq1| €XP “om Xr

iV(xy)ot
= exp (_(hr)> Ko(x;41, xs; 0F)

. 2 .
| (B
=\ 20imsr P [th ( 57 ) ot 5 V(xr)ét] (1.17)

having used V(%)|x,) = V(x)|x,) and (1.11). Thus, with T = nét,
5t} . (1.18)

K(xx:T) /[Hd ] (zmimer h5t>% Xp{i ) [;m (W)ZV("’)
%/OTdt [%mxz - V(x)} = /OT dt L(x, %) (1.19)

r=0

In the limit n — oo, §t — 0, with T fixed, the exponent becomes

where L(x, ¥) is the classical Lagrangian. Defining the classical action at a particular point by S(x) =
fOT dt L(x,x) we see that we can write the kernal as a “path integral”

K(x,x0; T) = (x|exp<ll;llt) |x0) = /Dxeﬁs("). (1.20)

The formal definition of the path integral measure is given by the limit used above

Dx = lim

30 2mh(5tH (@ xr> : (1.21)

The normalization factor can be safely ignored, as we will see in the next chapter. Subtleties regarding

the definition and existence of path integrals are beyond the scope of this course.
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Eq. (1.20) is the main result of the chapter. The amplitude for
a particle traveling from point x( to point x in time T is equal to
integral over all possible positions for each successive moment in
time, i.e. the integral over all particle paths, weighted by a phase
with argument proportional to the classical action. In the classical
limit i — 0, most trajectories will correspond to a highly oscillatory
integrand. Only the trajectory (or trajectories) which minimize the
classical action have a chance at giving some nonzero integral. Thus
we can see how Hamilton’s principle of least action for classical
dynamics is recovered from the i — 0 limit of path integrals. It
is sometimes said that quantum effects such as those seen in the
classic double-slit experiment are due to a particle interfering with
itself. This is a reference to the phase factor in the path integral
(1.20).

In much of this course, we will analytically continue to imagi-
nary time. This is a straightforward mathematical trick as long as
the amplitudes of interest are analytic functions or have easy-to-
study nonanalyticities. Letting T = it yields

<x|e_HT/h|x0> = / Dxe SW/h (1.22)

Written this way, it is much easier to see that, in the # — 0 limit, the
integral is dominated by the path which minimizes S(x). Another
nice feature is that integrals of the type in (1.22) are more easily
shown to be convergent than those of the type in (1.20). Finally, as
will become more evident in the next chapter, working in imagi-
nary time shows that many problems in quantum field theory can
be expressed as problems in statistical field theory, where e=5/"
plays the role of a Boltzmann factor.

Quantum mechanics is essentially quantum field theory in 0 +
1 dimensions, with the position operator acting as a field. In 1-
dimensional quantum mechanics £(t) : R — R is a real field
mapping ¢ — x. In 3 dimensions, ¥(t) : R — R3.

However, in order to be consistent with Lorentz invariance, space
and time must be put on the same footing. QFT does this by de-
moting the position from an operator to a label. For example, real
scalar fields ¢ : R — R such that ¢(, X) is a real number at each
point in 3+1 dimensions.

Summary of main points

1. Quantum mechanical amplitudes can be expressed as path inte-
grals.

Further reading

Many texts present the path integral for quantum mechanics in this

way.”

*L Brown. Quantum Field Theory.
Cambridge University Press, 1992.
ISBN 0-521-40006-4; M Peskin and

D Schroeder. An Introduction to
Quantum Field Theory. Addison-
Wesley, 1995. ISBN 0-201-50397-2;
and S Weinberg. Lectures on Quantum
Mechanics. Cambridge University

Press, 2013. ISBN 978-0-107-02872-2



Integrals and their diagrammatic expansions

In the last chapter, we introduced the path integral as an alternative
way of describing evolution of a quantum mechanical wavefunc-
tion in the single variable available, time. In quantum field theory,
where the degree(s)-of-freedom are fields defined at every point in
spacetime, we will be interested in the behaviour of fields at sepa-
rated points in spacetime. Generically, we be calculating correlation
functions. In the next chapter we will make a better connection
between scattering amplitudes and correlation functions.

In the meantime, we will introduce the path integral methods
to be used throughout this course. Mainly we will be interested in
perturbative expansions of path integrals and the representation of
the resulting terms as Feynman diagrams.

We demonstrate the main ideas and methods for a 0-dimensional
field ¢ : {point} — R. That is, ¢ is a single, real variable.

Proceeding as we would in imaginary time, we study the integral
we would call a partition function in statistical physics

7 — —S(¢)/h )
/]Rdgbe (2.1)

Let us assume that S(¢) is a polynomial with even degree and that
S(¢) — ooas ¢ — too. We will be concerned with expectation
values of the form

()= [dofg)e @, @2)

f should not grow too rapidly as |¢| — co. Usually f is polynomial
in ¢.

2.1 Free theory

In this section, let us work with N fields (variables) ¢, with a =
1,..., N. This will establish a relation which will provide an inter-
esting comparison when we come to discuss fermions. Consider the
action to be

S0(9) = 3 Masthdy = 397 Mg 23)

where M is an N x N symmetric, positive definite* matrix. 2det M > 0.
Say we diagonalize M: M = PAPT, where A is a diagonal
matrix of positive definite eigenvalues. For each eigenvalue A,
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we have a Gaussian integral over the corresponding eigenvector
Xc = (PT)ca ¢q. Then the free partition function Z; can be integrated

Zo = /qu> exp(—zlh (pTM(p)
= /de eXp(—zlthAx>
= II:V[/Rch eXp<—;\;l x?)

(Note that symmetric M implies orthogonal P, so the Jacobian of

the transformation is 1.) We see that the result of a multidimen-
sional Gaussian integral is a square root of a determinant in the
denominator. We will find something else when we need to work
with fermionic fields. We have a lot more to do with real fields first.

By itself, the partition function is boring; it’s just a number. What
we want are correlation functions, and we can get them by making
a slight modification to the partition function. Introduce an external
(N component) source | so that

So(¢) = So(p) +]T¢. (2.5)

We denote the corresponding integral Zo(]) = [dN¢ exp{—4[So(¢) +
JT¢]}. This can be evaluated by completing the square; let ¢ =

¢+ M
Z0(7) = [#p exp| - 3567 Mo — 10|
= exp <2hITM1I> / dN§ exp ( thbTMcp)
= 7o(0) exp(zlh JTM1 ]) . (2.6)

This is called a generating function because we can obtain correlation
functions by differentiating with respect to J. For example, consider

1 1 1
(@at) = 7755 [8%9 guy exp (—2h 9T Mo — h]T<P> ]]_O

1 N ) 0 1 T 1T
@ [ <‘hah) (‘haf) eXP(‘zh‘P Mo =51 <”>\,_o

0 0 1
e )
= (M ). (2.7)

That is, the 2-point function is the inverse of the quadratic term in
S. In theories with dimension greater than o, this is the propagator

— -1
for ¢ (Fig. 2.1). b =M™ )ab

<¢a¢b> =a

Figure 2.1: Propagator for real ¢.
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We can be more general by inventing a little more notation. Let
£(¢) be a linear combination of the N components of ¢; that is,

N
0(p) =Y laa (2.8)
a=1

where ¢, € R and at least one term is nonzero. We can generalize
the same steps used in (2.7) by swapping

0(¢) for f(ha) = h ieai. (2.9)
o] =],

Now consider a correlation function composed of p such terms:
1 7 Ly
(D (@) 0P () = — - / ANg TTe0
(i)t = 7y [0 T @)
X L T Mo - 1]T
oxp( g7 0" Mo —5IT0)|

N’ 1 _
- e (3) enllrac)

J=0
(2.10)
If p is odd, then the integrand is an odd function of at least one ¢,
and the integral over ¢, € (—oo,00) vanishes. For p = 2k, we can
identify the terms which survive the | — 0 limit as follows. The
action of a derivative acting on the exponential is bring down a
prefactor of M~!] multiplying the exponential. The terms which
are nonzero as | — 0 are those where a second derivative acts on
the prefactor. Therefore, the nonvanishing terms are those where k
derivatives act on the exponential, and k remove the J-dependence
in the prefactor; that is, those term with k factors of ML

Take, for example, the 4-point function.3 You can check that 3 Using the notation of the previous
) 1 1 1 1 paragraph, take &(,1) = Oap, Z,(,z) = Oac,
(Popcpags) =T [(M* Joc (M™ ) ar + (MTH)pa(M™7)ef 09 = 6,4, 68 = 8,5
MM )]
b d b d b d
¢ f ¢ / ¢ f (2.11)

Notice that we get 3 terms, one for each way of grouping the 4

fields into pairs. In general, the number of ways of pairing 2k ele-
2k)!
(Zkk)!
of rearranging all 2k points (i.e. (2k)!), by the number of ways of

ments is

. This can be derived by dividing the number of ways

rearranging the pairs (i.e. k!) and by the number of ways of rear-
ranging the 2 points composing each pair (i.e. 2K). We will see that
combinatorics plays a role in diagrammatic expansions.

Note that if we were working with complex fields, then the ma-
trix M would be Hermitian rather than symmetric. In that case,

T . -1

the order of t}.le 1nd1.ces in /\/l m.atters and we would draw the (Gudl) = a b = BMY)
propagator with a directed line (Fig. 2.2).

Figure 2.2: Propagator for complex ¢.
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2.2 Interacting theory

We wish to go beyond the free theory, including higher-terms of ¢
is S(¢). Exact integration is usually not possible, so we often seek
an expansion about the classical result, i = 0. However integrals
like
1
[d¥9 fig)e

do not have a Taylor expansion about 77 = 0. Dyson argued this by
contradiction. Assume that the integral did have a Taylor expansion
about 71 = 0, then it must have a finite radius of convergence in the
complex i plane. However for any Re i < 0 the integral clearly
diverges.# Therefore, the radius of convergence cannot be larger
than zero.

Consequently the fi-expansion is at best asymptotic. We say the
function I(%) is asyptotic to a power series

I(h) ~ Y cult" (2.12)
n=0
if and only if, for all N

Iim —

R =0. (2.13)

N
I(h) = Y cutt"
n=0

That is, for fixed N, the difference between the series and the func-
tion vanishes as i — 0 from above. Naturally we are not usually in-
terested in this limit. We wish to successively improve our estimate
of the function by increasing N while % is kept fixed. For i > 0, the
asymptotic series fails to include any transcendental terms such as
exp(— %) These “nonperturbative” terms can be important in some
theories, or very small in others.

Once again, we take ¢ to be a real variable and

A
5(p) = g9 + Lot (2.14)

We will assume that A > 0 so that the integral over ¢ below will
be finite as |¢| — oo, and that m? > 0 so that the minimum of S is
at ¢ = 0. Now we expand the exponential in the integrand of the
partition function

Z= /d(p exp [—;l (;ngbz + 3474)}

2P 2] A\
:/dgbe o V;Oﬁ (_4'h> ¢4V. (2.15)

This infinite series converges and the resulting integral converges.

Now we're going to be naughty and swap the order of integration
and summation, resulting in an expansion which is asymptotic to
Z. We cannot do this with an infinite series, so we first truncate the

2 42
series. Letting x = % we write

/ N %4 0 1
Z ~ van ) L nA 22V/ dye *x?V 271, (2.16)
v=o V! 0

m 4! m4

4 Recall we assumed at the start of the
Chapter that S(¢) — o0 as ¢ — Foo.
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(4v)!
2V

N

The integral is the I function, I(2V + 1) =

2nh N B 1 (4v)!
7 ~ m Eo( m4) 4NV 22V (2v)! (2.17)
S———
1) (2)
Stirling’s approximation that large V, V! =~ eVlOgV so 1 (4v)! -

AYVvI 22V (2v)!
eV1°8V ~ V1. This factorial growth of coefficients is a sign that the
series is not convergent, but asymptotic.

Looking at the two combinatorial factors in (2.17), term (1) comes
from the Taylor expansion of the ﬁ(])4 term in the exponential
e~5/". Term (2) is the number of ways of pairing 4V elements, i.e.
each of the ¢* in the V-th term.

Let us repeat this for the generating function Z(J), employing
some methods developed in § 2.1. Denoting So(¢) = im?¢* and

S1(¢) = f9*,

= [ap exp {4 (Sot9) + 5100+ m}
~ e p|:—151( a]ﬂ/dcp P
_ﬁ (h;}) ] exp ( JTM™ ])

o exp
N v P
1[ 2 ( a) ] 1 {1 T 1}
~ Y - oMY L @) o
V;O vi| 4 \"9) P;O P! |2
We can represent the double series (2.18) graphically using Feyn- (a) (b)

man diagrams. Once again, each factor of M~! = m~2 is repre-

Figure 2.3: (a) Propagator with exter-
nal sources at both ends. (b) Vertex.

sented by a line (Fig. 2.3a). Let us use a filled circle at the end of
a line to represent a factor of J. For each factor (%)4, which came
from the interaction term in the action S1(¢), we draw a vertex
(Fig. 2.3b).

First let us check that we reproduce the result for Z = Z(0)
(2.17), at the same time seeing how the diagrammetic method
works. In order to be nonzero when we set | = 0, there must be
the same number of derivatives coming from the vertices as there
are sources at the ends of the propagators, i.e. we must have

E=2P—4V =0. (2.19)

We define E to be the number of external sources left undiffer-
entiated. For Z(0) this must be zero, but when we want n-point
functions, we will want E = n.

Figure 2.4: First few terms in the
expansion of Z(0), normalized by

the free, sourceless partition function
T * * C)C)C) + Zy(0) given in (2.4).
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For the first two nontrivial terms in (2.17) correspond to (V,P) =
(1,2) and (2,4) (Fig. 2.4). Just as when we multiply algebraic ex-
pressions, we combine like terms. Here we have to account the
multiple ways in which derivatives from the vertices can act on
sources on the propagators. Consider the diagram in Fig. 2.4 with
1 vertex and the number of ways it can be made by multiplying out
the terms in (2.18). Let us make a “pre-diagram” where we label
the ends of the vertex lines and the propagators (Fig. 2.5). There are
A = 4! ways of assigning the sources a, a’, b, b’ to the derivatives
at 1, 2, 3, and 4. Notice this is cancelled by a 4! in the denominator

1 3 /
F = (V!)(4)V(P!) 2P = 4!.2.22 of (2.17). Therefore the 1-vertex O—@a
diagram in (Fig. 2.4) comes with a prefactor % = % (times —% . ) A b @ ®

More generally, we can see that the denominator
Figure 2.5: Labelled prediagram.

F= (V)4 (p)2F

accounts for the permutations of all vertices (V!), all the legs on
each vertex (4!), all the propagators (P!), and both ends on each
propagator (2). However, most diagrams have some symmetry
which means that some of the permutations in F are identical and
have been double-counted in F. In the example above, consider the
pairing of vertices (1a,2a’,3b,4b"). Swapping 4 with 4’ at the same

1 0 @—@ a 1’
time as swapping 1 with 2, we arrive at exactly the same term in é > re—e 2’%
3

(2.18), so it should not be counted twice. co—eoc 3

A 4 d@—ed 4

An alternative, and often simpler way to determine # is to con-
sider the actions which leave invariant the unlabelled diagram, like Figure 2.6: Basketball prediagram.
the first one in (Fig. 2.4). The diagram is unchanged if we swap the
direction we draw the top loop or the bottom loop, or if we swap
the top with the bottom loop. That gives us 23 ways of drawing the
same unlabelled diagram. & = 2% = 8.

With these considerations, we can find from the Feynman rules
and symmetry factors that the interacting partition function has
terms corresponding to those shown in Fig. 2.4 as

Z(O):]_M+F12/\2<1+1+1)+

Z0(0) 8m* ' md \48 16 128)
zl_hi_l’_ghzi/\z_'_ (220)
8m* = 384 m8 '

Note we have reintroduced the constant of proportionality Zy(0) =

¥ fn"h, the free, ] = 0 partition function (2.4), not to be confused
with the ] = 0 interacting partition function Z(0) (no subscript).5 51t is usual to omit the argument
We next consider how correlation functions can be obtained from VZ"h(%I; I :Z 0, s0 that Z(0) = Z and
0 = £0-

diagrammatic expansions of Z(]). The first few contributions to

Z(]) with 2 external sources (i.e. E = 2) are shown in Figure 2.7.
Note that the diagrams with vacuum bubbles can be factored out.
The sum of vacuum bubble diagrams is just Z(0). Therefore, they



L3Erdlo-
ol bEEd-

are divided out in the expectation value
2y _ (M2 (9

Note the derivative removes the factors of | in the E = 2 con-

tributions to Z(J). We represent this by removing the large dots.
There is also a factor of 2 associated with the 2 ways of ordering the
derivatives; i.e. which derivative acts on which external leg. We can
similarly draw diagrams for the first few terms in the expansion of

(¢*) (Fig. 2.8).

2.3 Wilsonion effective action

We will show that the sum of all vacuum diagrams can be gener-
ated by considering only connected vacuum diagrams. That is,

Z=e WHh (2.22)

where Z is the (sourceless) partition function, which we showed
could be represented as the asymptotic series of all vacuum dia-
grams. W is the Wilsonian effective action and will be the sum of
all connected vacuum diagrams.

Any diagram D is a product of connected diagrams. Denote
the set of connected diagrams by {C;} and assume that each C;
includes its own symmetry factor. Any particular D can be repre-

sented as
1

D=—
Sp 7y

(€)™ (2.23)

where n; € INY depending on how many copies of the I-th con-
nected diagram appear in D. Sp is the additional symmetry factor

17

Figure 2.7: First few E = 2 terms in
the expansion of Z(J). In the second
line, we note that the vacuum bubbles
can be factored out so that the first
line is equal to Z(0) times the sum

of diagrams not containing vacuum
bubbles.

Figure 2.8: First few terms in (¢*).
Note that there are disconnected dia-
grams, like the 4th diagram here, but
there are contributions from diagrams
with vacuum bubbles due to the factor
of [Z(0)]7! in the expectation value.

Figure 2.9: A disconnected diagram.
Using the numbering of connected
contributions appearing in Fig. 2.4,
ny, = 3, n3 = 1, and all other n; = 0.
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> X =| 2o > 2 ...

{nr} n1 no ns

associated with rearranging the connected parts, C;, in such a way
as to leave the diagram invariant, i.e.

Sp :H”I!- (2.24)
I

For an example, see Fig. 2.9.

Now the (J] = 0) partition function, normalized by the free
partition function, can be written as the sum over all diagrams.
Using (2.23) and (2.24), this sum can then be rearranged

z 1,
I

= exp <Z C1> = ¢~ (W-Wo)n (2.25)
I
where we implicitly define the Wilsonian effective action

W=Wy—h) Cj. (2.26)
1

Normally we can simply drop the constant Wy which just accounts
for the normalization factor Zj. In going from the first to the sec-
ond line in 2.25, we factor the sum over all possible integers 7] for
the infinite product of connected graphs, into separate factors for
each of the connected graphs (Fig. 2.10).

To see an example of how the effective action is used, let us
consider a theory with two real fields®

m? M2 A
S(¢. x) = 74’2 + 7?(2 + Z‘PZXZ (227)

The Feynman rules are shown in Fig. 2.11.
First we work with the full theory, given by action (2.27). The ef-

h h
m2 M2
o) X

Figure 2.10: Representation of the
reordering of the sum over graphs in
Z(0) as in (2.25).

®Note that we do not include a fac-
torial in the interation term since the
fields are distinguishable.

Figure 2.11: Feynman rules for the
theory described by (2.27).



fective action W is given by the sum of connected vacuum diagrams

hA A2 /11 1

:_4m2M2+m4M4 (16+16+8)+ (2.28)

The 2-point correlation function (or propagator) is given to 2-loops
as

N P s S R

h h2A2 13A3 (1 1 1)
= -+ +....

T om2 2mAMA + mo M4 2 (2:29)

172
Say we want to remove explicit x-dependence, for example
maybe the x is massive enough not to be produced at experimen-
tally accessible energy scales because M > m. Integrate out the

heavy field. Define W such that

m— /d)(efs(‘/”f)/h. (2.30)

The ¢?x? term is treated as a source term for x? (] = ¢?). Correla-
tion functions only involving ¢ fields can be obtained

(@) = 5 [dgdx flg)e e/t = [dg f(g)e WO/M. 23

It is in this sense that W is an effective action, incorporating the
virtual effects of the y field.
In our example, the integral can be done.

1 20 27th
dye SO0/ — gmapm™¢” [0 (2.32)
/ M2 + 542
therefore
1 5., K h M2

The constant term cancels in correlation functions, so it is irrelevant
in QFT. However, this contributes to the energy density of the uni-
verse, to the so-called cosmological constant. Why is the observed
value of the cosmological constant so small?

Expand the logarithm

e RAN L, A2, RAS
Wie) = < 2 +4M2)4’ _16M4¢ T asme? T

2
_ Mt 2

Ak ok
(26)! LA (2.34)

4' 6'
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where we define effective mass and couplings

(2k)!1 Ak
2k+Tf p2k

In dimensions greater than zero, it is usually not possible to eval-

Ay = (=1)Fh (2.35)

uate integrals exactly, so W(¢) must be calculated perturbatively. % 7/\2;22

The %4)2 X? term can be treated as a source term with 2 legs when .

doing the y-integrals (Fig. 2.12). T
Since W is the —# times the sum of connected diagrams Figure 2.12: Feynman rules for eval-

uating W(¢) by integrating out the x
field, treating ¢? as a source term.

Y 0 K .« , -‘
W)= a + & i+ & m,ou P
Men S e s R ..'
_m? 5 1 RA 5 1 RA? LA e (2.36)
=50 Y aome? “ann? et T @3
as before. Using this W(¢)
@) = 5 [dpg?e
= + +
hoo RA
S T (2.37)

2 6
Mo 2M g

as before.

2.4 Quantum effective action

In this section we introduce the quantum effective action, closely
related to the Wilsonian effective action, but with a different inter-
pretation. Consider the mean field configuration in the presence of
external source |

oW

S =" o /d(pe #(5HO) = (p);. (2.38)

We perform Legendre transform, exchanging | as the independent
variable for ®:
I(@) =W(]) —@]. (239)

It may be useful to recall other Legendre transforms used in
physics, for example from Lagrangians to Hamiltonians, where
time derivatives of coordinates are replaced by conjugate momenta.
A more apt analogy comes from the statistical physics of magnetic
systems. Consider the partition function for a system of spins s; in
the presense of an external magnetic field #;

(h) = {Z% exp [ (Z H(si,sj,---) +Zhisi>] (2.40)

L,



where H is the Hamiltonian” and f is the inverse temperature. The
Helmbholtz free energy F(h) plays the role of the Wilsonian effective
action:

F(h) = —;logZ(h). (2.41)

The magnetization M plays the role of the average field in the pres-
ence of the field
dF
M(h) = == =) (si) - (2.42)
i

However, we can swap which variable is independent through a
Legendre transform to the Gibbs free energy

G(M) = F(h) + Mh. (243)
Note that
dG dF dh dh
aM = dnam Mg = (2-44)

where the last equality follows from (2.42). Read from right-to-left,
this formally gives the external field as a function of the magneti-
zation h(M); however, it is most useful to think about what (2.44)
implies about G(M). For example, the minimum of G(M) coincides
with the equilibrium magnetization of the system when /1 = 0.

We can similarly look at the gradient of the quantum effective

action
o _ oW o 59
o> 0D 0P
_O0W 9] a
_T]ﬁ J o J. (2.45)
—~—
-
For example
or
el =0 (2.46)

that is, in the absence of a source, ® = (¢) corresponds to an
extremum of the function I'(®).

We must apply usual caveat regarding Legendre transforms
for physical systems: it is assumed that the functions being trans-
formed are convex. In cases where this is not so, it is possible that
one could apply a kind of Maxwell construction, as one sees in the
statistical physics of first-order transitions. In field theory, we rarely
have enough information to know beforehand whether such an ap-
proach is safe. As they say, then the proof of the pudding is in the
eating.®

We can develop a perturbative expansion of I'(®) building upon
our earlier perturbative expansions. Let us consider a Wilsonian ef-
fect action constructed, not using the classical action S(¢) which we
always compare to the physical Planck’s constant #, but instead us-
ing the quantum effective action I'(®) compared to some ficticious

21

7 e.g. the Ising Hamiltonian H o —s;s;
where the sum would be over all
nearest neighbors (ij)

8 Translation: If the results of the
calculation are correct, then the as-
sumptions in the calculation were
(probably) correct. Otherwise, not.
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Planck-like constant g:
NV~ [a@exp L@+ )

Wr is the sum of connected diagrams with ® propagators and
vertices derived from I'(®). A diagram with ¢ loops will enter at
order g', so we can write the series as

We() = Y gwWi (). (2.48)
(=0

Tree diagrams compose WISO) (J). In the ¢ — 0 limit only tree dia-
grams contribute. Also as ¢ — 0, the integral over ® will be domi-
nated by the minimum of the exponent in (2.47), i.e. the ® such that

or
3 = -J. (2.49)

Therefore Wr(J) = Wﬁo)(]) =T(®) + J® = W(J), the last equality
from (2.39). The sum of connected diagrams W(J) can be obtained
from the sum of tree diagrams using the action I'(®) + .

In order for this to be true, I'(®) must be the sum of a class of
diagrams called one-particle irreducible or “1PI" for short. These are
diagrams which contain no “bridges;” an internal line (that is, an
edge) of a connected graph is a bridge if cutting it would make the
graph disconnected (e.g. see Fig. 2.13).

The quantum effective action I'(®) is the result of summing all
the 1PI graphs with propagators and vertices derived from the
action S(¢), yielding many effective vertices for I'(®). Then cor-
relation functions can be formed by considering only tree graphs
constructed using the vertices in I'(®) (e.g. see Fig. 2.14).

For example, in a theory with N fields ¢;,a = 1,..., N, we can
find the connected two-point function

(PaPp) 1™ = (PaPp)] — (Pa) 1 {Pp)]
*W
9J29]

using relations above, transforming from | to ® as the independent

=—h

variables

9a 0Py

?r \ !
=h (aq>ba¢)a> . (2.50)

In words, the full ¢ propagator, including loops, is equal to 7 times

_ %% (a]a )1

the inverse of the quadratic term in I'(®). Similar relations can be
derived for n-point functions, with n > 2.

0,

Figure 2.13: Example of a diagram
with a bridge. The first diagram is
not one-particle irreducible because it
becomes disconnected if an internal
line is cut.

(a)

(b)

Figure 2.14: (a) A complicated diagram
in a theory where S(¢) contains ¢°
and ¢* terms. (b) A tree diagram, with
the vertices coming from ®3 and ®*

in I'(®). Diagram (a) is one of many
contained in diagram (b), since the
vertices of I'(®) are the sum of 1PI
diagrams with the corresponding
number of external legs.



2.5 Fermions

0,0, = —0,0, (2.51)

For any scalar ¢, € C
O = Puba (2.52)

i.e. Grassmann numbers communte with complex numbers. Note
that 62 = 0, which implies any function of n Grassmann numbers
can be written as a finite sum

1 1
F(G) = f + Pagu + Egabeugb +..F Ehaluz--'unealeaz e gun (2'53)

where the coefficients g, ..., h are totally antisymmetric in their
indices, e.g. g.p = —Spa-

Differentiation obeys a product rule with an additional minus
sign

- OF(0)] = ~0y 5 + 6 F(0) (2549)

with J,, the familiar Kronecker delta.

Integration. Require translational invariance, for constant Grass-
mann %

/d9(6+77) - /d99 (2.55)
This implies
/dG:O and /d66:1 (2.56)
where the latter equality includes a choice of normalization. Note

the similarity between differentiation and integration. These rules
are attributed to Berezin. One helpful identity is

d
/d9 SSF(9) = 0. (2.57)

Useful for integrating by parts.
With n Grassmann variables 6,, the only nonvanishing integrals
involve exactly 1 power of each integration variable

/d"e 0,0, -- -6, = /denden,l i d1 0160 =1 (2.58)

In general
/dn9 04104, - - - b, = el (2.59)

where € is completely antisymmetric, i.e. equal to +1 if the indices
are an even permutation of 1,2,...,n, to —1 if they are an odd
permutation, or to 0 if any indices are repeated. Say we have a
change of variables: 0, = A,;60;. Then

/d”e 0. - = Aupy Ayt Ay, /d"e) Oy, 0y,
= AalblAaZbZ U Aanbn ebl"'bn
— det A e

— detA / e, -0, (2.60)

23



24

Therefore a change of variables is accompanied by a determinant in
the numerator.

d"0 = det Ad"9’. (2.61)

In order to move to field theories with fermions, we consider the
possible forms an action can take. With 2 Grassmann variables, we
have an action 1

5(6) = §A9192 (2.62)

with A € R. The partition function is

Zy = /dZG e HS(0)

A A
- /d29 (1 - 2;_19192> -2 (2.63)

With n = 2m fermion fields

1
5(0) = 5Awba0), (2.64)

A is an antisymmetric matrix, and
ZO = /dzmee’%s
no(—1)f .
= [0y TV (40,0,

(_1)m 2m
= W /d QAﬂlﬂzAﬂ3ﬂ4 T A”Zm—lr”Zm 9ﬂ1 b

(2
= ((2h)n3m!€a1a2 A All1a2 e Aﬂ2n1717ﬂ2m
-1)" det A
= Garpia =[50, (2.65)

Compare this to (2.4) for bosonic (i.e. ordinary) integration, where
the determinant appears in the denominator. Above we have made
use of the Pfaffian of a 2m x 2m antisymmetric matrix A, defined to
be

PfA ealaz.“azmAulaz cte Aazmil,gzm (2.66)

= 2!

For example, Pf (0 —a) =a.
a 0



LSZ reduction formula

[We adopt natural units 71 = ¢ = 1 in this chapter.]

Here we briefly sketch how the Lehmann-Symanzik-Zimmermann
reduction formula appears. This gives us a connection between
scattering amplitudes and correlations functions, in particular vac-
uum expectation values.

We will work through the case of 2 — 2 scattering. In order to
get a feel for what is going on, we imagine that our theory is very
weakly interacting, so that we can use our knowledge of the free
theory as a good approximation. At the end, we will comment on
how interactions introduce deviations from the free theory. The
conclusions we reach here can be shown more rigourously, but in a
way which does not allow us to use our intuition from free theory.
You are invited to investigate these discussions at the end of the
course.

Let us consider a real scalar field, in Minkowski spacetime using
the mostly minus metric,

o) = [t e B G

where E2 = [k|2 + m? and k- x = Et — k - %. The creation and
annihilation operators in (3.1) are relativistically normalized.
Invert to find expressions for a(k)

/d3xeik'x¢(x) L a(k) + L ¥t gt (—k)

2E 2E
/d3x R0 (x) = _% a(F) + %ezmt at(—F) (3.2)

which can be solved to give

a(k) =[x [id0p(x) + Ep(x)]

at(f) = [dxe ™ [idup(x) + Eg(x)] ()
For a free theory, a one-particle state is created
k) = a* (k)| ) (34)

where the vacuum |Q) satisfies a(k)|Q) for all k, and (Q|Q) = 1.
Introduce a Gaussian wave packet, i.e. define a creation operator
(k—K)

al = /d3kf1 (kK)at (k) with f1(K) < exp [_M] (3.5)
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with some mean momentum k; and width ¢. Similarly for a second
particle, define

i = [k paRatF), (6

with k # ky. This is a temporary step which keeps things well-
behaved later. We can imagine evolving the Gaussians in the far
distant past and future, to times when the overlap between Gaus-
sians in coordinate space vanishes. We assume that this works even
when interactions are included. One complication in the presence
of interactions is that the operators a} and a} are time-dependent.
However, in the distant past or future, we assume they coincide
with their free theory expressions.

Define initial and final states (in/out states) to be

i) = lim_af(t)al()|C2)

t—>—o00
= lim af, (t)a Q) .
) Py 1 2/( )1) (3.7)
with (ili) =1 = (f|f), k1 # kp and k} # k5.
Let us look at the following difference:? 9 Line 1: Fundamental theorem of
calculus. Line 2: Equation (3.3). Line
t _ ot _ 3: Differentiation. Line 4: Dispersion
n (oo) n ( ) / dt aoal ( ) relation, |k?| as Laplacian acting

(leftward) on the exponential, then

= /dgk fl / 7Zk x iaO(P + E(P)} integration by parts twice with f (75)

. ensuring surface terms vanish.
- —z/d3kf1 (%) /d4xe ik (32 4 E2)g
:fz/d3kf1 %) /d4xe (2 _ V2 4 m2)p
- —i/d3kf1 (%) /d4xe”k'x(82+m2)(p(x). (3.8)

(In a free theory, the Klein-Gordon equation (82 + m?)¢ = 0 implies
af(c0) = al(—o0).) This relation (3.8) will be used below to integrate
creation (annihilation) operators from the distant past (future) to
the distant future (past).

Now let’s consider the 2 — 2 scattering amplitude of interest

{fli) = (QITaw(o0) ay (o) a7 (—o00)at (—00)|2) (3-9)

Note we can just insert the time-ordering, as the operators are al-
ready time-ordered. We then use equations like (3.8) to substitute

at(—o0) = a' (c0) +1 / a3k £;(F) /'az‘*xe—ik%(a2 + m2)(x)
aj(c0) = ay(—oo) +i/d3kj?(%) /d4x e ¥ (92 + m*)p(x)  (3.10)

The time-ordering moves the a;(co) to the left, annihilating (Q and
the a(—o0) to the right, annihilating [Q). The only nonzero term is
the one with the products of the integrals:

(Fi) /d4x1 oy i dboch o=k gikaxa ik ik

x (8] +m?) (95 + m?) (8], + m?) (95 + m?)
X (QIT¢(x1)P(x2)p(x1)9(x3) 1) (3.11)




having taken the narrow-width limit, ¢ — 0, of the Gaussian wave-
packets, such that f(%]) — 60)(k — l?j).m

Eq. (3.11) is the LSZ reduction formula. It says that all the in-
teresting information describing scattering is contained correlation
functions like (QT¢(x1) - - p(xn)P(x]) - - - ¢(x],)|Q2), written here
for n — n’ scattering. Everything else in the formula (3.11) is inde-
pendent of the details of the interactions.

We should examine our assumptions that interactions do not
change the t — =oo in and out states. In fact, we only need the
following weaker assumptions:

1. Assume a unique ground state, and that the first excited state is
a single-particle state.

2. We want ¢|Q)) to be a single-particle state, i.e. that

(Qlpl) = 0. (3.12)

If (Q]¢|Q) = v # 0, then let § = ¢ — v and work with this field.

3. We want ¢ normalized so that it creates a plane wave with unit
amplitude

(klp(x)|) = (3.13)

as in the free case. Interactions may require us to rescale the
field, e.g. ¢ — Z(})/Zq).

With these, and careful thought about multiparticle states, the LSZ
formula still applies. These observations also hint at the fact that
the field and couplings we write down in the classical Lagrangian
will need to be “renormalized” when including effects due to in-
teractions. For example, we will need to introduce renormalization
factors Zy, Zyy, and Z) in 4)4 theory

Z Z Z
£="Lau9a'g — Simle? — Agt. (3.14)

Summary of main points

1. The interesting contributions to scattering amplitudes are given
by correlation functions (3.11).

2. We want to work with a field ¢ whose vacuum expectation value

is o. If that is not the case, then we would define a shifted field

¢ —v.

3. We want our field to be normalized so that ¢(0)|Q)) is a correctly

normalized, single-particle state. In the presence of interactions

. . . . 1/2
this might mean rescaling the field by a factor Z,'*.

27

° Note the signs in the exponentials in
(3.11). We have negative signs for the
initial-state, or “incoming,” momenta:
e~** and positive signs for the
final-state, or “outgoing,” momenta:
¢*"*' These signs are a consequence
of our sign conventions for Fourier
transforms (9.1) and for the metric. In
this chapter we have used the mostly
minus Minkowski metric. We will
find the opposite sign for Euclidean
metric (as we would for the mostly
plus Minkowski metric).
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Further reading

This treatment follows Srednicki, where a few more of the subtleties

are discussed.’” Other texts give a proper nonperturbative deriva- " M Srednicki. Quantum Field Theory.

Cambridge University Press, 2007.

ISBN 978-0-521-86449-7

this course.*? 2§ Weinberg. The Quantum Theory
of Fields I. Cambridge University
Press, 1995. ISBN 0-521-55001-7;
and M Peskin and D Schroeder. An
Introduction to Quantum Field Theory.
Addison-Wesley, 1995. ISBN 0-201-

50397-2

tion, but such a discussion would be more appropriate at the end of



Scalar field theory

We now have an appreciable toolbox of functional integral methods
and are ready to apply them to a quantum field theory. Let’s begin
with scalar field theory in 4-dimensions.

4.1 Wick rotation

In Minkowski space, with mostly minus metric the Lagrange den-

sity is
1
LIg) = Sup 3¢ — VIg] (4.1
where the interactions arise from
_1 20 1) gn
VIpl=gmiet e b Vet (42)

Writing the Lagrangian as L = [ dx £, the partition function is

Z= /D¢ exp (i./dxo L) . (4-3)

The free propagator is obtained by Fourier transforming ¢(k) =

[d*xe**¢(x) and looking at the quadratic term. As you would

have discussed last term, a prescription is needed to avoid poles

along the real k axis, so you wrote the Minkowski propagator as
i B i

k2 —m?+ie (k02— [K]2—m2+ie

(4-4)

We can avoid the need for an ie prescription and make the inte-
grals more convergent by working in imaginary time ix0 = x4. This
is effectively a rotation of integration contours in such a way that
avoids crossing any nonanalyticities. We arrange the signs so that in
Euclidean space, our Lagrangian and partition function are

Llg] = 32,999+ Vig] 45)

Z= / D¢ exp ( / dx, L) . (4.6)

The rotation in momentum space can be inferred from requiring

and

k - x to be invariant:

kox' —k-% = —ikoxg — k- X = —kgxs — k- % (4.7)



30

where ky = ikg. Therefore when we see an ik - x in mostly-minus
Minkowski spacetime, we should write it as —ik - x in Euclidean
spacetime. The free propagator in momentum space is

- 1 1

Bolk) = rm? (kg)2 + |E|2 +m2 “8)

Figure 4.1: Wick rotation from

Im £° Im £y Minkowski to Euclidean spacetime.

x N Re k° Reky

—

4.2 Feynman rules

The derivation of the free propagator follows § 2.1, with the compli-
cation that now the fields depend on spacetime position

= [t |00 + 306 19| . o)

We solve for the free propagator by transforming to momentum
space. Following the sign convention for Fourier transforms,
Eq. (9 1) extended into Euclidean spacetime, we write ¢(x) =

/ (d ke X (k) and substitute into (4.9), taking care to use unique
1ntegrat10n variables for each substitution, to find the position inte-
gral yields a Dirac J-function in the two momenta. After one of the
momentum integrations, we find

4
0= 3. Gyt [P+ m2)30)+ T—)5(6) + (13

: o
2/””‘ [ K) (R + m2) (k) — m] (4.10)

We arrived at the first line by symmetrizing the Fourier transfer of
FU(x)¢(x) + J(x)¢(x)], choosing one momentum assignment for
the first term and the opposite for the second. The second line is
obtained as before by completing the square using § = ¢ + [/ (k* +
m?). The path integral over ¥ is Gaussian. We find (assuming a

normalization Zy[0] = 1)

- d*k J(—=k)](k
Zo[]) = exp B / (2n)4w . (411)

We obtain the Feynman propagator by taking the functional deriva-
tive of Z[]] twice®3 * Note that while 507(y) = 6 (x

y), in momentum space ﬁ(q)f(k) =
(@m)*s® (q k).



% 82 Zo[]] ‘ 1
A = = = . .
D= STy ol |y~ e (4.12)

We can Fourier transform to obtain the propagator in position space
A4k etk (x=x)
Dol =) = [ .
O(x X ) (271.)4 K2 + m2 (4 13)

Thus we can write the generating functional as a position space
integral

21 = exp 3 [atxd ) dolx — X)) G

When we include interactions, we have £ = Lg + £1 with
Ly = %E)M(p oM¢ + Im?¢p?. Generalizing (2.18) we have the double
expansion

201 = [Dp exp |- [atx(Lo+ L1+ 1)

— exp {— [ty [—5]((5;/)} }

X exp B /d4xd4x J(x)Ag(x — x’)](x’)]
N 14
~ L (- feval5m))
x PZO;, E [ttt 1) o (x - x’)](x’)] T s

Our representation of terms in this expansion as Feynman graphs is
as before, with the addition of position-dependent labels.

* For each term in the sum over P we have a propagator connect-
ing sources at two points x and x’

1 @—@2 = Ag(x—x') (4.16)

e For each term in the sum over V we have a vertex at an integra-
tion point y

01(y)
s (v) .
bl 3w
4 Sy Y\ o
o)
where we used the shorthand ¢ ) = — 5]‘5@. Note also that here

we have assumed the simple case where £; is a monomial in
¢. If this is not the case, one just has to take care to keep track
of the combinations of different types of vertices; usually this is
straightforward but can become tedious.

¢ One integrates over all internal points of the graph, i.e. the y
variables in (4.15).
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® There are symmetry factors as discussed in Chapter 2.

For example, the 2-point function may be written as a diagram-
matic exansion

GE)p(a) = 1+ mf o

(4.18)

The first term is just Ag(x2 — x1) as in (4.16). The second term is

A2 / dyr d*ys Ao(x2 — y2) Ao (y1 — x1) [Do(y2 — 1)) (4.19)

It is rare that the perturbative expansion is carried out in position
space. It is much more likely that we are interested in initial and
final momenta rather than initial and final positions. Therefore we
should carry out a Fourier transform.

(P(p2)P(p1)) = /d4x1 dhxy e PP (6 (1) p(x1))  (4.20)

This convention for the signs of the p; and p» in the Fourier trans-
forms corresponds to choosing the momenta to be directed outward
(Fig. 4.2). Note that this is consistent with the signs appearing in
the phases of (3.11) once we account for the Wick rotation (4.7) from
mostly-minus Minkowski to Euclidean spacetime.

Thinking about momentum conservation, it is natural to set
p1 = —p2 = —p and draw the momentum flowing through the
diagram from left to right. Nevertheless it is useful to remember
a general sign convention, and then make adjustments afterward
based on the particular physics of interest.

The contribution to (¢(p2)$(p1)) from (4.19) is then

DM = )2 /d4x1 d*xy e (Prxtpre) /d4y1 d*y,

(2m)4
x Ao (k1) Ao (k2)Ag(k3)Ag(ky) . (4.21)

The x; and x, integrations give, respectively, factors of (271)*6*) (p; +

4 47
X /[H . k] ] eikl‘(yl_xl)eikz'(xz_w)ei(k3+k4)'(y2_yl)
j=1

k1) and (277)*6™) (py — ky). After doing the corresponding integrals
over k1 and ky, we can see that the y; and y; integrals similarly
yield (271)6™) (py 4 k3 + ky) and (271)*6™) (py — k3 — ky). Finally,
we can integrate over ks, say, to find, dropping the subscript on the
final integration variable

50 g2 [ K s Ro(—p1) Ao (92)Bo(ps — KV
DU =22 [ (2)*5) (p + pa) Bo(—p1)Ao(p2)Bo(p2 ~ K)Bo (k)

(2m)*
(4.22)

Realizing that overall momentum will be conserved for physical
processes, it is common to set p» = —p; = p (Fig. 4.3).

It is straightforward to see that the steps of the example gener-
alize to other diagrams in momentum space. To summarize, the
momentum-space Feynman rules for real scalar theory are

A0
p1k/p2

Figure 4.2: Momentum directions for
the 2-point function using the Fourier
transform conventions of (4.20).
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k Figure 4.3: Momentum in diagram
3 k—p D), before and after integrating over

J-functions.
—
Y41 P2 p p

* Lines are propagators with factors of (k? + m?)~1.

* n-point vertices correspond to factors of —V ") in (4.2).

¢ Momentum is conserved at each vertex.

¢ For each loop, there is an integral over a single loop momentum.

e QOverall momentum is conserved, so there is an overall factor
(27r)*5™) (Xj pj) containing all external momenta.

® One must account for the graph’s symmetry factor.

4.3 Vertex functions

The effective actions introduced in § 2.3 and § 2.4, become func-
tionals. The Wilsonian effective action W[]], now a functional of an
external source field J(x), is still the sum of connected Feynman
diagrams (times —%'). The quantum effective action I'[®] depends
on the mean field ®(x) in the presence of J(x), and is the sum of
single-particle irreducible (1PI) graphs. The relation between them
is the Legendre transform

r[@] = Wil - [dx(x)e(x), 423)
which implies
SWIJ] _ T[] _
(5](JC) - (I)(x) and (5(I>(x) - _](x) . (424)

Note that these relations can be read two ways: one where J(x) is
an independent external source, in which case the mean field ®(x)
depends on J(x); the other where we think of ®(x) as indepen-
dent with the corresponding J(x) changing accordingly as ®(x) is
varied.

Let us introduce some notation. For the connected n-point func-
tions we write

n )
G (xy,...,xy) = (—=1)"1 W 2
and we define the vertex functions
n 1)
T (xy,...,x,) = (=1)" ~T[®]. (4.26)
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Figure 4.4: Graphical representation
/L\ /'/i\-\ -

Figure 4.5: Graphical representation
relating G to integrals over I'®) and

Consider n = 2. I'®). The 2 terms not shown are the
other two ways of connecting the two
G(Z)(x y) = — W _ 7‘5@(3/) r'® vertices.
’ 8] (x)0] (y) 5] (x)
5°r 5](z)
r®(y,z) = = - : (4-27)
V2 = 50000 = 60()

These are inverses of each other:
/d4y G(x,y)T(y,z) = 6W(x —z). (4.28)
As you showed in an example sheet problem,

G(3) (xll X2, x3) = /d421 d422 d4Z3 G(z) (x1,Z])G(2) (_X'z, 22)
X G(2)(x3,z3) r (z1,22,23) - (4.29)

This tells us that the connected 3-point function can be constructed
from convolving the 3-point vertex function with three 2-point
functions. In the diagrammatic picture, the connected 3-point func-
tion is equal to the 1PI graphs with 3 legs with each leg equal to
G and the internal points integrated over. We can think of the
3-point vertex as an "amputated” n-point function.

Note that for n > 3, G(") is composed of terms coming from
products of T") with 3 < m < n. In Figure 4.5 for example, the
connected 4-point function G*) can be written schematically as
a sum of four terms: one with the amputated 4-point vertex T'4)
and three terms coming from the three ways of inserting two 3-
point vertices I'®) (recall that the external legs carry distinguishable
momenta).

The expression (4.29) can be inverted

T (y1,y2,y3) = /d4x1 dxy d*xs T (21, y1)T P (x2, 1)

X F(z)(x;.;,yg,) G(3)(x1,x2, x3) . (4-30)



We will often work in momentum space. The Fourier transform
of the two-point function is

(BPd(p2)) = [dxr dap e e P20 (p(x1)g(x2))
- /.d4x1 d*xp e PV e P22 (g — x2)p(0)
= [yt i e i p(y)p(0)
= [@ys¥ (4 p2) MY pWIOO) 431

where we have assumed translational invariance in going from

the first line to the second. Note this implies that momentum is
conserved.™ The connected two-point function can also be written
as a Fouier transform

CO(p) = [dxe G x,¢(0)). 432)

It is conventional to make use of momentum conservation to write
G®@ as a function of a single momentum.

We can similarly consider Fourier transforms I'(") of the vertex
functions T'("),

4.4 Renormalization

Let us consider the following classical action for a real scalar field
in 4 dimensions is

A
gl = [ 3002+ g+ 3ot )

In this section we will begin to compute terms in the quantum
effective action using perturbation theory.

Let us consider the perturbative expansion of the propagator. As
discussed above, the full propagator can be written as the sum of
all tree diagrams composed with vertices derived from the quantum
effective action. Graphically, these are trees connected by blobs
containing all relevant 1PI diagrams. In the case of the propagator,
this is a geometric series

D= —Q— -

1,1
Cp24m? o p2+m?

I1(p?)

O CaC o

1
p2+m2

I1(p?)

I1(p?)

""pz_,_mz p2+m2+"'
1

TP TR

p2+m2

(4-34)

We have implicitly defined the vacuum polarization T1(p?) as the
amputated two-point 1PI amplitude, and used Lorentz invariance
to conclude that it should depend on p only through p2.
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4 Recall that the momentum operator
is said to be the generator of transla-
tions.
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Using (4.28) the 2-point vertex function can be inferred from
I1(p?) to be

M) = [62(p)] = +m 117, (439)

Expanding in a perturbative series, the 1-loop contribution (Fig. 4.6)
is

B Adie 1
I (p%) = 2 )4 K2 + m?
ASy [N KBdk

202n)* Jo K2+ m?

Am2 N /m oy dy

3272 Jo 14+u
A A?
= —Ha [Az — m?*log (1 + )} . (4.36)

Notation in the first line is shorthand for |k| < A. Surface area
Sy =2m/ F(%), where I here is the I'-function. We note that this is
divergent as A — oo.

@) Adie 1 1
1 (p1,p2,p3,pa) = 2 Q)i K2 + m? Z (P1k)?2+m? (437)

’__Il

where the sum P runs over p1 + p2, p1 + p3, and p1 + ps. At this
moment, we wish to investigate the ultraviolet divergence in (??).
As A and therefore the loop momentum gets arbitrarily large, the
external momenta are negilgible. Thus it suffices to consider

£ 3A2 A g4k 1
0000 == | ooiermey
312 A? A?
= 2 {10% (” )_AZ—IrmZ] - 43d)

On general grounds, we expect the full propagator to have the
form

|Q|4> )|
; p?+my
:M+

- (4-39)

phys
where the top line includes a sum over a set of complete states
(which would include a continuum of scattering states), and the
second line assumes that the first excited state is a single particle
with a mass measured to be #1,p,ys. For a field properly normalized
as discussed in the context of the LSZ formula, we would also
expect (¢ (0)|1) = 1 (see the discussion around (3.13)). However,
generally speaking, corrections from loop diagrams will mean that
(Q¢(0)[1) # 1 and the mass in our Lagrangian m 7 mppys. In fact,
we find divergences.

Clearly we have to do something about the divergences found in
the one-loop calculations above. A practical approach is to prescribe

Q

p p

Figure 4.6: One-loop vacuum polariza-
tion diagram in ¢* theory.



a way of separating the divergences from finite pieces. In doing so,
we will sacrifice some predictability of the theory, however not as
much as you might think.

In order to emphasize that the parameters and fields used above
give rise to divergent contributions, let us add a ‘0" subscript. The
‘original” Lagrangian

1 1 A
Lo = 5(990) + Zme5 + 5790 (440)

is written here in terms of the original field ¢y and the original
mass g and coupling Ag.

Let us first define a rescaled field ¢ such that ¢g = Z;}/ 2¢. The
constant Z, can be determined by requiring the rescaled field to
satisfy (Q|¢(0)[1) = 1. In terms of this field

Z3A
Lo= "2 (@90 + Lmig? + 040 (44)

Next we assert that we can divide the original Lagrangian into two
sets of terms: a renormalized Lagrangian and a set of ‘countert-
erms’

1 6Zg
:§(a¢)+ mcp +4,<p+ ? (9¢p)2 + 5m¢ +4,4>
(4.42)

We might write this as £y = Lren + Lot Equating coefficients in
(4-41) and (4.42) we have

6Zp=2Zp—1, 6m*=Zymi—m*, and 6\ =ZgAo—A. (4.43)

We can now use (4.42) to do perturbative calculations of n-point
vertices I'("). The Feynman rules for the terms in the renormalized
Lagrangian are the same as in the original Lagrangian. In addition
to these, we treat the counterterms as additional vertices (Fig. 4.7).

The counterterms are all proportional to 1 (were we to restore
it), assuming that the 6Z,, dm?, and 6\ are nonzero at one-loop
order.”> Therefore at the same time as we consider one-loop graphs
involving the renormalized Lagrangian, we have to include tree-
diagrams with counterterm vertices.

Let’s return to the 2-point vertex and IT;(p?). We already have
the contribution from using the renormalized Lagrangian — just
interpret the m and A in (4.36) as the renormalized mass and cou-
pling. To that we add the contribution from the counterterm tree-
graph

ITy o = —m?. (4-44)

We can have a finite result for I'ly +I1; o if we choose dm? to cancel
the divergence in (4.36), for example let

A A?
Sm? = 32 [A2 — m?log <1 + )} : (4-45)

With this choice Iy + IT; ot = 0.

37
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—om

—dA

Figure 4.7: Vertices arising from
counterterms.

5 Actually, 6Z is only nonzero at 2-
loop order in ¢* theory, but let’s ignore
that for the moment.
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This is not a unique choice. We are free to add any finite term to
dm?. Whatever prescription we choose for the finite terms here and
in the other counterterms, constitutes a ‘renormalization scheme.”
The scheme used in (4.45) is called ‘on-shell” scheme, because with
it

1 —
pr+m? =1 =y p?+m?

G (p) = (4.46)
and the renormalized mass can be identified with the mass of the
single particle created by ¢: m = mppys. The full statement of an
on-shell renormalization scheme are that the pole of G(?)(p) should
be at p? = —m%hys and that the residue of the pole should be 1. In

terms of TTyen(p?) = I1(p?) + Iet(p?) these amount to

Hren( mphys) = le - mfznhys (usuauy =0) (4'47)
oIl
— —0. (4.48)
p pzzfmghys
In the case of ¢* we have
)‘ 2 A? 2 2
IMien = — a2 A? — m?log 1—1—— —p°0Zy—m*. (4.49)

Because the only 1-loop diagram has a loop integral independent
of the external momentum, we did not get a contribution — in par-
ticular a divergence — proportional to p? in I1;. Therefore, §Z = 0
here and (4.48) is satisfied. With our choice of §m? (4.45), we satisfy
(4-47)-

Next we must choose A so that the divergence in f§4) (0,0,0,0)
(4.38) is cancelled. The contribution from the counterterm vertex at

tree-level is just fﬁ)t = —0A. Choosing
342 A?
gives

Aot = T#(0,0,0,0) = A +TY(0,0,0,0) + T1%,

302 n? m?
= ae [lOg (1 " A2> * mZ+A2} (451)

which we can think of as an effective coupling, in fact is the coeffi-
cient of the quartic term in the quantum effective action. Note that
Aegf = A in the A — oo limit. This is due our choice of finite term in

(4.50).

4.5 Dimensional reqularization

A momentum cutoff is not compatible with gauge invariance in

nonabelian gauge theories. In this section we introduce a more so-
phisticated method of regulating divergent loop integrals: varying
the dimension. Let us work through the example of ¢* theory in 4



dimensions. Actually, we will work in d = 4 — € dimensions, where
we will treat € as a small parameter.

First, we perform a little dimensional analysis in d dimensions,
where the couplings acquire non-standard dimensionality. In natu-
ral units i = ¢ = 1, we know we must have a dimensionless action,
here

s_/wi{ (3¢)% + m¢+4y (4.52)

Let us use [A] to give the mass dimension of quantity A. Given

[S] = 0and [0] = —[x] = [m] = 1, the mass term in (4.52),
[m?¢?] = d, implies that [¢] = % — 1. Next looking at the interaction
term, we can infer that [A\]| =4 —d = €.

It is more convenient to work with a dimensionless couplings.
We introduce an arbitrary mass scale y; this is not a cutoff to be
taken to infinity, but it is a scale associated with the regulator. Then
we can write

A=ug(p) (4-53)

where g(j) is a dimensionless coupling whose value depends on .
In a moment we will return to considering the integrals arising
from 1-loop diagrams of § 4.4. However first, let us collect a few
mathematical observations which will be useful to us.
1. The definition of the (surface) area S; of a unit sphere in d
dimensions: Consider a Gaussian integral in d € Z* dimensions

d d 2
= dx; e %
o1
© A1,
= Sd/ drré= e
0

Sy (d
—2F<2)- (4.54)

We use this expression to analytically continue the definition of S;
todeC

271/2

@ . (4.55)

2

Sy=

2. We recall some useful properties of the I' function (also analyt-
ically continued). For a« > 0 we have

/ dx x* le™*

0

1 e d\ .
= &/0 dx (dx) e

1[x“*x + = /dxxe"

I'(a)

«
=0+ 1 ( +1). (4.56)

We can use this recursion relation to analytically continue to Rea <
0, with poles when Rew € Z~ U {0}. Other useful facts which
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follow from the above are that T'(1) = 1, hence T'(n) = (n — 1)! for
nezt, andT(}) = .
3. The Taylor expansion about small « of the logarithm of the T’
function can be shown to be
ad 1
log I(1+a) = —ya— ) (—1)* - (k)a* (4.57)
k=2
where v &~ 0.577216 is the Euler-Mascheroni constant and { (k) =
Y, n~ ¥ is the Riemann ¢ function. We will usually use just the
first term of this along with (4.56) to write al'(a) ~ e " ~ 1 — ya

or
1
F(e):g—’y—O—.... (4-58)
4. We will encounter integrals which are called Euler Beta func-
tions™®
1
B(s,t) = [ duw 1 (1-w)!! (4.59)
0
which can be shown to be related to the I' function via'”
T(s)I'(1)
B(s, t) = =——=. .
(S’ ) F(S + t) (4 60)

Now we are ready to evaluate our 1-loop integrals using dimen-
sional regularization.

1 e [ k1
= —Eg(}l)}l /(27r)d k2 +m?
1 ¢ Sd oo fd=1gk
o Eg(ﬂ)# 22m)d Jo k2 +m?’ (4.61)
Focusing on the integral
‘ue /oo K14k _ E/OO (kZ)%flde
o K2+m?2 2 Jo k2+m?
m? UN\€ 1 4 d_q
=5 (%) A duu2(1—u)?
m? (e T(1—9)r(9)
"??(%) r(1) (4-62)

where we substituted u = m?/ (k?* + m?) and recognized the integral

as B(1— %, %)
The final step involves looking at the small € limit. We have
1
M1-$)=T(5 -1 = —7=¢T(3)
1 2
g (ero)
2
=2 +T71-1+0() (4.63)

as well as

2

a2\ < €. 4
< m;;) :1+§log mg + 0(e?). (4-64)

16 with a capital B.

7 Work with the integral representa-
tion of the product of two I' functions
and make an inspired change of vari-
ables [see e.g. Wikipedial].



Putting it all together, we find

2

le—& (e—'y+1+log i

s C) o). e

Counterterm. We have a choice regarding what to do with the
finite terms. Minimal subtraction (MS): just subtract the divergence.

2
sm? = — S 66
" l6m2e (4.66)

Modified minimal subtraction (MS): also subtract the associated
constants

m 2
om? = — 3‘02712 ( 7+10g47r). (4.67)

On-shell schemes are also possible in dimensional regularization.
We also wish to look at the 4-point vertex function

3¢2u%€ ddk 1
om0 [
VZ

3gﬂ
L (e 7+ log

For the MS counterterm, let

) +0(e) (4.68)

3¢2 (2
== |-- logdm | . .
08=733 (6 v +log ﬂ) (4-69)

Let us now explore effects due to the introduction of the renor-
malization scale y. There are two different ways we can examine
this. The first follows from the discussion of the previous section.
We can look at how we have split the original Lagrangian £ (4.40)
into

14467 m? + om? +6g)uc
Eren + [fct - > ¢ (847)2 + > sz + (g 4'g)]/l 474 . (470)

We can equate coefficients as before: m5 = m? + ém? and Ao =
(g + 0g)p€. The original parameters do not depend on y, so m?
and g% must compensate for the y-dependence of the counterterm
coefficients.

Let’s work in the MS scheme to save writing. The Calculation for

MS is essentially the same. Defining B(g) = dliéy =l dy

0= #;[(gﬂL o8]

ey (141 ) +h) (1455 ) )

We solve for B(g) under the assumption that we can treat the terms

proportional to g/€ as small, yielding

2
B(g) = g —ge+0 <g 2 loops) . (4.72)
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The divergences we have ignored here will be cancelled if we carry
out renormalization to 2-loop order.

Note that f(g) > 0 here. Integrating the differential equation
between p and 3/,

1 1 3 W
= - log — .
g) ) 1672 8 473)
or
g(p) 3¢%(u), W
g') = —="—— =g(u) + 5~ log — . (4.74)
1-— 3;%(7;42) log I;T 167 H

In the last step, we assumed g(u) is small.



Renormalization group

Quantum field theory is not fully defined by its Lagrangian. It must
be regulated somehow. A regularization scheme introduces an
associated, unphysical scale. Renormalization conditions must be
imposed in order to uniquely set parameters in the theory. Then we
can make physical predictions.

Physical predictions should be independent of the specific, ar-
bitrary choices made. That is, they should be scheme and scale
independent. The renormalization group'® studies how theories ' Not a group.
with different renormalization scales can give the same physical
predictions. In the language of statistical field theories, the regular-
ization takes place in the ultraviolet, or very short-distance scales,
while we are interested in physics at lower energies compared to
some artificial cutoff. We think of the interesting physics as the in-
frared, or long-distance, side of our regulated theory. Requiring
scheme and scale independence of QFT predictions is comparable
to studying universal macroscopic physics emerging from statistical
systems with different microscopic details.

In this chapter we will write down a general action for a real
scalar field in d dimensions. Take Ag as our initial hard momentum
cutoff. Then we can write the action as a sum over an infinity of
terms

Snalg] = [a'x li(asb)%Z S| G
t 0

The O;(x) represent local terms of ¢ or its derivatives raised to
some power, O; = (9¢)"i¢%, and d; > 0 is the mass dimension of O;.
The factors of A are there so that the gjp are dimensionless. Note
that in this way of writing the action, the mass term is included in
the sum over generic operators.

5.1 Effective actions

The partition function is

Ao B
Zp,(8i0) = Dpe mll, (5.2)
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The integral is over fields such that |p| < Ag. That is, the ¢(x) in Z
are

— ddp ip-x 7
60 =] G )

Gy
_ ddp ivx T ddp -
a /‘P|§A (27T)d e’ (P(P) + /A<‘P‘§Ao (27-[)11 e’ (P(p)
=¢ (x) + ¢ (x). 5:3)

After the first line, we have introduced an intermediate scale A <
Ay, and separated ¢ into low momentum (IR) and high momentum
(UV) modes. Note that these sets of modes are disjoint, so D¢ =
D¢ D¢™.

Integrating out the high energy modes results in an effective
Wilsonian action

Ao e
5311g) = —log [ Dt e Solt 0], (5.4)

This equation tells us how one action maps to another as UV modes
are integrated out. We will soon iterate this procedure.

One thing to note, especially if carrying out explicit calculation,
is that the kinetic and mass terms do not couple high and low mo-
mentum modes. That is, we may write

Salp™ + ¢ 1 =5 1+ S [+ SR, 9] (5.5)
with free action
Slp) = [t [@9)2 +me?] (5.6)

Since ¢~ and ¢ have disjoint support in momentum space, there
is no quadratic term ¢~ ¢ in S5 . In momentum space, the cor-
responding term in the action would be ¢~ (k) 7 (k') 6(k + k'),
which would vanish upon integrating over the J-function, due to
this disjoint support. Contrariwise, cubic terms may not vanish:

¢ (k)= (K') T (k") 6(k + Kk + k") would allow A < [k < Ay with
both |k|, |[K'| < A. The effective interaction at cutoff scale A can be
written as

. _c0[p+1_cint [H— »+
Sl/r\lt[(]ﬂ — —log{/D<p+e S [‘P ] SAO[(P R ]} . (57)

In the next sections we explore what this integration over modes
means for coupling constants and vertex functions.

5.2 Running couplings

Physics should be independent of whether we use a cutoff of Aq or
A. Therefore the corresponding partition functions should be equal

/'Ap¢e—ssz[¢J _ [N pgesnle

ZA(8i(A)) = 2, (gio; Mo) - (5-8)



Note the right-hand side is independent of A; therefore, the left-
hand side must also be independent of A. The renormalized cou-
plings ¢;(#) must “run” in order to cancel for any explicit A depen-

dence
dZa d
A dAn (ABA

The action S, (5.1) is completely general, so Sf\ff should have the

dgi o
dA d9g;

) Za(8)=0. (5.9)

same form.
n /2

seff[p /dd [ZA ) +Z A —1—2 8i(A)0i(x) (5.10)

where we introduce a field renormalization factor Z}\/ 2 to account
for the fact that the integration over UV modes will generically
change the normalization, and #; is the number of fields in O;. Let

¢ =2 (5.11)

be the renormalized field. The remaining variations in terms is
described by the A-dependence of the couplings, for each of which
we have a S-function

d
qu 31

Note that 1" = B1"({g;}) can depend on the whole collection of
couplings, and that the classical, leading-order result ﬁd (d; —
d)g;, giving the full g; = g + .

5.3 Vertex functions

The anomalous dimension of the field ¢ is defined as

A
T ="5ax log Zx . (5.13)

Let us consider further integrating out more UV modes, from
A down to sA, with 0 < s < 1. Vertex functions (4.26) should be
independent of the cutoff, so we should have

Z;A”ml"gz)(xb. c X Gi(SA)) = Z;\”/zf%)(xl,...,xn;gi(A)) (5.14)

We want to consider the limit where s is infinitesimally close to 1.
Let sA = A’ with A fixed, then differentiate with respect to s. We
have

d__ d
sd—ZSA"/2 = —EZSA”/Zs%logZSA = 1y (5.15)

using s 4 = A’ and relabeling A’ — A. We find

d
AEF( )(x1,...,xn;gi(/\)) = ( IA —i—ﬁza— —i—n’yq;) F( )(x1, co X gi(A)).

(5.16)
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We have done the first step of a renormalization group action:
1) Integrate out momentum modes in (sA, A). There is one more
step remaining: 2) rescale coordinates by defining x — sx¥. The
momentum scale is then rescaled A — As. This allows us to com-
pare the computations using coupling constants before and after
the RG action. Under this rescaling, we should ensure the kinetic
term should be invariant, so that

¢ (sx) = s' 3¢ (x) or ¢’ (x) = s 19 (sx) (5.17)

The rest of the action is invariant.

Let us look at the n-point vertex function ng) (X1, .., Xn; 8i(sA)):

(n) ZAN"? L)
Ly (xa,. . x08i(A)) = 7o Lo (%1000, x5 8i(SA))

2 Za \""* n)
= (175 T svigi(sA)
(5.18)

Note that in this rescaling step, the numerical values for Z;5 and
gi(sA) are not changed. Now reconsider the initial coordinates.
Instead of looking at x;, look at x;/s. Then

/2
m (X1 X, (2=a Za YT L) o
ri" (S o ,gZ(A)) - (s ZsA) T (xy, ..., x5 8i(5A))

(5-19)

As s — 0 we are integrating out more UV modes. From this equa-
tion, we see on the left-hand side, that we are looking at vertex
functions where |x; — x;|/s is getting large (probing the IR). This
is equated to vertex functions with fixed positions, but with the
coupling running to lower scales sA.

We can also examine the prefactor. For infinitesimal s =1 —s

Zx\ V2 d—2
2-d ZA _
(s ZsA> 1+ ( 5 + ’yq,) és. (5.20)
That is, the fields behave as if their mass dimension were
d—2
—5— +79 =Dy (5.21)

The field’s “scaling dimension” is equal to its classical, or “engi-
neering” mass dimension plus its anomalous dimension.

5.4 Renormalization group flow

Coupling constant space.

Renormalization group trajectories are lines in coupling constant
space traced out as the renormalization scale is varied, e.g. as mo-
mentum modes are integrated out. The lines are the solutions to the
set of differential equations given by the beta functions ;(g;). By
construction theories lying along the same RG trajectories describe
the same long-distance (or IR) physics.
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Fixed points. B; y=0 for all i.

| {g;

Billg}) = (0 — d)gi+ A% ({g)) (5.22)

Scale invariance at a fixed point. 74({g;}) = 7;. Callan-
Symanzik implies

a 2 * * k
A TRy (g = 2T Py gh). G:23)
Translational and Lorentz invariance implies 1"5\2) (x,y) = 1"5\2) (Jx —

y|)). Like (¢(x)p(v)), 1"5\2> has mass (engineering) dimensions of
d — 2. Therefore, in order to satisfy (5.23)

A2 o(ig))

T (x,y; {g7}) (5.24)

where
1 *
Bp=5(d=2)+7 (5.25)

is the field’s scaling dimension and c is a dimensionless function

)

characteristic of scale-invariant theories. In contrast, theories with

of the fixed-point couplings. This power-law behaviour for Fg\z is
a mass scale have a finite correlation length ¢ & M~! and the two-
point functions decay exponentially T'? ~ exp(—M|x —y|)/|x —
y[*.

We can analyze the RG flow near a fixed point by linearizing the
RG equations. Let 6g; = g; — g]i*.

dag;
ASBHL = Byegi +0((69)%). (5.26)
AA |

gj+<5g]~

Let the eigenvectors and eigenvalues of the matrix B;; be denoted ¢;
and A; — d, where we refer to A; as the scaling dimension of ¢;. In
general, the 0; represent a linear combination of some operators O;
in the action.

Under the RG transformation, the linearized flow near { g]*} is

dO'l' - o ]
Aﬂ = (A;—d) o
= 0i(A) = (;:()) 0i(Ao) (5.27)

with some initial Ay > A.

5.5 Continuum limit and renormalizability

Further reading

Schwartz' covers the RG in Chapter 23; §23.6 in particular has a 9 M D Schwartz. Quantum Field Theory
and the Standard Model. Cambridge
. University Press, 2014. ISBN 978-1-107-
Chapter 9, going well beyond what we have been able to cover here. 034730
20T Banks. Modern Quantum Field
Theory. Cambridge University Press,
2008. ISBN 978-0-521-85082-7

nice summary of Wilsonian RG. Banks?° has a nice discussion in
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gio 9io

Figure 5.1: RG flow near a fixed
point. As we tune the couplings

gio — io in the initial action closer to
the critical surface C, the greater the
ratio % > % can be with the effective
couplings g;(A) still in the vicinity of
the fixed point.



Quantum electrodynamics

QED is the original field theory, describing the electromagnetic
interactions of relativistic electrons as they exchange photons.
The Euclidean spacetime, classical action is

S[lp,lp,A] = /d4x |:£11F‘111/FHV +P(P+m)y (6.1)

where P = y#(9,, +ieA,), P and ¢ are 4-spin-component Grass-
mann fields, and the field strength tensor is F,, = 9, Ay — 9y Ay. It
is straightforward to check that the action is invariant under U(1)
gauge transformations

Px) = Wy (x)

P(x) = P(x)e )
Ay(x) = Au(x) — oua(x). (6.2)

The partition function is
zZ = / DYDFDA e SWPAl 6.3)

Note that ¢ and ¢ are independent Grassmann variables.
In Euclidean spacetime, the Dirac matrices satisfy the anticom-
mutation relation

{rem} =260 (6.4)

and we take them to be Hermitian: fy; = 7Yu. A typical representa-

_ (0 —ig
’y]_iaj 0
(1 o) (o1
=1 10

Y5 = V1727374 (6.5)

tion is

with 0j being the Pauli matrices.

6.1 Feynman rules

It is useful to work in momentum space

4,
px) = [ E e ip)

4 . ~
§0) = [ e o). ©6)
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Then the free electron action in momentum space is

. = dtp - . -
716,91 = | Ggris PP+ m)F(p). 67)
The generating functional with Grassmann sources # and 7 is
- - dt = S Lo =
2007, 7] = [ DYDY exp {—/Qn’; DG+ m)p— 7+ | }
4
= Z[0,0] exp{—/%ﬁ(iwrm)—lﬁ (6.8)

following similar steps as in the scalar theory.
The free electron propagator is obtained from

- ) -
Se(p) = == 21,1
017 07] 7,7 =0
1
i+ m’ (6.9)
Making the spin indices explicit, we would write
< —ip P 4 m 5P
52 (p) = ﬁpumz (6.10)

This propagator is drawn as a solid line with an arrow.
For the photon generating functional, we couple an external
source following Maxwell’s equations

oyFH = JH (6.11)

so that we have
Zl]] = /DA exp {—/d4x [iFWFVV + ]VAH} } . (6.12)

To check gauge invariance of the second term in the action (6.12),
let Aj,(x) = Au(x) — dua(x) and perform the following integral by
parts

/ dhx (AL = Ay) = / d4x ] 0,
= /d4x8y(ﬁ’zx) - /d4x (0u]")a =0 (6.13)

where the first integral vanishes for suitable boundary conditions
at infinity. The second term vanishes because J# is a conserved
current: 9,0, F*" = 0 due to F being antisymmetric in its Lorentz
indices.

Fourier transforming the gauge field and source, the action is

Sl = / (ji’;l {Ay(—k) (k2o — kk) A, (k)

+iw—mAwm+iWMAﬂ—m}. (6.14)



We can see propagator D#' must be the inverse of the quadratic
term, i.e. it must solve

(K26" — kMkY) Dy (k) = &¥,. (6.15)

One solution is

N HEv
DI (k) = klz (w _ kk’; ) . (6.16)

There is a subtle point, though, in that there are zero modes
which have vanishing action and hence give a divergent contribu-
tion to path integrals. Consider gauge fields which are gauge trans-
forms of the field A, (x) = 0; thatis, A, (x) = d,a(x). In momen-
tum space these are fields which can be written as A, (k) = k,&(k).
Let us define

krkv
K2

P* (k) = oM — (6.17)
and note that it is a 4 x 4 projection matrix: P¥, (k) P"P (k) = PH (k).
As such, its eigenvalues are either 0 or 1.2" The action vanishes for
gauge fields parallel to the zero eigenvector k*:

P (k)k, =0. (6.18)

Note also that fields satisfying A, (k) = k,a(k) also give no contri-
bution to the source terms in the action (6.14) since k;, /' = 0 from
current conservation (9, J* = 0).

We can see that the other three eigenvalues of P* must be equal
to 1, since the sum of all the eigenvalues is equal to the trace

SuwP* (k) = 3. (6.19)

Therefore, we make sense of the path integral over A, by requir-
ing that we do not integrate over the fields gauge-equivalent to
Au(x) = 0. This means we only integrate over fields which are
orthogonal to k¥ in the sense that

ktA,(k) =0 or o'Ay(x)=0. (6.20)

This is called Lorenz or Landau gauge.

In the subspace specified by (6.20) P*" (k) is just the identity,
so the inverse of k2PH is easy to write down and just gives the
Landau-gauge propagator (6.16). The generating functional is

- 74 v
alll =ewp {3 [ a0 T RO} 620

Noting once again that k], = 0, we see we can drop the 2nd term
in (6.17) in (6.21) and write

(6.22)

5 d4k Tu(—k)JH(k
Zom :exp{;/ (2ﬂ)4 ]}4( klj ( )}

21 P2y = Py = Av implies A? = A.
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which is equivalent to working in Feynman gauge. In fact one can
write the photon propagator in a more general gauge as

~ I/l v
DyV(k) — klz (51/11/ _ (1 — g)kk12c> (6.23)

where { = 0 corresponds to Landau gauge and { = 1 to Feynman
gauge. This R gauge, or covariant gauge, is more useful in the
context of nonabelian gauge theories.

The interaction term in the Lagrangian density is

ie A (x)§* (x) (7)) PP (x) (6.24)

where we have written the spin indices explicitly. Following the
procedure developed in § 2.2, we can write the interacting generat-
ing functional for QED as

Z[n,7,]] & exp {ie/‘#x (5]?;()) <5qf(x)> (" (577;(96))]

x Zoln, 1 ZolJ] - (6-25)

It is a tedious exercise to show that, for every fermion loop, we
pick up a factor of (—1) due to the necessity of anticommuting the
Grassmann sources appropriately.

p
' . q /_\ q
6.2 Vacuum polarization ; .
Let us begin the discussion of QED renormalization by considering >\p{
quantum corrections to the photon propagator; this is known as the Figure 6.1: Vacuum polarization one-
polarization of the vacuum due to quantum fluctuations. As with loop diagram.

the scalar two-point function, the photon two-point function can be
written as a geometric series.
MORE HERE

+ @W + W +e (6.26)

The key quantity to calculate at one-loop order is the amputated

diagram with a fermion loop (Fig. 6.1).

We will use dimensional regularization, so define a dimensionless coupling g through

e = g*(p) (6.27)

where € = 4 —d in d dimensions. The 1-loop vacuum polarization is

v o . € ddp 1 1 )
o) =~ [ bt () * ()
. ¢ ddp tr{(—iﬂ—i-m)'yﬂ[—i(;d—g/)_Q_m],)ﬂ/}
B gzy ./(271)11 (P2 +m2)[(p — 9)2 + m?] : (6.28)

Use Feynman'’s trick

/ dx/ thuyB_x B (6.29)
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to write the integral of the denominator as

/1 dx B / dx (6.30)
0 {(P2+m)(1—x)+[(p—q)2+m2x}® o [(p—qx)* +m? +g2x(1 —x)]? '
Shift the momentum integration variable to £ = p — gx to obtain
d {0 ) + m)y [l 4= x)] )
a4 _ 52,€
I (q) =gn /(27r)d /0 dx (2 + A7 (6.31)
where we introduce the abbreviation A = m? + g2x(1 — x). We need the following spin traces
trytyt = 46%Y (6.32)
tryt Py 7 = 4(SMP VT — GHVSPT 4 GHI 6P ) (6.33)

Therefore the trace in the numerator of (6.31) becomes
tr{-} = 4{=(C+ )" [0 = q(1 = 0))" + (C+q%) - [L— q(1 = )} — (C+q2)" [ = g1 = x)] + m25" | .
(6:34)

Asd — 4, integrals over odd powers of p vanish, so we neglect these terms. For the same reason
only the diagonal parts of £#¢" have nonzero interals. The nonvanishing terms can be obtained by the
following replacements

oY s %5%‘”@2

2)\2
PHPP PV T d((dg_g 2) (5}4P5W — SHVEPT (5#0(5401/) . (6.35)

Now the integrand is rotationally invariant, so the angular part of the integral can be done easily. This
amounts to replacing the measure

iy ¢-lae (251402
/ _ &) (6.36)

@od P - (4m)ir(d)’

Putting these ingredients together gives

241
o) = 0 [ o g [ (1 5) o (e o) s e
7
(6.37)

With the substitution u = 77, we can 1dent1fy that these integrals are proportional to Euler’s Beta

22
functions, (4.59) AS- 1B(1— 4 L1+ ) and A? —2B(2 - 2, 2) and use the result (4.60). We find

v 48 “l/l e v v v
" (q) = (47r) T(5 / dx Ae/Z {5” [m —x(l—x)qz} — ot [mz—}—x(l—x)qz} +2x(1—x)g"q }
Sg “M € ! 1 _ 25uv v _
T 6) [ g )51 =)
= (%" —q"q")m1 (%) (638)

where we implicitly define the Lorentz-invariant function

S

1 (q7) = — sf2r§ /dxx 1-x) (i) : (6.39)
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Note that Hi‘ "(g) has the same Lorentz structure as the free photon propagator, i.e. qyl_liw(q) = 0. In the
d — 4 (e — 0) limit
2 1 2
2y _ & (2% Ay
m(g°) = 27T2/0 x(1—x) (e v +log A ) +O(e). (6.40)

In order to deal with the divergence we write the orginal action
as the sum of a renormalized action plus a counterterm action.

So =S5+ St (6.41)
with

eo = Ze

mo = Zym

o =V 2oy

A() =/ Z3A. (6.42)

We write the right-hand side of (6.41) as
1 - _ Lo
S+ St = /d4x LLZ3F2 + 2o + ZinZoympp +ieZ1 pAY | (6.43)

where Z1 = Z,Zy\/Z3. Let Zy =1+ 6Z; fork =e,m, 1,2,3 and §Z;

small. Then 6Z, = 6Z1 — 6Z, — %523. We will later show that gauge

invariance implies Z; = Z; so that ((¢' + ieA)y is renormalized by a

single, overall factor. Given that this is the case §Z, = 7%5Z3.
Counterterm diagram

2
_ &) (2
023 = — p= (e — v +log4r (6.44)
in the MS scheme.

2 2 — a2
e (g?) = ngzl) /dx x(1—x)log (m + xlilz *)g ) (6.45)

Note about branch cut.

6.3 QED B function

_ 80 _ (0 9 & (2_ :
O—de = (“ay +ﬁ(g)ag> {1+247T2 <€ 7+10g47f>}gu2

which implies




or

-1

= (3 40) ()

3
-8, 8 -
=5 + Tom2 + 2-loop (6.49)

The QED § function is positive, so the coupling is marginally irrele-
vant. Integrate from yu to p/

1 1 1 u
—— = —5—~ + —=log . (6.50)
200 & e B
Let Aqgp be the scale at which the coupling diverges:
6712
2
&M = —F%om (6.51)
QED
log —5

Given experimental measurements m, = 0.511 MeV and &« =
£8%(m.) = 137, implies that Agep ~ 1026 GeV. COMMENTS.

G2 (q)

/ dix 1 (A, (x) Ay (0))

+ WQNW + W +..
= Dyy + Dy 11" D,y + Dy TV Dy IT Dy + ..
= Dy () (1 + 7(3?) + (%) +..)

_ DVV

S 1-mn(g?)

(6.52)

At one loop, IT" = HT "and m = m; we found earlier in the
chapter.

Gf,%,) (q) can be found from differentiating the quantum effective
action. Using the one-loop results above, this differentiation is on
the following term

_ © . 1, .
Ty, §,41 5 [ gl = m(p) (70" — pp)3 Au(—p)Aulp).
(6.53)
Rescale A, — %Ay and consider position space to find
Ty, $, A] D / dx {1_4;(0)1:2 +02F2 term} (6.54)

The coefficients in I'[¢p, , A] should be p-independent. The physical
coupling should just be read off from the coefficient of }IF2, say
1 1-n7(0) 1
‘%hys 22 2ue

2 4
_ & _ A
{1 27T/0 dxx(1—x)log ;42] . (6.55)

Taking the logarithmic derivative @ of both side will give the
same B-function we obtained earlier.
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6.4 Full one-loop renormalization

GW) = [ d*xe (p(x)(0))
= + ;JV\%? + ;Mj% ;WH\% +...

1
" n—x0) 050
2
50) = 155 [ dxl2— extip) + (4~
2
« [i —7+log T 1 0(e) (6.57)

where here A = x(1 — x)p? + (1 — x)m?.22 Note that X (¢f) is not
proportional to iy + m. The two independent counterterms JZ; and
6Zy are introduced to remove the two divergences. Counterterm
Feynman rule: 2-point fermion vertex with coefficient —[§Z,iyf +
(8Zy + 6Zy)m). Renormalization conditions, either MS (or MS), or
on-shell. In the latter case we require

ax
= . =0 and — =0. 6.58
)iy W lyim, (6.58)

The statement Jf = imppys is a shorthand, which can be under-
stood formally. What we really mean is that the renormalization
constants should be set so that G(§)(6.56) should have a pole on
the imaginary axis corresponding to the physical electron mass,
and its residue should be 1. To be careful we would rationalize the
denominator in (6.56) so that it carried no spin indices.

Further reading

Srednicki®3, e.g. §854, 57, 58. Schwartz*4 Chapter 14.

k
p p+k p

Figure 6.2: One-loop fermion self-
energy diagram ;.

2 There is also an infrared divergence
at k = 0. This can be regulated by
introducing a small mass for the
photon, then taking the limit of it
vanishing.

2 M Srednicki. Quantum Field Theory.
Cambridge University Press, 2007.
ISBN 978-0-521-86449-7

2 M D Schwartz. Quantum Field Theory
and the Standard Model. Cambridge
University Press, 2014. ISBN 978-1-107-
03473-0



Symmetries and path integrals

Path integral integral quantization makes use of the classical action.
We recall from Noether’s theorem that symmetries of the theory
can be explored by studying variations of the classical action. In
this chapter we investigate the quantum effects of theories which
possess symmetries at the classical level.

7.1 Schwinger-Dyson equations for scalars

Consider a free, massless scalar theory described by the action

1 1
S=5 /d4yay¢ay¢ =3 /d4y¢824>; (7.1)

we will find it more useful to use the second form of the action,
obtained by integrating by parts.

Now consider the vacuum expectation value of the field (¢(x)).
Inside the path integral, let us shift the field ¢ — ¢ + ¢, which
leaves the measure invariant. We will assume that €(x) is a small
variation, so that we can neglect terms O(&?).

@0) = 5 [Dolpx) +e()] MV @r07@0 (g

Expand about small e so that the exponential above can be written
as

e2/d'y ¢3¢ [1 + %/.d‘*z (¢a2e + 832¢):| = e2[dy 9?9 (1 + /d4z 882¢)
(7:3)

where we have integrated by parts twice. Now

(90 = 5 [ Do (o) 4 e(x) + 9(x) [z (220
(7-4)

Note we have put a subscript z on the latter partial derivative to
make it clear we differentiate with respect to z and not x. (The
derivative with respect to y in the exponential will not appear after
another step.) Note that the first term on the right hand side is
simply (¢(x)), so the remaining terms must sum to o. Writing

e(x) = [d*ze(2)6®(z — x), we can factor the e(z) out

/‘d4z s(z)/D¢ e2Jdty 99 [¢(x)a§¢(z) + 5@ (z— x)} =0. (7.5
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Since this is true for all €(z), and since the path integral is indepen-
dent of z, except at the field insertion, it must be that

32(p(2)9(x)) = —0W(z —x). (7.6)

This is the Schwinger-Dyson equation for a free, massless scalar
field. In fact this is nothing but the Klein Gordon equation for the
Green’s function which yields the Feynman propagator. The steps
above can be repeated for general n-point functions, for example

32(p(2)9(x)¢(y)) = —6¥ (z = x)(9p(y)) — 6 (z — ) (9(x)). (7:7)

When we add an interaction term
' 1
5= /d4y <_2<P3247 + ﬁint[ﬁf’]) (7.8)
we can simply modify the steps above, Taylor expanding

Lint[¢ + €] = Linte|p] + L[] (7.9)

where L] . [¢(z)] = %Eint. The resulting Schwinger-Dyson
equation is

R(Pp(2)9(x)) = (Linlp(DP(x)) =W (z—x).  (7.10)

Again, this is the classical equation of motion (9% — £!,)¢ = 0 up
to a contact term. The interaction term appears similarly for n-point
functions, for example

R(p(2)p(x)P(y)) = (Lonelp(2)]p(x)p(y)) — 6@ (z — x) (p(y))
—6W(z—y)(p(x)). (7.11)

This can be put into a nice form if we recall a few things from
Noether’s theorem. Under ¢ — ¢ + ¢, the Lagrange density trans-
forms as £ — L + 6L, with

L) = G ye) + 55 0ue(0). 712

5p(y)

Let us write the variation of the Lagrangian with respect to ¢(z) as

IL(y) _ OLWY) s, _ SL(y) ) (5 .
5ez) ~opln)° C Y Sy ETY). 1)

The variation of the action S = [d*yL is then

55 SL(y)
de(z) /d4y

- de(z)
= (g | 9L 5@y g (LW sy,
|20 = (55,9007 ) )

6(9u(y
L) ( 5L(2) )
" )

 9(2) 5(9ug(2))

In going from the firs to the second line, we integrated by parts

(7.14)

in order to move the derivative operator from the J-function to



its prefactor. Now use this to replace the first term in (7.12), with
appropriate changes to the coordinate

oL 6S
SL(y) =3, [Wsw] + )
l‘] + (S(Sy) (y) (7.15)

where we have identified the Noether current as

(y) = mjf(y))sm (7.16)

Now back to our action (7.8). Here (7.14) reads

s 5
?(Z) - ‘Cmt[(P] d ()b (7'17)

Therefore the Schwinger-Dyson equation (7.10) becomes

(so#t0)) =09z, (7.18)

All this discussion is most useful for transformations which leave
the classical Lagrangian invariant: that is, those for which 6L = 0.
In this case (7.15) becomes

6S

oujt = _mf(z) (7.19)
and (7.18) becomes
0
5\ (2)¢(x)) = —6W(z - x)(e(x)) . (7.20)

This is the form of the Ward-Takahasi we will use in the next sec-
tion.

Before leaving this section, it is worth remarking that the Schwinger-
Dyson equations provide a link between path integral and canoni-
cal quantization. Consider repeating the steps we used earlier, this
time for the generating functional Z[]J].

/D¢ exp — /d4 [ ¢+8)32(4)+£)+Emt[¢+8}+I(‘P+S):|

= /Dcp e~ Ja'y(L+T9) {1 - /d4z e(z) (—a§4> + Lin + ]) +.. ]
= Z][]J] for any ¢(z). (7.21)

That implies the O(¢) terms must sum to 0, i.e.

~2 [Dpge SV [ D (Lfy+ e SIUETD

o=t |5 | @b 2. a2

This differential equation can be used to define the generating
functional, and hence the whole theory. Z[]] is the unique solution
(for appropriate boundary conditions) to the differential equation.
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A similar procedure can be done in canonical quantization. A
generating function for time-ordered operator vacuum matrix ele-
ments can be defined. Then it can be shown that it is a solution to
the same Schwinger-Dyson equation (7.22). Since both generating
function(al)s solve the same differential equation, they must de-
scribe the same physics. Canonical and path integral quantization
are equivalent formulations.

7.2 Schwinger-Dyson equations for fermions

L = ¢ + non-derivative terms in p (7.23)
Under
Pp(x) = e p(x) and P(x) = Pla)e (7.24)

the path integral measure is invariant, but the kinetic term in the
Lagrangian is not:

PIY — pIY + iy P oa. (7.25)

Consider ((x1)P(x2)). We expand in small « as in §7.1, to find
that the O(a) term must vanish, i.e.

0= [DyDe S [i [ dxilr p()2n(x)| w02
+ [ DyDe S fin(xr) — in(x2)] 9x1)(x2) (7.26)

or, integrating the first integral by parts, and replacing a(x;) =
[d*xa(x)6™ (x — x;) in the second,

‘/~d4x a(x) Iy [/Dqﬂ)l[; e=S @(x)v;llp(X)] P(x1)P(x2)

= — [dtxalx) [69(x = 1) — 69 (x — 22)] [DYDFeSy(xr)(x2)
(727)
Since this holds for all &(x)

B (" (X9 (x)P(x2)) = — |89 (x = x1) =6 (x — x2) | (¥(x1)B(x2)
(7.28)

where j#(x) = ¢(x)y*¢(x) is the Noether current corresponding to
the transformation (7.24).

M (p,q1,42) = / dx dtxy dhxg e XM 1e 2 () (x ) (x2))
Migua) = [dndn e e 2 (p)fem) (29
Note
M(g1+pq2) = /d4x d4xq d¥xy etP ¥ el X192 %2
x 80 (x — x1) (9 (x1) P (x2)) (7.30)
and similarly for M(q1,42 — p).



7.3 Ward-Takahashi identity and renormalization

The renormalized QED Lagrangian is

= i Z3F? + 2@y + ZoZump + ZieG Ap.  (7.31)

Further reading

Srednicki®> discusses symmetries and Ward-Takahashi identities for
scalar theories in §22. Schwartz2® Sections 14.7, 14.8, and 19.5.
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Nonabelian gauge theory

Gauge theories naturally describe long-range interactions between
scalar or spinor matter; the gauge symmetry implies a massless
gauge boson as the carrier of the force. However, as we found for
QED, abelian gauge theories in 4-dimensions generically have pos-
itive B-functions: the interactions are weak at long distances and
become strong only at very short distance.

This is the opposite behaviour to what is seen in hadronic
physics, where hadronic constituents are seen to become weakly
interacting at high energies (short distances), while these interac-
tions are strong at low energies (long distances). The key to finding
theories with this type of behaviour (in 4 dimensions) is to have the
gauge boson interact with itself. We will see that this require the
gauge symmetry to be that of a nonabelian group.

8.1 Lie groups

A Lie group is a group with an infinite number of elements which
is also a differentiable manifold. Group elements continuously
connected to the identity can be written as

U =exp(i0"T)1 (8.1)

where the T? are the group generators and the 8 are numbers
parametrizing the group element (a sum over generators is implied
by the repeated index).

The generators T* of a Lie group form a Lie algebra under an
operation generically called a Lie bracket

[T%, TY) = ifobeTe (8.2)

where ¢ are the structure constants. When we represent the
generators by matrices, the Lie bracket is just the usual commutator,
[A, B] = AB — BA. The Lie brackets satisfy the Jacobi identity

[A,[B,C]] + [B,[C,A]] +[C,[A,B]] =0 (8.3)
which implies
fabdfdce + fbcdfdae + fcudfdbe —0. (8.4)
We use a normalization for the generators such that

facdfbcd — N&”h ) (8.5)
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We will primarily be interested in unitary groups, those whose
group elements satisfy UTU = 1. Special unitary groups are those
whose elements are unitary and have determinant equal to 1. In
this case all elements are continuously connected to the identity
and can be written as in (8.1). The group G = SU(N) has N? —

1 generators, so it has dimension d(G) = N2 — 1. Other finite-
dimensional Lie groups are orthogonal, symplectic, or the five
exceptional Lie groups.

The fundamental representation is the smallest nontrivial repre-
sentation of a Lie algebra. For su(N) these are the N x N traceless,
Hermitian matrices. Under an infinitesimal SU(N) transform-
mation, an N-component field in the fundamental representation
transforms as

¢i — @i +ia" (Thng)ij ¢ (8.6)

with real #”. Note we use i, j,. .. as representation indices (i.e. color,
isospin or flavour) and 4, b, . .. to index generators. The complex-
conjugate field transforms under the anti-fundamental representa-

tion for which TJ, . = —(T¢ ;)* and hence

(Pz* - qbz* + iau(T:fund)ij (P]* = (Pz* - iau(P;(Tfaund)]'i' 8.7)

The last step uses the fact that the generators are Hermitian. From
now on, we drop the "fund" subscript on the generators when we
work with the fundamental representation

Tﬂ == Tfaund . (8.8)

The adjoint representation is the one which acts on the vector
space spanned by the generators themselves. The matrix elements
of the generators are given by the structure constants:

(Tagy)ij = —if™. (8.9)

We will see that the gauge fields transform in the adjoint represen-
tation.

The Index of a representation T(R) defined to via an inner prod-
uct of generators

tr(TRTR) = (TR)ii(TR)ji = T(R)&™. (8.10)

For the fundamental representation

1 1
TiT) = 55“” = T(fund) =Tr = 7, (8.11)
while for the adjoint representation
fucdfbcd _ N(Sab _— T(ad' —Ts =
= j)=Ts =N. (8.12)

Quadratic Casimir for representation R, C»(R), satisfies

TeTg = C2(R)1. (8.13)



In (8.10) if we set a = b and sum over a we find
T(R)d(G) = Ca(R) d(R) (5.14)

where d(R) is the dimension of representation R and d(G) is the
dimension of the group. Therefore, the quadratic Casimirs for the
fundamental and adjoint representations are respectively

N2 -1

Cz(fund) = Cp = N

and Cy(adj) =Cy4 = N. (8.15)

8.2 Gauge invariance and Wilson lines

Under a U(1) transformation
P(x) = e*p(x) and P(x) — P(x)e ™) (8.16)

P is not invariant. Consider a derivative acting in the direction of
a unit vector n#

W3y = lim © [p(x +am) — ()] (5.17)
Noting
P(x +an) — p(x) — My (x 4+ an) — e *ip(x) (8.18)

suggests how we might construct a gauge covariant derivative, one
which would transform like ¢(x), i.e.

Dyyp(x) — ei"‘(x)Dyl/J(x) . (8.19)

Define a Wilson line, W(y, x), going from point x to y to trans-
form as

W(y,x) = e*WW(y,x)e ) (8.20)

The Wilson line a type of parallel transporter on the gauge mani-
fold. Choose a normalization such that W(x, x) = 1. Then W can be
written as an element of U(1), a phase:

W(y,x) = W) (8.21)

with real ¢. We also choose a convention that W(x,y) = (W(y, x))*.
We can use the Wilson line to define a covariant derivative

n'D, = lim E [p(x +an) — W(x +an, x)p(x)] . (8.22)

a—04a

It is clear that ¢ D¢ is gauge invariant.

Let us make contact with our previous formulation of QED. For
small g, define A, as the field at the midpoint along a small Wilson
line

W(x +an,x) = exp [iean* A, (x + §n)] . (8.23)
Taking the a — 0 limit we have

Dyip(x) = [0y —ieAu(x)] p(x). (8.24)
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The gauge transformation property of D, (x) implies
Au(x) = Au(x) + éaytx(x) - (8.25)
Note D, (D) also transforms just as 1, therefore
[Dy, Dy]ip(x) — e [D,, D,y (8.26)
Noting that this commutator is not a differential operator,
[Dy,Dy) = —ie(9,Ay — 0y Ay) = —ieFyy, (8.2y)

tells us that the phase in (8.26) must be due only to the transforma-
tion of ¢ and that F,, is gauge invariant.
PARAGRAPH ABOUT PLAQUETTE

Pra(x) = W(y1,y)W(ya, y3)W (y3, y2) W (y2, 1) - (8.28)
Expand about small a
Pia(x) = 1 —iea®Fia(x) + O(a?). (8.29)
In the case of nonabelian gauge transformations
p(x) = V(x)y(x) and §(x) = §(x) V' (x) (8.30)
with V(x) € G, the Wilson line transforms as
W(y,x) = Vy)W(y, )V (x). (8.31)

Again we choose a normalization such that W(x,x) = 1, the iden-
tity of G. For small a

W(x +an,x) =1+igan" A} T" + O(a?). (8.32)

To find the gauge transformation of the field Ay, i.e. the map-
ping from Aj to field A},?, we require D,y — VD, so that

(O —igAL VY = V(9 — igAu)y

— A, =VA,V ' ——(3,V)V . (8.33)

L
8
We have used the abbreviated notation A, = AjT".

For infinitesimal transformations V(x) = 1+ ia”(x)T? 4. ..

p(x) = (1+ia(x)T")p(x)
A (x) = AT (x) + ;ayzx”(x) A () (x)
= A%(x) + ; (007 — ig AL (—if"")] a(x)
14

—A%(x) + ; [3,0% — igAL(TLy)"] a(2)

1
= Af(x) + gDﬁCaC(x) (8-34)
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where Djf = 9,6 — igAz(dej)“C is the covariant derivative in the
adjoint representation, and we have used (8.9). The field strength
tensor, defined from

[Dy, Dy] = —igFy, T (8.35)
is then
Fi, = 0, A) — 9, Af + gf*"" AL A . (8.36)
Under infinitesimal transformations, F is not gauge invariant:
Fﬁv - F‘Zv - fahC“bF;cu/ ’ (8'37)

however Fj F"" = Y., (F*)? is. (Usually the explicit summation
symbol is dropped, since we are never interested in the square of
only a single term.) Thus we arrive at the Lagrangian for a non-
abelian gauge field coupled to fermions transforming in the funda-
mental representation

1 _ 4
L= E(Fa)Z + P (6(5,] — lgAuTl{Zj + Wl(sl]) l[J]
= LV 4§D+ m)y. 839)

In fact there is another gauge invariant term which can appear in
the Lagrangian:

Lo = 0t FPT = 2600, (e"P7 AJF7) . (8.39)

As a total derivative, it appears this would contribute only a bound-

ary term to the path integral, and be unimportant. Indeed it can

be shown that total-derivative interactions cannot contribute at any

order in perturbation theory.?” However, Ly can give a nonpertur- % See Schwartz §7.4.2, for example.
bative contribution due to nontrivial topological configurations of

the A, field. This term breaks CP, and one outstanding puzzle in

the Standard Model is why the coefficient 8 in the QCD Lagrangian

is so small, i.e. consistent with zero to high accuracy. This is known

as the strong CP problem.

8.3 Fadeev-Popov gauge fixing

Say we have an ordinary integral over two variables, where the
integrand only depends on one

Z / dadbeS®@ | (8.40)

The integral over b is redundant and gives a divergent contribution
to Z if it is taken over (—co,00). In § 6.1, we simply dropped the
integral over redundant degrees of freedom, finding a way to write
the equivalent of

z = / dae=S@) . (8.41)



68

Things are more difficult for nonabelian gauge theory, where we
won’t be able to be so slick. Instead we can introduce a J-function

zZ= /da dbs(b) 5@ (8.42)

This is unchanged if we shift the argument of the J-function by an
arbitrary function of a

zZ = /da dbs(b— f(a))e 5@ (8.43)

In fact, we do not need to specify f(a). Instead, we could suppose
that b = f(a) is the solution, for fixed a to some equation G(a,b) =
0. Then using the composition rule for the J-function

8(Gla b)) = | 22|

1
5(b — f(a)), (8.4)

we have
z= / da db—é (a,b)) e=5@ (8.45)

where we have assumed that b > (. This argument can be gener-
alized to n-component variables 4 and b to read

Z = /d”a 4" det ( )

In the context of gauge theory, the b variables in (8.46) represent

H(S

(8.46)

the gauge-equivalent degrees-of-freedom, the redundancies in the
path integral over the field A, (x) due to gauge transformations.
The the gauge-fixed partition function is then

z= /DAdet( )

The function G(a,b) is the gauge-fixing condition we apply to re-

e_SYM[A] . (847)

H 5(4) Ga

move those degeneracies. For nonabelian fields, we need one for
each generator. Let

G(x) = 9" Ay (x) — w'(x) (8.48)

where w”(x) is function of x, independent of the gauge field. Given
the gauge transformation of the A, field (8.34), G transforms as

G*(x) — G*(x) + ;BVDZhocb(x). (8.49)

The functional derivative with respect to a’(y) is

6G"(x)
oab(y)

with the understanding that the derivatives on the right-hand side

1 a
= §ayDyh5(4) (x—y), (8.50)

are with respect to x.
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In order to evaluate the determinant appearing in (8.46), we
introduce Grassmann variables ¢?(x) and ¢%(x) to write the Fadeev-
Popov determinant as

G (x)

detW S / DcDee Seh (8.51)

with Sgh = fd4x ‘Cgh and

Loy = —c"OMDYYc”
= 9" Db
= 05" 9" — igdV e Af,(Tig;) ™
= 9" 9" — gf AT P (8.52)

where we have implicitly integrated by parts in going from lines 1
to 2 and 3 to 4, and have dropped total derivatives. Because the ¢
fields are Grassmann valued but have the Lagrangian of a scalar
field, they are called ghost fields. They would violate the spin-
statistics theorem, but they are unphysical. We will discuss the
interpretation further later.

Note that for Abelian gauge theory, f**¢ = 0. Therefore, the
ghosts do not couple to the photon field in QED.?® The Fadeev- Or to the electron, for that matter.
Popov determinant just contributes an overall multiplicative factor
to the QED generating functional and can be ignored. In nonabelian
gauge theories, though, we have to include the ghost fields in our
Feynman rules.

The final step of this chapter is to exchange the J-function in
(8.47) for a term which can appear in the action. For this purpose,
it was convenient to introduce the w”(x) in (8.48). These are arbi-
trary functions; any choice is as good as any other. Now we decide
instead of taking a single choice, we will average over the choice
of w(x) with a Gaussian weight. That is take the Z from (8.47),
multiply and integrate:

/Dw exp (— /d4x c;é) Z. (8.53)

Now the integral over w can be done first, with the é-function forc-
ing w"(x) = 0"Aj(x). Now up to a multiplicative constant the
resulting partition function (which we also call Z because it gives
the same correlation functions) is

Z / DADEDe exp (—SYM — S — sgf) (8.54)
where
4 1 a\2
Sym = / a4 (F)
Sen = / dy (3t 9ct — gfte As e )

/d4 BVA” (8.55)



70

8.4 One-loop renormalization

A compact way of writing the Lagrangian for a nonabelian gauge
field, let’s refer to it as the gluon field, coupled to fermions, after
gauge-fixing, is

1 a - 1 a ~a a
L= (BP0 +m)yp+ 52 (0" 47) — DY (856)

To obtain the Feynman rules, it is useful to unpack this a little bit.
The quadratic pieces give the propagators and can be written

‘cquad = _%Ay [BZ(WU - <1 - z,) aHaV] Ay + IP (a+ m)lP — co’c.
(8.57)

Using a and b for indices in the adjoint representation, and i and
j for indices in the fundamental representation, and suppressing
spin indices (fermion propagator only) we find the following for the

propagators:29 29 Recall the Fourier transform
maps derivatives to factors of
i X momentum.

1 [ S
gluon prop = 2 oM —(1- C)k—z o
. _ ij
fermion prop Jm 0
ghost prop = qlz o (8.58)

Interactions come from the the other terms in £. Expanding D,
and Ffw as in (8.24) and (8.36), respectively, as well as using the
steps in (8.52), we find

2
Lint = gf”bc(ayAﬁ)AZAf/ + gz(f”bcAf,Aﬁ)(f“deAd'P‘Ae"’)

— i A (T oy — g™ Af (") (8.59)

Our momentum-space Feynman rules (with all momenta flowing

into the vertex) are therefore3°-3? % Recall these vertices get an extra
minus sign due to the fact that the
generating functional contains a factor

3-gluon vertex = —ig f% [" (k — p)f + 6P (p — q)* + 6°* (9 — k)"] exp(=5).
3 Let us introduce the abbreviated
4-gluon vertex = —g? ( fabe pedegplp gelv . pace ghde gulv golo notation 8+P7lY = 5067V — 517 gP
+ fadefbce(sy[v5p]a)

fermion vertex = igy" (T*);;

ghost vertex = ig f*p/ . (8.60)

The contribution to the vacuum polarization coming from



fermion loops is just as in QED.

p
. /_\ .
Mab],w T _—
F= 29999999 A 109009009 ~
N
p—q

B by s 2 e [ AP 1 1
= T ) /(271)‘1 (p—q)*+m? p>+ m?
xtr [(=ipf +m)y* [=i(f — ) +m]7"] (8.61)

The integral is just what we saw for the QED vacuum polarization
(6.38); the only new feature is the need to trace over the generators
in the fundamental representation (8.11). We find

2 1 2 47112
M”wa = —Trd% (g%0" — q”q”)zg?/o dxx(1— x) (e — v +log T)
(8.62)
where A = m? + g%x(1 — x) and T = 1.

The gluon self-interactions complicate things. Using Feynman
gauge, ¢ =1,

q /\ q

N/

q

Py
giuc [ d%p 1 acd ghed y v
-2 /(ZH)d PZ(P—q)Zf A (8.53)

abuv
M =

Note that we have a symmetry factor of 3 since the gluon is its own
antiparticle, so the gluon lines are not oriented in the same way
fermion and ghost propagators are. We will also use (8.12) to write
focd fbed — N 5% The numerator in (8.63) is

N = [01(q + p)f + 677 (q = 2p)" + 67 (p — 29)°]
x [0%(q+p)7 + (=g =2p)" +67(p—29)"]  (8.:64)

Introduce a Feynman parameter to write

1 ! dx 1 dx
p*(p —q)? - /0 [(1—x)p2 +x(p—q)]? - /0 (YN (8.65)

having shifted ¢ = p + xq and defined A = x(1 — x)g?.
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b
Mgh”” = =0 (8.67)

Renormalized Lagrangian

1

1
L= 730,47 - WAL + —

2
1 d
+ Zag8f " (OuAY) AL AT + § Zagg® f fU AT A AMEAY

(A2

+ Zy e — Zygf e (91e") Al
+ 2o + Zyym@Pyp + Z1gP AT (8.68)

o € d 53
=8 [ 2 M (51 2 2)] (8.69)
The fermion self-energy diagram (Fig. 8.1) gives a correction to
Zr =145, of

2
__ &1
by = 82 c Tr. (8.70)
The one-loop corrections to the fermion-gauge boson vertex (Fig. 8.2)

give

g 1
o = _@E(TF +Ca). (8.71)
We can use the leading order B-function: y% g = —5g to write
(8.69) as
__EyEpd (5 5 B
3
€ g 11 4
=—-— == | 5Cyq—znsT .
2 1672 (3 Ca—3hy F) (8.72)

where we have allowed for there to be n ¥ flavours of fermions.

k
P p+k P

Figure 8.1: Fermion self-energy.

ACA

Figure 8.2: One-loop fermion-gauge
vertex corrections.
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8.5 BRST symmetry
Becchi, Rouet, Stora, and, working independently, Tyutin.
QED Lagrangian

L= P+ §D+myp+ z%(aP‘Ay)z —@e B73)

Under

P(x) = p(x) +9p(x) with  d9p(x) = ia(x)p(x)
Ap(x) = Ay(x) £ 6A,(x)  with 6A,(x) = %aya(x) (8.74)

the gauge-fixing term transforms as
(*Ap)? — (9" Ay + %aza)z (8.75)

This is only invariant for a subset of gauge transformations, those
for which 9%a = 0.

Notice that ¢d%c in the Lagrangian implies the equations of mo-
tion for these fields are 9>c = 0 = 9?¢. This serves as inspiration
to consider a transformation a(x) = 6c(x) with 6 any global Grass-
mann number. Then

(0" Au)? — (9" Au)? + %(amy)(eazc) + elz(ea%c)(eayc). (8.76)

The last term vanishes since 62 = 0. If we transform
&(x) = 6(x) 4+ 66(x)  with 66(x) = —%amﬂ(x) 8.77)

then £ will be invariant. Note this is a global, not local, symmetry
because it is parameterized by a single global variable 6.
QCD Lagrangian

1 a T 1 LAl =
L= 2(FP+9(R+m)p+ 5@ A$)? — ' Dyc (8.78)

where Dy, c” = 9, +gf“bCAZcC. Let a®(x) = 6c(x) then
51/)1' = iQCaTl-t;-lP]'
0
SAS = —Dyc’
8

0
oct = ——dl'AY,. 8.

Due to the Ay in Dyc,
Dyc® — Dyc” — Qf”bC(D},cb)cC. (8.80)

In order to make this invariant, we now must transform c¢(x) with

oc" = —gf“bccbcc ) (8.81)
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It can be convenient to introduce an auxilliary scalar field B?(x),
called the Nakanishi-Lautrup field.

1

£=L(F2 4 5+ myp— S(BL)? + B9 AL — ' Dyc (8.82)

4 2

such that path integration over the B? field gives (8.78). Now the
transformation rules (8.79) read

6¢" = 0B”

6B =0. (8.83)

Further reading

The Wilson line is used to derive a gauge-invariant Lagrangian

in Schwartz and in Peskin & Schroeder. Srednicki3? has a concise
treatment of Fadeev-Popov gauge fixing in §71, which we followed,
with more involved treatments given by Schwartz33 Sections 14.5
and 25.4 and Peskin & Schroeder34 in §9.4 and §16.2.

3 M Srednicki. Quantum Field Theory.
Cambridge University Press, 2007.
ISBN 978-0-521-86449-7

3 M D Schwartz. Quantum Field Theory
and the Standard Model. Cambridge
University Press, 2014. ISBN 978-1-107-
03473-0

3¢ M Peskin and D Schroeder. An
Introduction to Quantum Field Theory.
Addison-Wesley, 1995. ISBN o-201-
50397-2



Conventions

¢ = 1 mostly everywhere. We tend to keep % explicit through much
of the notes.

When in Minkowski spacetime, we use the “mostly minus”
metric (+ — ——).

Fourier transforms in D Euclidean dimensions: functions are
composed as weighted sums (integrals) over a continuum of Fourier
k-modes. Using notation familiar in 3-dimensions, we adopt the
convention common in theoretical physics

D R
£ = [ R . 01)

Free scalar fields in Minkowski spacetime, using mostly minus
metric

3
00 = [ntigs [0+ B 02
Note the creation and annihilation operators are relativisitically
normalized (hence the additional (ZE)’%) and that the time-dependent
field is in the Heisenberg picture (hence the temporal phases

eTE/T) When we work in Euclidean metric, the scalar product

ik - x — —ik - x — see the discussion around (4.7). Note also that

if we had used the mostly plus Minkowski metric, the signs of the
scalar products in (9.2) would be reversed; this ease of Wick rotat-

ing between (— + ++) and (4 + ++) is one reason put forward for
preferring the mostly plus convention.35

35 However many of us grew up with

the convention that p - p = m?, not

—mZ.
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