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9 Fermi-Dirac distribution

Recall the Fermi-Dirac distribution arose from the partition function (7.2.12)

Z =
∏

r

1∑
nr=0

exp (−βnr (εr − µ))

=
∏

r

(
1 + e−β(εr−µ)

)
.

We saw in §7.3 that the requirement that the volume per particle to be much larger
than the thermal wavelength cubed, V/N À λ3, is equivalent to the limit where
eβµ ¿ 1. This implies that we have negative chemical potential for both bosons
and fermions in the classical limit. As T decreases, µ → 0 from below. In §8.3
we saw that the point µ = 0 is a critical point in Bose gas, marking the onset of
Bose-Einstein condensation. Mathematically, the geometric series in (7.2.8) diverges
when µ > 0. In contrast no such critical point occurs for a Fermi gas. In fact we
will see that µ must change sign to become positive as T → 0.

9.1 Degenerate Fermi gas

Let us look at the denominator of the Fermi-Dirac distribution

n̄(ε) =
g(ε)

eβ(ε−µ) + 1
(9.1.1)

in the limit T → 0 (equivalently β → ∞). For states with ε < µ, the exponent
in the denominator vanishes. For states with ε > µ the exponent tends to infinity.
Therefore there zero temperature distribution is (see Figure 17)

n̄(ε)

g(ε)

∣∣∣∣
T=0

=

{
1 , ε < µ

0 , ε > µ
. (9.1.2)

Above we have kept the temperature dependence of µ implicit, as we usually do.
However, we should not forget that µ does vary as a function of T . The particular
value at T = 0 is a special value, as indicated by the zero temperature distribution
(9.1.2). It marks the energy below which all states are occupied and above which
all states are unoccupied. It is called the Fermi energy: εF ≡ µ(T =0).

In what follows, we will again use the density of states for a nonrelativistic gas
in 3 dimensions

g(ε) =
gs

4π2

(
2m

~2

) 3
2

V
√

ε ≡ KV
√

ε . (9.1.3)

At zero temperature we can use (9.1.2) to calculate the average particle number as

N = KV

∫ εF

0

dε
√

ε =
2

3
KV ε

3/2
F . (9.1.4)
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Figure 17: The Fermi-Dirac distribution at T = 0.

Particle number density, N/V , is something physically observable, so the Fermi
energy can be determined by inverting (9.1.4)

εF =

(
1

K

3

2

N

V

)2/3

. (9.1.5)

Even in interacting systems (9.1.5) is used as a definition of Fermi energy, in terms
of the density.

Turning back to the ideal Fermi gas, the energy at T = 0 is given by

E =

∫ εF

0

dεKV ε3/2 =
2

5
KV ε

5/2
F . (9.1.6)

Dividing (9.1.6) by (9.1.4) we find the average energy per particle to be

E

N
=

3

5
εF . (9.1.7)

Note the contrast between this and the zero temperature energy of an ideal Bose
gas: the zero temperature Fermi gas has non-vanishing energy.

Let us consider the grand potential

Ω = −kT logZ
= −kT

∫ ∞

0

dε g(ε) log
(
1 + e−β(ε−µ)

)
. (9.1.8)

In the T → 0 limit

kT log
(
1 + e−(ε−µ)/kT

)
= 0 for states with ε > µ . (9.1.9)
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Figure 18: Single particle dispersion relations. Left: isolated gas of noninteracting
fermions on the left. Right: gas of spin-1

2
fermions in the presence of a weak magnetic

field, aligned spins have lower energy than anti-aligned spins. At T = 0, all allowed
energy states below εF are occupied, while all energy states above εF are unoccupied.
Note in the right plot, this means there are more aligned spins than anti-aligned
spins.

For states with ε < µ

kT log
(
1 + e(µ−ε)/kT

)
= kT

[
µ− ε

kT
+ log

(
e−(µ−ε)/kT + 1

)]

= µ − ε

= εF − ε . (9.1.10)

So the grand potential at T = 0 is

Ω = −KV

∫ εF

0

dε
√

ε(εF − ε)

= −KV

(
2

3
ε
5/2
F − 2

5
ε
5/2
F

)

= −2

3
E . (9.1.11)

Since Ω = −PV

PV =
2

3
E =

2

5
NεF > 0 . (9.1.12)

Even at zero temperature, the Fermi gas has nonzero pressure, called Fermi pres-
sure. This is a physical consequence of Pauli’s exclusion principle. The fact that 2
fermions cannot be in the same single-particle state results in a pressure. This effect
is responsible for keeping old stars, which have spent most of their nuclear fuel, from
completely collapsing. White dwarf stars and neutron stars are examples.

Sometimes it is useful to sketch the single particle dispersion relation. In the left
plot of Figure 18 we show ε(p) for a nonrelativistic gas. We can see by eye which
momentum states are occupied (those with ε < εF ) and which are empty at T = 0.
Such a plot becomes more useful in more complicated examples. Consider a spin-1
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gas of non-relativistic fermions, possessing magnetic moment µB, in the presence of
a weak magnetic field B. The energy of a spin now has an additional term

ε± =
p2

2m
± µBB (9.1.13)

where the minus sign is for particles aligned with the magnetic field and the plus
sign is for particles anti-aligned with the magnetic field. We see from the right side
of Figure 18 that, as a consequence of the lower energy for aligned spins, we will
first fill energy levels with spins aligned with B, and only afterwards fill levels with
spins anti-aligned with B. We can calculate the number of particles in either state,
say N+ and N−, from (9.1.4) after correctly adjusting the limits of integration. The
magnetisation, the total magnetic moment of the gas, is just µB times the difference
in particle number. We leave this as an exercise.

9.2 Fermi gas at low temperature, T > 0

Next we wish to calculate the leading correction to the zero temperature results of
the previous section. In order to do so, we must consider the behaviour of integrals
of the type

fn(z) =
1

Γ(n)

∫ ∞

0

xn−1 dx

z−1ex + 1
. (9.2.1)

(See Pathria, Appendix E and Landau & Lifshitz, §58.) Before we proceed with
approximations, note these integrals satisfy the recursion relation

z
∂

∂z
fn(z) = fn−1(z) . (9.2.2)

(Differentiate and integrate by parts to verify this.)
At low temperatures (where µ > 0 for Fermi gases) we have

ξ ≡ µ

kT
À 1 . (9.2.3)

We define ξ as a useful shorthand, since z = e ξ. Now let us look at the denominator
of the integrand in (9.2.1)

D =
1

ex−ξ + 1
. (9.2.4)

D is plotted in Figure 19. The length ∆x over which D goes from 1 to 0 remains
constant as ξ → ∞, while the value of x at which this occurs is equal to ξ. Thus
for large, but finite, ξ, the deviation from a step function is O (1/ξ).

The leading result is obtained by treating D as a step function. Then the integral
(9.2.1) becomes

Γ(n)fn(eξ) =

∫ ξ

0

xn−1 dx =
ξn

n
. (9.2.5)

At next-to-leading order, we break the integration interval into 2 intervals, and
conveniently rewrite the integrand in the first term:

Γ(n)fn(eξ) =

∫ ξ

0

xn−1

[
1 − 1

eξ−x + 1

]
dx +

∫ ∞

ξ

xn−1

[
1

ex−ξ + 1

]
dx (9.2.6)
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Figure 19: The quantity D = 1/(ex−ξ + 1).

and letting η1 = ξ − x and η2 = x− ξ

=
ξn

n
+

∫ 0

ξ

(ξ − η1)
n−1 dη1

eη1 + 1
+

∫ ∞

0

(ξ + η2)
n−1 dη2

eη2 + 1
. (9.2.7)

Note that the first term is the leading order result (9.2.5).
Next are the following steps

1. The integrands are only non-negligible when η1 ≈ 0 and η2 ≈ 0. Therefore we
can change the upper limit of integration in the first integral of (9.2.7) to ∞.

2. We can combine the integrals using a common integration variable η1 = η2 ≡ η

Γ(n)fn(eξ) =
ξn

n
+

∫ ∞

0

dη
[(ξ + η)n−1 − (ξ − η)n−1]

eη + 1
. (9.2.8)

3. A binomial series expansion of (1± η
ξ
)n−1 yields8

Γ(n)fn(eξ) =
ξn

n
+ 2

∑

odd j

(
n− 1

j

)[
ξn−1−j

∫ ∞

0

ηj dη

eη + 1

]
. (9.2.9)

The integrals are also related to the Riemann zeta function

∫ ∞

0

ηj dη

eη + 1
=

(
1 − 1

2j

)
Γ(j + 1) ζ(j + 1) . (9.2.10)

(This can be seen, in part, by expanding the denominator as was done in
(8.3.5).)

8For noninteger n, the binomial coefficients are defined in terms of the Γ function, and the series
is infinite.
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4. Writing out the first 2 terms we find

fn(eξ) =
ξn

Γ(n + 1)

[
1 + n(n− 1)

π2

6

1

ξ2
+ O

(
1
ξ4

)]
(9.2.11)

We should point out that the expansion about 1/ξ is an asymptotic, rather than
a convergent, series. It neglects a non-expansible term proportional to e−ξ. The
neglected term vanishes identically for half-integer values of n, exactly those values
we need for fermion physics. (See footnote in Pathria, Appendix E.)

This was a lot of work, but now we can read off thermodynamic results.

N =
KV

β3/2
Γ(3

2
) f 3

2
(z) =

gsV

λ3
f 3

2
(z) (9.2.12)

=
KV

β3/2

√
π

2

4

3
√

π
(log z)3/2

[
1 +

π2

8

1

(log z)2
+ . . .

]

= KV
2

3
µ3/2

[
1 +

π2

8

(
kT

µ

)2

+ . . .

]
. (9.2.13)

Recall the definition of the Fermi energy (9.1.5). We can substitute εF in (9.2.13)
for the ratio N/V and solve for the µ in the prefactor as

µ = εF

[
1− π2

12

(
kT

µ

)2

+ . . .

]
. (9.2.14)

In the last term, we can make the leading order substitution µ = εF since corrections
will be of the same, higher order as the presently truncated terms

µ = εF

[
1− π2

12

(
kT

εF

)2

+ . . .

]
. (9.2.15)

Similarly, we can calculate the mean energy

E = KV
2

5
µ5/2

[
1 +

5π2

8

(
kT

µ

)2

+ . . .

]
. (9.2.16)

Dividing (9.2.16) by (9.2.13) we find

E

N
=

3

5
µ

[
1 +

π2

2

(
kT

µ

)2

+ . . .

]
(9.2.17)

=
3

5
εF

[
1 +

5π2

12

(
kT

εF

)2

+ . . .

]
. (9.2.18)

The heat capacity at low temperatures is

CV =
∂E

∂T

∣∣∣∣
N,V

= Nk
π2

2

T

TF

, (9.2.19)
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where we introduce the Fermi temperature TF = εF /k (recall Boltzmann’s con-
stant does nothing but change temperature units into energy units).

From PV = 2
3
E we can find the pressure. From F = −PV + µN we can find

the free energy. From this we can calculate the entropy at low temperatures as

S = − ∂F

∂T

∣∣∣∣
V,N

= Nk
π2

2

T

TF

. (9.2.20)

Note that S → 0 as T → 0.

S = 0 = k log W ⇒ W = 1 (9.2.21)

At absolute zero temperature, there is a single accessible state. The fact that the
entropy should vanish at zero temperature is called Nernst’s theorem, or the
third law of thermodynamics. Like all important theorems in physics, it is only
proved for trivial systems, and taken as a first principle for others.
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