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5 Applications in thermodynamics

Having worked through statistical mechanics for an ideal gas, we return to investi-
gating issues in thermodynamics.

5.1 Maxwell relations

Recalling Fig. 5, we see that we are usually working with two independent thermo-
dynamic variables and two dependent variables. We also have the choice of four
potentials with which to work. We rewrite (3.2.8), (3.3.4), (3.3.7), and (3.3.9) here
for convenience:

dE = TdS − P dV

dF = −SdT − P dV

dG = −SdT + V dP

dH = TdS + V dP .

Often we will want to change which variables we treat as independent. We can
derive useful expressions, called Maxwell relations, as follows. Assuming E(S, V )
is differentiable then requiring

∂

∂S

∂

∂V
E(S, V ) =

∂

∂V

∂

∂S
E(S, V ) (5.1.1)

means that, using (3.2.8),
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V
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S

. (5.1.2)
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∂2

∂T∂V
F (V, T ) =
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∂V ∂T
F (V, T ) (5.1.3)

and (3.3.4), we find
∂S

∂V
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T
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V

. (5.1.4)

Two more relations can be derived from the second derivatives of G and H.
Note that these relations are not all independent due to relations between the

various first derivatives of P , S, V , T . Consider a function z(x, y) (as you did in
Part IA Differential Equations). Then
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y
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dy . (5.1.5)

One can write similar expressions for dx and dy, respectively treating x and y as
the dependent variable. Inserting the expression for dx into (5.1.5)
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implies that
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A similar substitution for dy yields
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Multiplying (5.1.9) by (∂x/∂z)y yields
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We may also want to change variables so that a function f(x, z) can be expressed
as f(x, y). If x and y are the independent variables, then
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and if x and z are independent variables

df =
∂f

∂x

∣∣∣∣
z

dx +
∂f

∂z

∣∣∣∣
x
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Equating the coefficients of dx in (5.1.11) and (5.1.13) yields
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Any of the above relations might be useful in different contexts. The set {x, y, z}
may be replaced by any 3 of {P, V, T, S}. For example, if we wish to express E(S, V )
as a function of T and V instead, we can use (5.1.14)
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The last step used Maxwell relation (5.1.4). If the equation of state is known, e.g.
the ideal gas equation of state PV = NkT , then we can find E(T, V ). In the case
of the ideal gas, we find

∂E

∂V

∣∣∣∣
T

= − P + T

(
Nk

V

)
= 0 (5.1.16)

which implies E is independent of volume: E = E(T ). This is consistent with the
expression we found last time (4.2.10).

At the risk of revising even more of the mathematical tripos, let us point out
how Jacobians can make calculations even shorter (try the example sheet problems
with and without Jacobians to compare). In general consider two functions of two
variables: f(x, y) and g(x, y). The Jacobian is the determinant given by
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The way we apply these Jacobians is to first write partial derivatives as Jacobians.
In the example above, let g = y so that we can write

∂(f, y)

∂(x, y)
=

∂f

∂y

∣∣∣∣
y

. (5.1.18)

In this notation the right-hand side of (5.1.17) reads
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=
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Once we have introduced the Jacobian, we can make quick work of many prob-
lems involving change of thermodynamic variables using these properties of Jaco-
bians. Let x and y be functions of z and w to obtain the chain rule

∂(f, g)

∂(x, y)
=

∂(f, g)
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∂(z, w)
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. (5.1.20)

Set x = f and y = g to obtain

1 =
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∂(z, w)

∂(z, w)

∂(x, y)
. (5.1.21)

Swap columns or rows to obtain

∂(f, g)
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= − ∂(f, g)
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=
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∂(y, x)
. (5.1.22)

These make the relation (5.1.10) verifiable by inspection

∂(z, x)

∂(y, x)

∂(y, z)

∂(x, z)

∂(x, y)

∂(z, y)
= − 1 . (5.1.23)
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The change of variable relation (5.1.14) follows from the chain rule
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or, taking another choice of arranging the second term
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=
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As an exercise, prove all the properties of Jacobians above are true, and use them
to show
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y

= −
∂f
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∣∣∣∣
x

∂x

∂y
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f

. (5.1.26)

5.2 Heat capacities

Heat is a transfer of energy

d̄Q = dE − d̄W . (5.2.1)

Let us consider systems which change temperature when heat is transferred to or
from them. For example we do not consider here systems undergoing a first-order
phase transition, like water at its boiling point, where there is a latent heat. In the
cases we do consider, we can write

d̄Q = C dT (5.2.2)

where the quantity C is called a heat capacity. Note that 1/C is an integrating
factor for d̄Q, so it must depend on the process. Two useful processes are those
done at fixed volume or at fixed pressure. Specialising to reversible processes, for
which d̄Q = TdS, we have heat capacities

CV = T
∂S

∂T

∣∣∣∣
V

(5.2.3)

and

CP = T
∂S

∂T

∣∣∣∣
P

. (5.2.4)

Recalling dE = TdS − P dV

CV =
∂E

∂T

∣∣∣∣
V

(5.2.5)
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and recalling dH = TdS + V dP
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∂T
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P

. (5.2.6)

Changing variables from (T, V ) to (T, P )
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or

CP = CV + T
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P

(5.2.8)

or, applying a Maxwell relation

CP = CV + T
∂P

∂T

∣∣∣∣
V
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P

. (5.2.9)

In most systems (I don’t know of any exceptions) it is the case that

∂P

∂T

∣∣∣∣
V

> 0 and
∂V

∂T

∣∣∣∣
P

> 0 . (5.2.10)

We expect the pressure to go up if we increase the temperature while holding the
volume fixed, as in a steam cooker. Likewise, we expect the volume to go up if we
increase the temperature while holding the pressure fixed, as in a balloon. Conse-
quently, from (5.2.9)

CP > CV . (5.2.11)

Consider dT = d̄Q|P /CP compared to dT = d̄Q|V /CV . Since CP > CV , it requires
more heat to raise T a certain amount if one works at fixed pressure compared to
fixed volume. At fixed P , if T increases then V must increase and work is done.
Extra heat must be put in since it goes both to raising T and to raising V . At fixed
V , no work is done even if T increases, so all the heat goes into raising T .

Example: Ideal gas

Let us take an ideal gas, for example. Furthermore, let us assume that we can
use the classical equipartition theorem (we will check this in Chapter 10). For a
gas of monatomic particles (no internal degrees-of-freedom) then E = (3/2)NkT so
CV = (3/2)Nk. Using (5.2.9) and the equation-of-state (4.2.11) we can find CP =
CV + Nk = (5/2)Nk. For atoms in D dimensions, which have d internal degrees-
of-freedom, then E = (NF /2)NkT , where NF = D + d. Then CV = (NF /2)Nk and
CP = ((NF /2) + 1)Nk. Diatomic molecules, for example, have d = 2 since they can
rotate in 2 directions, perpendicular to the axis joining the 2 constituents.

For adiabatic processes d̄Q = 0, the first law becomes

dE = − P dV . (5.2.12)
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In general

dE =
∂E

∂T

∣∣∣∣
V

dT +
∂E

∂V

∣∣∣∣
T

dV . (5.2.13)

The first term is CV dT and the second term vanishes for an ideal gas (see (5.1.16)).
Combining the previous 2 expressions

CV dT = − P dV (5.2.14)

Multiplying both sides by Nk, and using the equation-of-state (4.2.11) to rewrite
NkdT as P dV + V dP we find

CV (P dV + V dP ) = −Nk P dV . (5.2.15)

Grouping like terms and dividing by PV we find

CP

CV

dV

V
= − dP

P
(5.2.16)

This differential equation is easy enough to solve by integration, arriving at

PV γ = constant (5.2.17)

where γ = CP /CV , equal to 5/3 for a monatomic gas.

Chemistry notation

There is a slightly different notation in chemistry, where it is more convenient to
work with n moles of particles instead of N particles. Remember Avogadro’s
number is

NA = (6.022 . . .)× 1023 particles

mole
(5.2.18)

and one defines an ideal gas constant

R = NAk (5.2.19)

so that Nk = nR. Then one can define specific heats cV = CV /n and cP = CP /n,
the heat capacities per mole.

5.3 Carnot cycle

Using the ideas presented so far, Carnot gave a simple, illustrative model for an
engine which converts heat into work. Consider an ideal gas in a container, with
one end comprised of a movable piston. We put the system through repeated cycles
of 4 steps (see Fig. 8). In the first step, the container is connected to a heat source
and both the source and the system are at temperature T1. The piston is pulled
up, allowing the gas to expand, but in a way such that the temperature stays fixed
at T1. This is an isothermal step. At some point the heat source is removed
and the expansion switches to an adiabatic expansion, with Q = 0. The expansion
stops when the gas cools to a temperature T3, at which point a heat sink, also at
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Figure 8: The four steps of the Carnot cycle. (See text for description.)

temperature T3, is introduced. At this stage the gas is then isothermally compressed
until it reaches some point, at which the heat sink is removed. The compression
continues adiabatically until the gas heats back up to T1. The cycle is repeated at
will.

The 2 graphs in Fig. 9 show the behaviour of the state variables. The behaviour of
T and S is simple at each stage: temperature is constant during the isothermal steps,
and entropy is constant during the adiabatic steps (d̄Q = TdS). The behaviour of
P and V can be determined straightforwardly. During isothermal stages 1 and 3,
pressure and volume have to multiply to equal a constant according to the equation
of state. During adiabatic stages 2 and 4 we know PV γ remains constant. Thus

along 1: PV = NkT1

along 2: PV γ = K2

along 3: PV = NkT3

along 4: PV γ = K4 .

Ideally, with no friction or loss, ∆S = 0 during one complete cycle. As we said,
the entropy is unchanged during adiabatic expansion or compression: (∆S)2 = 0 =
(∆S)4. During the isothermal expansion (∆S)1 = Q1/T1 and during the isothermal
compression (∆S)3 = Q3/T3, where Q1 > 0 and Q3 < 0 are the amounts of heat
transferred to the system. The requirement that the system returns to its initial
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S

T 1: isotherm
2: adiabatic
3: isotherm
4: adiabatic

A B

D C

V

P 1: isotherm
2: adiabatic
3: isotherm
4: adiabatic

A

B

CD

Figure 9: (Colour online) Path followed during the Carnot cycle in the (S, T ) plane
(left) and the (V, P ) plane (right).

state after one complete cycle means that

∆S =
Q1

T1

+ 0 +
Q3

T3

+ 0 = 0 . (5.3.1)

Therefore

|Q3| = T3
|Q1|
T1

. (5.3.2)

Given that T3 < T1, we see that the heat extracted from the system −Q3 is less than
the heat delivered to the system Q1. That heat is converted to work, as we will see
shortly.

If the system is not ideal then heat is lost through inefficiency. The engine itself
is not a closed system. In order to apply the second law of thermodynamics we
need to consider the engine and its environment. The environment has heat −Q1

taken away from it by the engine in stage 1, and heat −Q3 is returned back to the
environment in stage 3. While the engine returns to its initial state after one cycle,
the environment does not if there are any inefficiencies (i.e. if it is a realistic engine).
For the environment

∆S = − Q1

T1

− Q3

T3

≥ 0 . (5.3.3)

Thus any inefficiency implies

|Q3| > T3
|Q1|
T1

. (5.3.4)

In words, there is a minimum amount of heat that is returned to the environment
for any T3 > 0. It is impossible to construct a perfect engine which converts all
delivered heat into work. One defines the efficiency of a Carnot engine to be

η =
|Q1| − |Q3|

|Q1| =
T1 − T3

T1

. (5.3.5)

We can actually calculate the work done on the system (which we should expect
to be negative for an engine – it’s the one designed to be doing the work!) We
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already saw that d̄W = −P dV (3.1.1) and d̄W = dE− d̄Q (3.2.9). Integrating over
the full cycle (see right graph in Fig. 9) we get 4 contributions to the net work done
on the system:

W1 = −NkT1

∫ B

A

dV

V
= −NkT1

(
log

VB

VA

)
(5.3.6)

W2 =

∫ C

B

dE = − CV (T1 − T3) (5.3.7)

W3 = −NkT3

∫ D

C

dV

V
= NkT3

(
log

VC

VD

)
(5.3.8)

W4 =

∫ A

D

dE = CV (T1 − T3) (5.3.9)

The quantities on the right-hand sides are written so that the terms in parentheses
are positive. So we see that positive work is done by the system in stages 1 and 2,
and positive work is done on the system in stages 3 and 4. The area under curves
1+2 is greater than the area under curves 3+4, so we confirm that the engine does
net work over a complete cycle.

Note that along the adiabatics, we can combine PV γ = constant with PV =
NkT to find

TV γ−1 = constant . (5.3.10)

Applying this to curves 2 and 4, we have

T1V
γ−1
B = T3V

γ−1
C

T3V
γ−1
D = T1V

γ−1
A

which imply
VC

VD

=
VB

VA

. (5.3.11)

Adding together all these contributions the net work done on the system is

W = −Nk(T1 − T3) log
VB

VA

. (5.3.12)

5.4 Model of a non-ideal gas

We briefly deviate from our main example, the ideal gas, to discuss a simple model
of realistic gases. The van der Waals model modifies the ideal gas law to include
a finite radius for the particles and a parameter accounting for weak attractive
interactions. A useful potential which includes these effects is the Lennard-Jones
potential (Fig. 10)

U(r) = A
(r0

r

)12

− B
(r0

r

)6

(5.4.1)

where r0 is the length scale at which the potential switches from hard-core repulsion
to weak attraction; A and B are constants.

To account for the finite size of constituents in the van der Waals model, we say
that each particle occupies volume b. Then the effective volume Veff we should insert
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r

U(r)

r0

Figure 10: Lennard-Jones potential, an empirical potential describing van der Waals
interactions between atoms or molecules.

in the equation-of-state is the difference of the container’s volume V and the space
taken up by the particles

Veff = V − bN . (5.4.2)

In the presence of weak attraction, the particles at the boundary of the container
will feel a net attraction toward the centre of the system, consequently exerting less
pressure on the container walls. The number of pairs interacting near the wall of
area A is (N/V )2A. Thus the difference between the pressure we would measure if
interactions were absent and the realistic pressure is

Peff − Pmeas = a

(
N

V

)2

. (5.4.3)

It is Peff rather than the measured pressure which should appear in the modified
ideal gas equation-of-state. Therefore we arrive at the van der Waals equation

(
P +

aN2

V 2

)
(V − bN) = NkT . (5.4.4)

where we dropped the subscript from Pmeas.
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