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1. A field theory is described in terms of the elements of a complex N ×N matrix M
by a Lagrangian

L = Tr(∂µM †∂µM)− 1
2
λTr(M †MM †M)− kTr(M †M) ,

where Tr denotes the matrix trace and λ > 0. Show that this theory is invariant
under the symmetry group U(N)× U(N)/U(1) for transformations given by M 7→
AMB−1 for A,B ∈ U(N) and where the U(1) corresponds to A = B = eiθI (note
that if H is a subgroup of G then G/H is a group if H belongs to the centre of
G, i.e. hg = gh for all h ∈ H, g ∈ G). Show that if k < 0 spontaneous symmetry
breakdown occurs and that in the ground state M0

†M0 = v2I for some v. What is
the unbroken symmetry group and how many Goldstone modes are there?

If L → L+ L′ where
L′ = h

(
detM + detM †) ,

what is the symmetry group and how many Goldstone modes are there now after
spontaneous symmetry breakdown? (assume the ground state still satisfies M0

†M0 =
v2I)

[Note U(N) = SU(N)×U(1)/ZN where ZN is the finite group corresponding to the
complex numbers e2πik/N , k = 0, . . . N − 1, under multiplication.]

2. A field theory has 5 real scalar fields φa which are expressed in terms of a symmetric
traceless 3 × 3 matrix Φ =

∑5
1 φata where ta are a basis of symmetric traceless

matrices with Tr(tatb) = δab. The Lagrangian is given by

L = 1
2
Tr(∂µΦ∂µΦ)− V (Φ) , V (Φ) = g

(
1
4
Tr(Φ4) + 1

3
bTr(Φ3) + 1

2
cTr(Φ2)

)
,

where g > 0. Show that this theory has an SO(3) symmetry. Let M0 = {Φ0 :
V (Φ0) = Vmin}. Assume SO(3) acts transitively on M0, i.e. all points in M0 can
be linked by an SO(3) transformation. Show that then all Φ0 ∈M0 have the same
eigenvalues, which add up to zero, and that we may choose Φ0 so that it is diagonal.
Describe how the eigenvalues of Φ0 determine the unbroken subgroup of SO(3).

For this theory show that M0 is determined by the equation

Φ3
0 + bΦ2

0 + cΦ0 = µ I , 3µ = Tr(Φ3
0) + bTr(Φ2

0) .

(µ may be regarded as a Lagrange multiplier for the condition Tr(Φ) = 0 when
varying V (Φ)). Verify that there is a potential solution in which the unbroken
subgroup is SO(2) if b2 > 12c (note that in this case Φ0 may be given in terms of a
single eigenvalue).

For 3 × 3 traceless matrices Tr(M4) = 1
2

(
Tr(M2)

)2
. Show that if b = 0 the initial

symmetry is in fact SO(5) and that Vmin = −1
2
gc2 with an unbroken group SO(4).
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How do the results on possible unbroken symmetry groups generalise to the analo-
gous theory with SO(N) symmetry defined in terms of N ×N symmetric traceless
matrices?

3. Consider a SU(2) gauge theory coupled to a two component complex scalar field φ
acting on which the SU(2) generators are represented by τ = 1

2
σ, for σ the usual

Pauli matrices,

L = −1
4
Fµν ·Fµν + (Dµφ)†Dµφ− 1

2
λ
(
φ†φ− 1

2
v2)2 ,

where
Fµν = ∂µAν − ∂νAµ + gAµ ×Aν , Dµφ = ∂µφ− igAµ · τφ .

(The use of the cross product above arises because the SU(2) structure constant
is the Levi-Civita symbol: [ta, tb] = iεabctc.) Explain why we may choose φ =
(0, v+h)T/

√
2 and that the SU(2) gauge symmetry is completely broken. Neglecting

quantum corrections, what are the masses of the elementary particle states?

4. A triplet gauge field Aµ is coupled to a real triplet field φ with the Lagrangian,

L = − 1
4
Fµν ·Fµν + 1

2
(Dµφ)·Dµφ− 1

8
λ
(
φ2 − v2

)2
,

Fµν = ∂µAν − ∂νAµ + eAµ ×Aν , Dµφ = ∂µφ + eAµ × φ .

(I.e. φ transforms in the adjoint representation of SU(2). The use of the cross
product above arises by writing the SU(2) generators in the adjoint representation
as (ta)jk = −iεajk.) Show that this theory is invariant under SU(2) gauge transfor-
mations but that this is broken by the ground state to U(1). Rewrite the theory in
terms of physical fields and determine their masses and couplings.

For a complex triplet field φ suppose the Lagrangian is

L = −1
4
Fµν ·Fµν + (Dµφ)∗·Dµφ + 1

2
g2(φ∗ × φ)2 .

Show that in the classical ground state the potential may be minimised, up to a
freedom of gauge transformations, by choosing φ0 = v e3/

√
2 for any complex v

where e3 is the unit vector in the 3-direction. Explain why v ∼ −v under residual
gauge transformations. Why is it possible to impose the conditions Re(v∗φ·e1) =
Re(v∗φ·e2) = 0? Determine the masses of the physical fields. Why are theories with
different values of v2 inequivalent?

5. A gauge theory for the group G is described by the Lagrangian,

L = − 1
4
F µν

aFµνa + 1
2

(Dµφ)·Dµφ− V (φ) ,

Fµνa = ∂µAνa − ∂νAµa + g cabcAµbAνc , Dµφ = ∂µφ+ g Aµaθaφ ,

with a = 1, . . . dimG and θa matrices representing the Lie algebra of G, [θa, θb] =
cabcθc and cabc is completely antisymmetric. Assuming V ′(φ)·θaφ = 0 and φ′·(θaφ) =
−(θaφ

′)·φ show that L is invariant under G gauge transformations.

Suppose V (φ) is minimised at φ = φ0 and that we add a gauge fixing term of the
form

Lg.f. = −1
2

(
∂µAµa − g(θaφ0)·φ

)(
∂νAνa − g(θaφ0)·φ

)
.
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If φ = φ0 + f derive the decoupled linearised equations of motion for the vector,
scalar fields,

∂2Aµa + g2(θaφ0)·(θbφ0)Aµb = 0 , ∂2f +M·f + g2(θaφ0) (θaφ0)·f = 0 ,

whereM is a matrix determined by the second derivatives of V (φ) at φ = φ0. Show
that the mass eigenstates form multiplets of the unbroken gauge group H, for which
the corresponding gauge fields are massless (it is sufficient to show that the mass
matrices appearing in the linear field equations commute with the generators of H
in the appropriate representation).

6. Let L = ∂µφ∗∂µφ− 1
2
g(φ∗φ− 1

2
v2)2 be the Lagrangian for a complex scalar field φ.

Writing φ = (v + f + iα)/
√

2 show that the α field is massless whereas the f field
has a mass

√
gv2. Consider the scattering amplitude M for α particle scattering

which is defined by 〈α(p3)α(p4)|T |α(p1)α(p2)〉 = (2π)4δ4(p3 + p4− p1− p2)M where
S = 1− iT . Neglecting any Feynman diagrams with loops, show that

M = g2v2
(

1

s− gv2
+

1

t− gv2
+

1

u− gv2

)
+ 3g ,

where
s = (p1 + p2)

2 , t = (p3 − p1)2 , u = (p4 − p1)2 .

Verify that s + t + u = 0 and hence show that for α particles with low energies E
we have M = O(E4).
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