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D20a

MATHEMATICAL TRIPOS PART II Dr M Wingate

e-mail: M.Wingate@damtp.cam.ac.uk

Statistical Physics - Examples I Lent 2007

1. Establish Stirling’s formula as follows. Start with

n! =

∫

∞

0

e−xxndx ≡
∫

∞

0

e−F (x) dx.

Let the minimum of F be at x0. Approximate F (x) by F (x0) + F ′′(x0)(x − x0)
2/2. (One

further approximation is needed.) Hence get n! ∼
√

2πn nne−n.

2. The air in a bicycle pump is in equilibrium at pressure p. The piston is pushed in slowly
an infinitesimal distance so that the volume of air contained is decreased by an amount
dV . Show that the work done on the gas is pdV . Generalize this result to the case of
a volume of gas of any shape, when a general element dS of its surface at r is displaced
through dr.

3. Consider a system consisting of N spin- 1
2 particles (where N is large and even), each

of which can be in one of two quantum states, ‘up’ and ‘down’. (The particles are at fixed
sites and there are no other degrees of freedom and no interactions.) Suppose that N

2 + m

are ‘up’ and N
2 − m are ‘down’.

(a) Find the number of ways, g(N,m), in which this situation can occur.
(b) Use Stirling’s formula to show that g(N,m) ∼ g(N, 0) exp(−2m2/N).
(c) Estimate 〈m2〉 =

∑

m g(N,m)m2/
∑

m g(N,m) by using the approximation in (b),

and show that
√

〈m2〉 ≪ N . [Alternatively you could calculate 〈m2〉 exactly if you wish.]

4. (a) By considering dE, dF , dH and dG, obtain four different Maxwell relations for the
partial derivatives of S, P, T and V .
(b) Obtain the partial derivative identity
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(c) Obtain the partial derivative identity
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5. Consider a specimen of gas with a fixed number of molecules. Derive the following set
of results which are useful for many thermodynamic problems where what is known is the
equation of state. (The results of question 4 are needed.)

(a) Cp − CV = T ∂V
∂T

∣

∣

∣

p

∂p
∂T

∣

∣

∣

V
= −T ∂V

∂T

∣

∣

∣

2

p

∂p
∂V

∣

∣

∣

T
,

(b) ∂E
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(c) ∂E
∂p
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(d) ∂CV
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6. Consider an ideal gas, with equation of state pV = NkT and constant heat capacity
CV = Nkα. Use the results of Ex. 5(a) to show that Cp = Nk(α + 1), and that the
entropy is

S = Nk ln

(

V

N

)

+ Nkα lnT + const .

Deduce that, for an adiabatic process (∆S = 0), V Tα is constant and, equivalently, pV γ

is constant, where γ = Cp/CV .

7. A (non-ideal) gas has constant heat capacities CV and Cp. Use parts (a), (d) and (e)
of question 5, to show that its equation of state can be written as

(Cp − CV )T = (p + a)(V + b) .

Show also that E is of the form E = CV T + f(V ), find f(V ) and calculate the entropy as
a function of V and T .

8. The Joule-Thomson or Joule-Kelvin Process. Consider a thermally insulated pipe which
has a porous barrier separating two halves of the pipe. A gas of volume V1, initially on the
left-hand side of the pipe, is forced by a piston to go through the porous barrier using a
constant pressure p1. As a result the gas flows to the right-hand side, resisted by another
piston which applies a constant pressure p2 (p2 < p1). Eventually all of the gas occupies
a volume V2 on the right-hand side.

(a) Show that enthalpy, H = E + pV , is conserved.
(b) Find the Joule-Thomson coefficient µJT ≡ (∂T

∂p
)H in terms of T , V , the heat

capacity at constant pressure Cp, and the volume coefficient of expansion α ≡ 1
V

(∂V
∂T

)p.
[You will need to use a Maxwell relation.]

(c) What is µJT for an ideal gas?
(d) If we wish to use the Joule-Thomson process to cool a real (non-ideal) gas, what

must the sign of µJT be?

9. Consider a relativistic gas of N spinless particles obeying the energy-momentum relation
ε = pc, where c is the speed of light in vacuum. Show that the partition function is given
by

Z(V, T ) =
1

N !

[

V

π2

(

kT

h̄c

)3
]N

.

10. Show that the energy fluctuation in a canonical distribution is given by
〈

(E − 〈E〉)2
〉

= kT 2CV .

Then show, for an ideal gas of N monatomic particles, that
〈

(E − 〈E〉)2
〉

〈E〉2
=

2

3N
.


