
C
op

yr
ig

ht
 ©

 2
00

7 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

D20c

MATHEMATICAL TRIPOS PART II Dr M Wingate

e-mail: M.Wingate@damtp.cam.ac.uk

Statistical Physics - Examples III Lent 2007

1. Consider a quantum harmonic oscillator of angular frequency ω, and at temperature
T , and discard the zero point energy, so the energy levels are εn = nh̄ω. Show that this
system is thermodynamically equivalent to the Planck oscillator, which has just a single
energy level h̄ω that can be occupied by any number of particles n, in contact with a heat
and particle reservoir. What is the temperature and chemical potential of the reservoir?

The vibrational modes of a violin string can be regarded as a set of Planck oscillators
with frequencies ω, 2ω, 3ω, . . .. Find the expectation value of the thermodynamic energy
of the string. Does the sum converge?

2. Let

In =

∫

∞

0

xn

ex − 1
dx ,

where n > 0. By expanding (ex−1)−1 as e−x+e−2x+e−3x+· · ·, show that In = n!ζ(n+1),
where ζ(n) =

∑

∞

r=1 r−n is the Riemann zeta function. Assume (or prove, using a contour

integral method) that if the Taylor expansion of πz cot πz about the origin is
∞
∑

m=0
amzm

then

a2m = −2
∞
∑

r=1

r−2m (m ≥ 1).

Hence find ζ(4), and the value of I3.

3. In 1912 Debye derived a formula for the specific heat of a solid of N atoms occupying
volume V . He viewed the solid as a continuous medium in which there exist elastic waves,
with g(ω)dω wave modes in the frequency range ω to ω + dω, where

g(ω) =
3ω2V

2π2c3
s

.

(The factor 3 arises from the simplification in which the two transverse modes and the one
longitudinal wave mode of each frequency are assumed to have the same speed cs.) Debye
also assumed that the spectrum of ω was cut off at a maximum value ωmax so chosen that
the total number of modes is equal to 3N , the number appropriate to a solid of N atoms,
and that the state of thermal equilibrium of the solid was governed by the analogue of the
Planck distribution.

Show that it follows that the total energy of the solid is given by

E = 3NkT D(TD/T ) , kTD = h̄ωmax , D(z) =
3

z3

∫ z

0

x3 dx

ex − 1
.

Show that the heat capacity of the solid is given by (Dulong and Petit’s) classical result
3Nk for T ≫ TD, and is proportional to T 3 for T ≪ TD.

4. Consider the condensed state of an ideal gas of N Bose particles in a cubic box of side L
at a temperature T , where 0 < T < Tc. Show that Tc ∝ N2/3/L2 and that the 1-particle
energy levels εn ∝ L−2. Show that the mean occupancy of the first few excited 1-particle
states is large, but not as large as O(N).

5. As a simple model of a semiconductor, suppose that there are N bound electron states
per unit volume, having energy −∆ε, which are filled at zero temperature. At non-zero
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temperature some electrons are excited into the ‘conduction band’ which is a set of states
of continuous positive energies ε, where the density of states is given by g(ε)dε = A

√
εdε

where A is a constant. Show that at temperature T the number n of excited electrons is
determined by the pair of equations

n =
N

e(µ+∆ε)/kT + 1
=

∫

∞

0

g(ε) dε

e(ε−µ)/kT + 1
.

Show also that, if n ≪ N and T is so small that eµ/kT ≪ 1,

2µ ≈ −∆ε + kT ln

[

2N

A
√

π(kT )3

]

.

6. Consider an almost degenerate Fermi gas of electrons at low temperature. Using the
formula for N and the expansion of the Fermi-Dirac function f 3

2

(eξ) for ξ ≫ 0, show that

ξ =
εF

kT

(

1 − π2

12

(

kT

εF

)2

+ · · ·
)

.

Deduce that the energy of the electron gas (formula in terms of f 5

2

(eξ)) is

E =
3

5
NεF

(

1 +
5π2

12

(

kT

εF

)2

+ · · ·
)

.

7. A classical system has Hamiltonian

H =
N

∑

i=1

[

p2
i

2m
+ λ q4

i

]

,

where pi is the momentum conjugate to qi and λ is a positive constant. Find the specific
heat of the system. (Answer: 3

4k per particle.)

8. Consider a perfect classical gas of diatomic molecules for which each molecule has a
magnetic moment m aligned along its axis. Let there be a magnetic field B, so that each
molecule has a potential energy −mB cos θ (θ being the angle between the axis of the
molecule and the magnetic field). Show that the rotational part of the partition function
is Zrot = (zrot)

N where

zrot =
[ 8π2I

h2mBβ2

]

sinh(mβB) .

Show that the average value of the total magnetisation is kT ∂
∂B lnZrot. Evaluate

this and sketch its dependence upon mβB. Show that, for large mβB (i.e. for kT ≪
mB at fixed B or mB ≫ kT at fixed T ), the average value of the potential energy is
NkT − NmB(1 + 2e−2mβB + . . .).

9. A classical, non-perfect gas of N monatomic molecules has Hamiltonian

H =
N

∑

r=1

[

1

2m
p2

r +
N

∑

s=r+1

φ(Rrs)

]

where Rrs = |xr−xs|. Show that the partition function Z = Z0K where Z0 is the partition
function for a perfect gas and

V NK =

∫ N
∏

r=1

d3xr exp

[

−β
N

∑

s=r+1

φ(Rrs)

]

.

Let λrs = exp[−βφ(Rrs)]− 1 and work to first order in the λ’s. Thus get K ≈ 1+ N2

2V f(T )

where f(T ) =
∫

d3y [e−βφ(y) −1] , y = |y| . Deduce that the pressure P ≈ NkT
V [1− N

2V f(T )].
Comment on the connection between the sign of φ and the sign of f .


