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A boundary integral formulation is used to investigate the interaction between a
pair of deformable drops in a simple shear flow. The interactions do not promote
appreciably the breakup of the drops. For certain ratios of the viscosities of the drops
and the suspending fluid, the lubrication gap that separates the two drops can diminish
rapidly in the extensional quadrant of the flow. Slight deformation endows the drops
with an apparent short-range repulsive interaction: drop coalescence requires van
der Waals attraction which was not included in this study. From the trajectories of
different collisions, the self-diffusion coefficients that describe the cross-flow migration
of the non-Brownian drops in a dilute sheared emulsion are obtained. The self-
diffusivities are very anisotropic, depend strongly on the viscosity ratio, and depend
modestly on the shear rate.

1. Introduction
Shear-induced self-diffusion of non-Brownian drops in emulsions is important

because it facilitates mixing. In the production of specialized polymer blends, macro-
scopic properties such as the mechanical strength of the product rely on effective
mixing of the emulsified melt to produce a uniform microstructure.

In the absence of interfacial tension, the drop size in an efficient mixing device
will continuously decrease until Brownian motion can effectively homogenize the
fine droplets throughout the continuous phase. However, interfacial tension places
a lower bound on the drop size that can be obtained by mixing. For drops in
shear flow, significant deformation and breakup generally occur when the capillary
number, Ca = µγ̇a/σ is O(1), where γ̇ is the imposed shear rate, a is the undeformed
drop radius, µ is the continuous-phase viscosity, and σ is the interfacial tension.
The numerical value of the critical capillary number depends on the dispersed-phase
volume fraction φ and the ratio of the viscosities of the dispersed and continuous
phases, λ.

For isolated drops with 0 < λ < 4, the criterion Ca = O(1) provides a reasonable
estimate of the drop size produced by a given shear rate; for λ outside this range,
isolated drops do not break in steady shear flow (Hinch & Acrivos 1980; Grace 1971).
The effect of drop interactions on the critical capillary number has not been studied;
thus the effect of volume fraction is unknown. The coalescence rate of undeformed
spherical drops has been computed (Zinchenko 1984; Wang, Zinchenko & Davis
1994) but little is known about the tendency for deformable drops to coalesce.

Brownian motion of the drops produced by breakup at a given shear rate will
be significant only if the Péclet number, Pe = µγ̇a3/kT 6 O(1). If the shear rate
is maintained, Ca = O(1) and Pe = O(σa2/kT ). Given that surface tension results
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from molecular interactions (e.g. disjoining pressure), we estimate σ ∼ kT/b2, where
b � a is a molecular length scale. Thus, Pe � 1 under typical conditions, so that
Brownian motion is unimportant. Moreover, Pe 6 O(1) and Ca = O(1) imply that
γ̇ > σ3/2/µ(kT )1/2. These conditions are rarely attained in practice either because the
volumetric power, σ3/µkT , is unavailable or because the resultant viscous heating
would be detrimental. Typical mixing operations generate non-Brownian deformable
drops characterized by Pe � 1 and Ca = O(1). Thus, self-diffusion of deformable
drops is an essential mixing mechanism in most emulsification processes.

The O(a) displacements and O(γ̇a) relative velocities between interacting particles
or drops produce self-diffusivities that are O(γ̇a2). Cross-flow self-diffusion of smooth
spheres can only result from multi-particle interactions because pairwise interactions
cannot generate a net cross-flow displacement. Shear-induced self-diffusion of rigid
spherical particles has been experimentally observed (Eckstein, Bailey & Shapiro
1977; Leighton & Acrivos 1987) and numerically simulated (Brady & Bossis 1987).
Wang, Mauri & Acrivos (1996) calculated the small O(φ2γ̇a2) cross-flow self-diffusivity
in a sheared dilute suspension of smooth spheres.

Pairwise interactions can induce larger O(φγ̇a2) self-diffusivities in dilute suspen-
sions of nonspherical or deformable particles or particles that are stabilized against
aggregation by a repulsive interaction. da Cunha & Hinch (1996) computed the
self-diffusivity of rough spheres in a dilute suspension. However, there have been no
studies on the self-diffusion of drops.

The primary aim of this article is to compute cross-flow self-diffusion coefficients
of non-Brownian deformable drops in a sheared dilute emulsion. The tendency for
interacting deformable drops to break up and coalesce in shear flow are related issues.
The effects of the capillary number and viscosity ratio are the focus of our study.
Neutrally buoyant drops and a monodisperse drop size distribution are assumed.
Marangoni stresses on the drop interfaces that result from surfactant concentration
gradients are neglected. Low-Reynolds-number conditions are assumed which restricts
practical application of our results for Ca = O(1) to suspending fluids that are about
100 times more viscous than water.

In §2, the numerical procedures are described. Numerical results describing the
trajectories and near-contact motion of a pair interacting drops are presented in §3;
self-diffusion coefficients are presented in §4. Concluding remarks are made in §5.

2. Calculation procedure
2.1. Interactions between deformable drops

Boundary integral calculations were used to compute the interactions and trajectories
of deformable drops (Ca > 0) in shear flow as sketched in figure 1. Following
Loewenberg & Hinch (1996) each drop interface, S1 and S2, was discretized into N
flat triangular elements and the velocity was computed at collocation points x on the
interfaces using the multidrop non-singular boundary integral formulation:

(λ+ 1)u(x) = 2x2 + (λ− 1)u(x)

− 1

4π

∫
S1(x′)

[
1

Ca

[
κ(x′)− κ(x∗)

]
G(x̂) · n(x′) + (λ− 1)

[
u(x′)− u(x∗)

]
· T (x̂) · n(x′)

]
dx′

− 1

4π

∫
S2(x′)

[
1

Ca

[
κ(x′)− κ(x∗)

]
G(x̂) · n(x′) + (λ− 1)

[
u(x′)− u(x∗)

]
· T (x̂) · n(x′)

]
dx′,

(2.1)
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Figure 1. Schematic of the relative trajectory between a pair of deformable interacting drops in
shear flow.

which was made dimensionless using a and γ̇a for the characteristic length and
velocity; x2 is the dimensionless imposed shear flow shown in figure 1. The local
mean curvature κ and the outward normal vector n on the drop surfaces were obtained
by line integration (Loewenberg & Hinch 1996). The Stokeslet and stresslet are

G =
I

r
+
x̂x̂

r3
and T = −6

x̂x̂x̂

r5
,

where x̂ = x′ − x and r = | x̂ |. The formulation is rendered non-singular by taking
x∗ as the collocation point closest to x (Loewenberg & Hinch 1996).

The non-singular surface integrals in (2.1) were evaluated with integrand evaluations
only at the collocation points and the contribution from the boundary element
containing x was excluded. Errors introduced by the curvature calculation dominate
the O(N−1) errors introduced by this simple integration rule and the use of flat
triangular boundary elements (Loewenberg & Hinch 1996). Equation (2.1) was solved
by Picard iteration, inserting velocities from the last iteration back into the equation.
Eigensolution purging (Pozrikidis 1992, pp. 120–127) was used to accelerate iterative
convergence and enable calculations with λ � 1 and λ � 1. Adequate pointwise
convergence was obtained with only a few iterations. For the special case λ = 1,
equation (2.1) provides an explicit formula for u(x).

2.2. Trajectories of deformable drops

Trajectories of deformable drops were computed by advancing the collocation points
on the drop surfaces according to the kinematical condition:

dx

dt
= u(x) + w(x), (2.2)

where u(x) is the actual velocity of the collocation point obtained by solving (2.1)
and w(x) is a locally defined tangential ‘velocity’ field that maintains a desirable
distribution of collocation points on the drop surfaces with a somewhat higher
density of points in the near-contact region between the drops and on regions with
high curvature. The precise local rule that defines w is unimportant; in all cases,
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Figure 2. Schematic of coordinate system for describing the interaction between spherical drops.

a well-controlled grid of collocation points was maintained with the rule used by
Loewenberg & Hinch (1996).

Equation (2.2) was integrated using a second-order Runge–Kutta scheme with time
steps, ∆t = 1

2
Ca∆x, where ∆x = O(N−1/2) is the minimum separation between the

collocation points on a drop interface (Rallison 1981). Our results were unaffected
by smaller time steps and were unstable for larger steps. The O(N−1) time integration
error of this procedure is the same order as the surface integration errors and smaller
than the curvature calculation errors (Loewenberg & Hinch 1996).

2.3. Trajectories of spherical drops

For the limiting case Ca → 0, spherical drop trajectories were obtained by second-
order Runge–Kutta integration of the differential equations:

dr

dt
= 1

2
[1− A(r, λ)] r sin2 θ sin 2ϕ , (2.3a)

dθ

dt
= 1

4
[1− B(r, λ)] sin 2θ sin 2ϕ , (2.3b)

dϕ

dt
= − sin2 ϕ− 1

2
B(r, λ) cos 2ϕ , (2.3c)

where the coordinates are defined in figure 2 and the variables have been made
dimensionless using a and γ̇−1 for the characteristic length and time; three-decimal-
place convergence was obtained with ∆t = 10−3. The mobility functions, A(r, λ) and
B(r, λ), describe the interactions between spherical drops in a linear flow field. For
near-contact motion r → 2, A→ 1 and B tends to a positive constant less than unity;
both functions vanish at large separations r →∞. At all separations, B(r, 0) = 0. The
near- and far-field asymptotic behaviour of these functions has been derived and a
bispherical coordinate solution has been obtained (Zinckenko 1982, 1983). Herein, the
mobility functions were evaluated with Zinchenko’s fortran subroutines (personal
communication).
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2.4. Self-diffusivities

The self-diffusion tensor is defined as half the rate-of-change of the random walk
variance:

D = lim
t→∞

1

2

d

dt
〈∆∆〉 , (2.4)

where the cross-flow random walk displacement, ∆, has zero mean. The cross-flow
displacement, ∆ = (∆2,∆3), is defined in figure 1. For given values of Ca and λ, the
cross-flow displacement of a drop resulting from its pairwise interaction with another
identical drop depends on the initial offset of the drop trajectories, (x0

2, x
0
3), at large

separations in the flow direction, x1. Only uncorrelated pairwise interactions between
identical drops are considered on the assumption that the emulsion is dilute and
monodisperse.

The rate of interactions that result in a particular cross-flow displacement,
∆(x0

2, x
0
3;Ca, λ), is n γ̇ |x0

2| dx0
2 dx0

3, where n is the number density of drops: φ = 4
3
πa3n.

By definition (2.4), the dimensionless self-diffusion coefficient for a dilute emulsion is
(da Cunha & Hinch 1996)

fα(Ca, λ) =
Dα

φγ̇a2
=

3

2π

∫ ∞
0

∫ ∞
0

∆2
αx

0
2 dx0

2dx
0
3 , (2.5)

where α = 2 or 3 for cross-flow self-diffusion in the velocity gradient or the vorticity
direction (cf. figure 1). The result exploits the four-fold symmetry of integration in
the (x0

2, x
0
3)-plane.

For deformable drops, the double integral of formula (2.5) was evaluated using
integrand values on the truncated square domain, (x0

2, x
0
3) ∈ [0, X2] × [0, X2] with

∆(x0
2, x

0
3) obtained by integrating (2.2). For widely separated neutrally-buoyant drops,

the cross-flow velocity is ∆̇ ∼ R/r3, where r ≈ (R2 +x2
1)

1/2 � 1 is the drop separation,
x1 is the component of separation in the flow direction, and R = [(x0

2)
2 + (x0

3)
2]1/2

is the initial cross-flow separation. Using ẋ1 ∼ R, we obtain d∆/dx1 ∼ 1/r3. Then
integrating from zero to infinity, we obtain the estimate ∆(x0

2, x
0
3) ∼ R−2 for R � 1.

Thus, the domain truncation error for the double integral of formula (2.5) is O(X−1
2 ).

Using the asymptotic form derived above, we extrapolated our results to obtain
a smaller O(X−2

2 ) domain truncation error. For deformable drops, the calculations
presented herein were obtained with an X2 = 4 domain truncation. A comparison
between the values obtained with X2 = 4 and X2 = 8 indicate that the domain
truncation error is 1–2%. On the inner portion of the truncated integration domain,
(x0

2, x
0
3) ∈ [0, 2] × [0, 2], a two-dimensional Simpson’s rule was implemented on a

5× 5 rectangular mesh; a trapezoid rule with a coarser 5× 5 mesh was used on the
remainder of the truncated region, where the integrand is smaller and slowly varying.
This integration procedure requires 32 trajectory calculations and is accurate to about
1% for integrands similar to that in (2.5).

Unstabilized hydrodynamically interacting spherical drops will coalesce for

R 6 2E
1/3
12 , where E12 is the ‘collision efficiency’ (Wang et al. 1994); for equal-

size spherical drops with λ = 1, E12 = 0.38. Herein, spherical drops were stabilized
against coalescence by supplementing (2.3) with a singular, infinitesimally short-range
repulsion described by setting A = 1 for 0 < r − 2 < δ in the compressive quadrant
of the flow field, ϕ > π/2 (Zinchenko 1984). In general, the results depend on
the value of δ but for δ < 10−4 our results, accurate to three digits, were insensi-
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tive to δ. For spherical drops with short-range repulsion, ∆(x0
2, x

0
3) is non-zero only

within the circular domain R 6 2E
1/3
12 and it was evaluated by integrating (2.3). The

mobility functions were tabulated for improved computational speed. Formula (2.5)
was evaluated using a trapezoid rule with a 40× 40 rectangular grid on the domain

(x0
2, x

0
3) ∈

[
0, 2E

1/3
12

]
×
[
0, 2E

1/3
12

]
. Results obtained with courser grids indicate that the

integration error is about 0.1%.
Deformable drops can also be stabilized with a short-range repulsive interaction

(Loewenberg & Hinch 1996); however, this was implemented only for 2 6 λ 6 5 and
for λ < 0.1 on the most closely spaced trajectories (R < 1). As explained in §3.2, very
small surface separations occur under these conditions. For λ = 1, we confirmed that
the short-range repulsion had a negligible effect on the drop trajectories. Calculations
for closely spaced trajectories with Ca < 0.1 are impractical because of the exceedingly
small surface separations that occur.

Cross-flow trajectory offsets were obtained with one drop initially centred at the
origin and the second initially at a downstream location, (−X1, x

0
2, x

0
3). Trajectory

integration was continued until the second drop passed the plane x1 = +X1. For
deformable drops, the initial drop shapes corresponded to the stationary shapes of
isolated drops under the same flow conditions. The error induced by trajectory
truncation is O(X−3

1 ). We used X1 = 8 for deformable drops and X1 = 20 for
spherical drops. Based on a limited number of calculations with larger values of
X1, we estimate that trajectory truncation error is about 1% for deformable drops
and about 0.1% for spherical drops. Trajectory truncation errors could be reduced
by analytically integrating the far-field form of the pair interaction on the trajectory
tails, |x1| > X1; however, errors induced elsewhere in the calculation procedure do
not warrant this refinement.

2.5. Computation time and numerical convergence

For deformable drops, the computation time is dominated by the O(N2) integrand
evaluations needed for the surface integrals in (2.1) at each time step. Given that
∆t ∼ CaN−1/2, the total CPU time required to compute the self-diffusion tensor is
O(N5/2Ca−1). For N = 720, ∆t ' 0.06 Ca and for λ = 1 a time step requires 0.36 CPU
seconds on a Hewlett-Packard 9000 series 735 workstation with the standard opti-
mizing fortran compiler. Depending on the trajectory offset, a complete trajectory
requires about 3 CPU minutes for Ca = 0.3 and λ = 1; self-diffusion coefficients were
obtained in 2 CPU hours. The calculations are 3–4 times slower for λ 6= 1 because
(2.1) must be solved by iteration.

The results depicted in figure 3 demonstrate numerical convergence of the boundary
integral calculations for trajectories of deformable drops. Loewenberg & Hinch
(1996) showed that curvature values have only O(N−1/2) pointwise accuracy but that
integrals of the curvature over large portions of a drop interface are accurate to
O(N−1). Figure 3(b) demonstrates that the total discretization error resulting from
the curvature calculation, surface integration, and trajectory integration is O(N−1).
Herein, self-diffusivities were computed with N = 720; discretization errors are
therefore about 2% according to figure 3(b) which is comparable to the remaining
sources of error discussed in §2.4.

Self-diffusivities for spherical drops require less than a minute of CPU time and
are accurate to about 0.1%.
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Figure 3. Relative trajectory of two interacting drops for Ca = 0.3, λ = 1; initially, one drop centred
at the origin, second drop at (−10, 0.5, 0). (a) Cross-flow separation (velocity gradient direction)
versus time; results obtained obtained using N = 180 (dotted curve), 320 (dashed-dotted curve),
720 (dashed curve), and 1280 (solid curve) boundary elements. (b) Cross-flow displacement versus
reciprocal number of boundary elements, 1/N.

3. Numerical results
3.1. Drop trajectories

The trajectories depicted in figures 4 and 6 illustrate how pairwise interactions between
drops are affected by the shear rate (capillary number) and the drop viscosity.
Figures 5 and 7 show the corresponding trajectory offsets that occur during the
interactions. The initial conditions, given in the captions of figures 4 and 6, are the
same for all trajectories. The capillary number is the ratio of the distorting viscous
stresses, µγ̇, to the restoring stress of surface tension, σ/a; thus, drop deformation
increases with Ca as illustrated in figure 4. The drop rotation rate is γ̇ and the drop
relaxation rate is σ/[µa(1 + λ)]; thus, drop deformation decreases with drop viscosity,
as shown in figure 6.

3.2. Near-contact motion: approach of drops

In this subsection, we present scaling arguments that predict the area of the near-
contact region between closely spaced drops that are pressed together in shear flow
and the thinning rate of the film that separates their surfaces. The arguments implicitly
assume that the duration of close interaction scales with the inverse shear rate which is
insufficient to form a dimpled near-contact region. The trajectories shown in figures 5
and 7 support this estimate of the interaction time and near-contact dimpling is not
seen for the results depicted in figures 4 and 6.

A thin film with thickness h and lateral extent d� h forms between drops that are
pressed together in the compressional quadrant of a shear flow by a viscous force,
µγ̇a2. The lateral extent of the near-contact region depends on Ca and λ as shown
in table 1. For the smallest capillary numbers, the lateral scaling is based on the
geometry of a sphere. In the intermediate range, d is obtained from a force balance
with capillary pressure balancing the lubrication pressure in the near-contact region:
σ/a ∼ µγ̇a2/d2; for Ca = O(1), this yields d ∼ aCa1/2. For λ� 1 and Ca > λ−2/3, this
balance cannot be achieved during the drop interaction time, γ̇−1. Instead, the lateral
scaling for very viscous drops is obtained by equating the pressure in the near-contact
region to the viscous stress that resists deformation, µλδ̇/d, where δ is the depression
of the drop interface in the near-contact region. Thus, δ̇ is the characteristic velocity
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Figure 4. Sequences (1–4) showing the interactions between two drops in shear flow with λ = 1:
(a) Ca = 0, (b) Ca = 0.1, (c) Ca = 0.3, (d) Ca = 0.4. Insets show magnified view of near-contact
region. Initially, one drop is centred at the origin, the other at (−10, 0.5, 0). Initially, each drop has
the steady shape of an isolated drop under same flow conditions.

Ca� h/a h/a 6 Ca� (1 + λ)−2/3 Ca = O (1 + λ)−2/3

d ∼ (ha)1/2 d ∼ aCa1/2 d ∼ a(1 + λ)−1/3

Table 1. Lateral extent of the near-contact region between drops.

inside the drops where the viscosity is µλ; variations in the internal velocity occur
on the length scale d. Then taking δ ∼ d2/a yields d2ḋ ∼ γ̇a3/λ which is integrated
over the time of drop interaction to obtain d ∼ aλ−1/3. This physical description
is analogous to that of elastic particles – replacing the viscous stress by the elastic
stress νδ/d, where ν is the appropriate elastic modulus, we recover the contact area,

d2 ∼ a2
(
µγ̇/ν

)2/3
.

The local velocity in the near-contact region between two drops is u = up + ut,
where ut is the tangential velocity on the drop interfaces and

up = − 1

2µ

dp

dr
z (h− z)

is the pressure-driven flow. In the absence of Marangoni stresses, the tangential stress
is continuous across the drop interface, thus

µ
up

h
∼ µλut

d
.
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Figure 5. Cross-flow separation (velocity gradient direction) versus time between interacting drops
with the capillary numbers indicated and λ = 1. Results correspond to sequences depicted in
figure 4.

From mass continuity, d2ḣ ∼ −hd
(
up + ut

)
, it follows that

ḣ

h
∼ − up

λd

(
λ+

d

h

)
.

Then taking

up ∼
∆p

µ

h2

d
,

where ∆p ∼ µγ̇a2/d2 is the pressure in the near-contact region, we obtain the predicted
approach rate (

ḣ

h

)
APP

∼ −γ̇ h
2a2

d4

(
1 +

d

λh

)
, for λ >

h2a

d3
. (3.1)

The foregoing derivation relies on the assumption that the pressure in the near-contact
region dominates stresses on the remainder of the drop surfaces which requires that
µaḣ < ∆pd2. This condition is not satisfied for very low drop viscosities λ 6 h2a/d3.

For d/λh� 1, the flow in the near-contact region is dominated by the uniform flow
ut and the lubrication resistance is dominated by the flow within the drops; the drop
interfaces are ‘fully mobile’. In the complementary regime for highly viscous drops,
up dominates the flow in the near-contact region and gives rise to the lubrication
resistance.

For spherical drops, Ca� h/a where d ∼ (ha)1/2, an initial gap h0 will decrease as

h/h0 ∼
(

1− γ̇t

λ
(a/h0)

1/2

)2

for λ < d/h and thus predicts that coalescence can occur (Davis, Schonberg &
Rallison 1989). For λ > d/h, h = h0 exp(−γ̇t) indicating that coalescence is prevented
or delayed until h < d/λ. Figure 4(a) shows that stabilized spherical drops with λ = 1
make apparent contact (frame 2) then rotate and slide according to (2.3) with A = 1.
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Figure 6. Sequences (1–4) showing the interactions between two drops in shear flow with Ca = 0.3:
(a) λ = 0.25, (b) λ = 1, (c) λ = 2, (d) λ = 4, (e) λ = 8, (f) λ = 20. Insets show magnified view of
near-contact region. Initially, one drop is centred at the origin, the other at (−10, 0.5, 0). Initially,
each drop has the steady shape of an isolated drop under same flow conditions.

When ϕ = π/2 (frame 3), the drops again separate. Unstabilized spherical drops
would coalesce on this trajectory.

For Ca > 0, d becomes independent of h as h → 0 so that (3.1) predicts slow
algebraic film thinning: h/a ∼ (λ/γ̇t)(d/a)3 thus, a non-hydrodynamic singular force
such as van der Waals attraction is required for drop coalescence. This prediction is
demonstrated by the trajectories depicted in figures 4 and 6; calculations with smaller
initial offsets further confirm this observation. This conclusion is consistent with the
results of Yiantsios & Davis (1991) for buoyancy-driven motion with Ca� 1.

For slightly deformable drops h/a 6 Ca � (1 + λ)−2/3, the film thinning rate
decreases with capillary number. An estimate for the gap thickness separating two
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Figure 7. Cross-flow separation (velocity gradient direction) versus time between interacting drops
with the viscosity ratios indicated. Thick curves correspond to sequences shown in figure 6 with
Ca = 0.3 (trajectory for λ = 8 omitted for clarity). Fine solid curve: trajectory for smooth rigid
spheres; fine dash-dotted curve: Ca = 0, λ = 20.

drops after they pass through the compressional quadrant of a shear flow is obtained
by integrating (3.1) over the drop interaction time. Accordingly, h/a ∼ λCa3/2 for
λ 6 aCa1/2/h, and h/a ∼ Ca for highly viscous drops. Thus we predict the gap to
increase with Ca, as the comparison of figures 4(b) and 4(c) illustrates, and increase
with λ for λ < d/h, as shown in figure 6(a–c).

For Ca = O(1) and λ = O(1), integration of (3.1) indicates that the gap between
two drops is h/a ∼ λ. For highly viscous deformable drops λ > (a/h)3/4, h/a ∼ λ−2/3

after the drops are pressed together in the compressional quadrant of the flow.

For viscosities in the intermediate range
(
a/h
)3/4
> λ � 1, the resistance to internal

circulation increases with drop viscosity but the size of the lubrication region decreases
with drop viscosity. These offsetting effects cancel so that film thickness is predicted
to be independent of viscosity ratio. Figure 6 demonstrates that the film thickness
after compression is insensitive to viscosity ratio in the range 2 6 λ 6 8 under the
conditions shown. For larger viscosities, the film thickness decreases with viscosity
ratio as the comparison of figures 6(e) and 6(f) demonstrates.

3.3. Near-contact motion: separation of drops

In this subsection, we present scaling arguments for the separation of closely spaced
deformable drops in shear flow.

In the extensional quadrant of the shear flow, the internal circulation û can be
estimated by continuity of tangential stress on the drops: µγ̇a ∼ µ (1 + λ) û. At
the centre of the near-contact region, the internal flow vanishes by symmetry so
that û ∼ γ̇d/(1 + λ) in the near-contact region, where d is the lateral extent of the
near-contact region that was formed when the drops passed through the compressive
quadrant of the flow; the scaling for d is provided in table 1. The pressure associated
with the internal flow is ∆p̂ ∼ µλγ̇/(1+λ). The sense of this internal circulation draws
fluid from the gap and thus tends to reduce the separation between the drops.

The velocity in the gap between the drops surfaces is u = up + ut, where ut is
the tangential velocity on the drop interface and up = (∆p/µ)(h2/d) is the pressure-
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driven flow. The normal stress balance on the drop interface is ∆p = ∆p̂ − κσ,
where κ = O(1/a) is the local curvature of the interface. Suction in the gap cannot
exceed the negative pressure induced by the flow, thus ∆p = ∆p̂−min

(
σ/a, µγ̇a2/d2

)
.

The tangential stress balance is µλ (ut − û) /d = µup/h. Putting together all of these
relations, we obtain

u ∼ γ̇
[

d

1 + λ
− h2a2

d3

1 + d/hλ

1 + Ca(a/d)2

]
,

indicating that fluid can flow in or out of the gap between the drops. By a mass
balance on the fluid in the gap, d2ḣ ∼ hdu, we obtain(

ḣ

h

)
SEP

∼ − 1

1 + Ca(a/d)2

(
ḣ

h

)
APP

− γ̇ 1

1 + λ
, (3.2)

where the first term on the right-hand side, given by (3.1), describes the increase in
gap thickness resulting from capillary suction and suction from the flow that pulls the
drops apart. The second term describes film draining that results from the internal
circulation convecting fluid out of the gap. Derivation of the above result shows that
the pressure in the lubrication gap dominates the pressure inside the drops.

For spherical drops Ca � h/a with d ∼ (ah)1/2, the internal circulation is unim-
portant. The separation rate predicted by (3.2) reduces to (ḣ/h)SEP ∼ −(ḣ/h)APP as
expected. However, the behaviour of deformable drops is more complex.

For Ca > 0, a distinct flow regime exists at the edge of the flattened near-contact
region. The characteristic length of this region is given by the local radius of curvature
which is small compared to d. Thus, the flow in this region is dominated by surface
tension. Accordingly, the drop interfaces ‘peel’ apart with the surface-tension-driven
velocity u = σ/[µ(1 + λ)] although the actual velocity is limited by the positions of
the drops and therefore cannot exceed γ̇a. This gives a ‘peeling rate’:

u

d
∼ γ̇ a/d

(1 + λ)Ca+ 1
.

Then combining with (3.2), we obtain the separation rate for closely spaced drops
with Ca > 0 in the extensional quadrant of a shear flow:(

ḣ

h

)
SEP

∼ γ̇ a
d

1

(1 + λ)Ca+ 1
− γ̇ 1

1 + λ
, Ca > 0 (3.3)

where the first term on the right-hand side describes the drop separation rate that
results from peeling of the drop interfaces; the second term on the right-hand side
describes film draining that results from internal circulation. The term involving(
ḣ/h
)

APP
has been omitted because it is subdominant as explained below.

From (3.1), the above result, and the estimates provided in table 1, it can be shown
that for deformable drops,

(
ḣ/h
)

SEP
�
(
ḣ/h
)

APP
. The time scale for drop separation

is much shorter than the time scale for their approach. This observation suggests that
in the zero deformation limit, deformable drops behave like spherical drops stabilized
against coalescence by a singular short-range repulsion. This prediction is supported
by the calculations depicted in figures 5 and 7 which indicate that the cross-flow
trajectory displacements for Ca = 0 are close to those obtained for Ca = 0.1 with
λ = 1 and for Ca = 0.3 with λ = 20.

According to (3.3), the opposing effects of interface peeling which promotes drop
separation and internal circulation which promotes film drainage are the same order
of magnitude for Ca = O(1) and λ = O(1). Thus, it is possible for the gap to thin
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exponentially fast when two closely spaced drops are pulled apart by the flow. This
unexpected behaviour was observed for calculations with viscosity ratios in the range
2 6 λ 6 8 as depicted in figure 6(c–e) in each case, the fourth frame shows the rapid
thinning as the two drops are pulled apart. The different role of the outer flow on
gap thinning in the compressional and extensional quadrants is affected by the shape
and orientation of the isolated drops: lower-curvature portions of the drop surfaces
are pressed together in the compressional quadrant; higher-curvature portions are
closest when the drops rotate into the extensional quadrant of the flow. For λ < 1,
our numerical calculations indicate that peeling is much faster than drainage.

For 0 < Ca� (1 + λ)−2/3 (d ∼ a(Ca)1/2) and for Ca = O(1) with λ� 1 (d ∼ aλ−1/3)
equation (3.3) predicts that drop separation is dominated by interface peeling so
that the drops separate without film drainage; figure 6(f) demonstrates the latter
prediction.

3.4. Drop breakup

The critical capillary number for breakup of an isolated drop in shear flow is lowest
for λ ≈ 1; for λ = 1, Ca ≈ 0.41 is critical (Rallison 1981). The trajectory depicted in
figure 4(d) demonstrates that even for capillary numbers very close to critical, strong
pairwise interactions do not result in drop breakup. Other calculations with λ 6= 1
also showed no tendency for interaction-enhanced breakup. Apparently pairwise drop
interactions do not induce significantly subcritical capillary number breakup. Thus,
the critical capillary number is a weak function of volume fraction at least in dilute
emulsions.

In part, breakup is averted because of the reduced cross-section for interaction
between highly deformed drops. Breakup requires enhanced drop elongation but a
detailed inspection of the numerical results revealed that the extra deformation in-
duced by a pairwise interaction tends to deform drops in the x3-direction. Deformable
drops can easily squeeze past each other which tends to prevent breakup.

3.5. Trajectory displacements

Figures 8 and 9 demonstrate how cross-flow trajectory displacements are affected by
drop deformation (shear rate). The grids depicted in figures 8 and 9 are different from
those that were used to compute self-diffusivities (cf. §2.4).

Figure 8 shows that trajectory displacements vanish outside a finite initial offset,

R 6 2E
1/3
12 . Figure 9 reveals the long-range interactions for Ca > 0 that result

from drop deformation. The results show that for closely spaced trajectories, cross-
flow displacements are larger for Ca = 0.1; the converse is true for widely spaced
trajectories. For Ca = 0.1, trajectory displacements with initial offsets R > 2 make only
a minor contribution to the self-diffusivity but for Ca = 0.3, the far-field contribution
is about 1

3
. Figure 5 shows that for closely spaced trajectories, displacements tend

to decrease with drop deformation, possibly because of the reduced cross-section for
near-contact interactions.

Cross-flow trajectory displacements vanish in the smooth hard-sphere limit, λ→∞,
as illustrated in figure 7. The results depicted in figure 7 indicate that cross-flow
trajectory displacements vary inversely with drop viscosity. For λ = 20, the cross-flow
separation between two drops recovers appreciably after their interaction but only
slight recovery occurs for λ = 0.25; calculations with λ < 0.1 show essentially no
recovery.
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Figure 8. Trajectory displacements for λ = 1, Ca = 0. Trajectories originate from (−20, x0
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where (x0
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0
3) are vertices of the light dashed grid. Trajectories terminate at (+20, x2, x3), where
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Figure 9. Trajectory displacements for λ = 1: (a) Ca = 0.1, (b) Ca = 0.3. Trajectories originate
from (−10, x0

2, x
0
3), where (x0

2, x
0
3) are vertices of the light dashed grid. Trajectories terminate at

(+10, x2, x3), where (x2, x3) are vertices of the heavy solid grid marked with 2.

Inspection of figures 8 and 9 reveals that cross-flow trajectory displacements are
considerably biased in the velocity gradient direction rather than the vorticity direc-
tion. As a result, drop self-diffusion is anisotropic.

4. Self-diffusivities
Figures 10 and 11 depict self-diffusivities as functions of shear rate (capillary

number) and viscosity ratio. The results are accurate to about 2% for deformable
drops and about 0.1% for spherical drops. Self-diffusion is only a moderate function
of capillary number; figures 10 and 11 show that self-diffusivities vary by a factor
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Figure 10. Self-diffusion coefficients as a function of capillary number for λ = 1; solid curve:
diffusion parallel to velocity gradient, f2; dashed curve: diffusion parallel to vorticity, f3.
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Figure 11. Self-diffusion coefficients as a function of viscosity ratio for Ca = 0.3 (4) and Ca = 0
(×); solid curves: diffusion parallel to velocity gradient, f2; dashed curves: diffusion parallel to
vorticity, f3.

of about 2 as the capillary number is varied over a wide range. By contrast, self-
diffusivities are a strong function of viscosity ratio.

Anisotropic self-diffusion results from the bias of trajectory displacements in the
velocity gradient direction. Self-diffusion in the velocity gradient direction, f2, is much
larger than self-diffusion in the vorticity direction, f3. For stabilized spherical bubbles
(λ = 0), the ratio f2/f3 is exactly 2 which is a consequence of B(r, 0) = 0. For bubbles
with Ca = 0.3, f2/f3 ' 6. Figure 11 indicates that anisotropy increases with viscosity
ratio; f2/f3 > 20 for λ > 10.

For spherical drops with λ = 10, f2 and f3 are approximately equal to the self-
diffusivities predicted for spherical particles with 3% roughness (da Cunha & Hinch
1996). For λ < 10, drop diffusivities are considerably larger than the values for rough
spherical particles.

As expected, self-diffusivities vanish for large λ because D = O(φ2) for smooth
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spheres (Wang et al. 1996). The numerical results indicate that self-diffusivities vanish
exponentially for λ � 1 with Ca = 0. For λ � 1, drop deformation vanishes as
δ ∼ λ−2/3 for Ca > λ−2/3 according to the scaling arguments presented in §3.2. This
scaling and the results of da Cunha & Hinch (1996) for slightly roughened particles

suggests that f3 ∼ λ−2/3 and f2 ∼ λ−0.2916
(
1.347 + 2

3
ln λ
)−0.7012

for λ� 1 with Ca > 0.
However, we did not test this prediction with our calculations. The results depicted in
figure 11 seem to indicate that self-diffusion becomes insensitive to capillary number
for λ� 1.

Figure 10 shows that f2 exhibits a maximum which may result from a balance
between the increase of far-field (R > 2) trajectory displacements with drop de-
formation and the decrease of near-field trajectory displacements with reduced drop
cross-section. Under the same conditions, f3 is essentially independent of Ca. Figure 10
shows a smooth transition from results for Ca > 0.1 to the results for Ca = 0 that
were obtained using spherical drops stabilized against coalescence by a short-range
singular repulsion.

5. Conclusions
Cross-flow self-diffusivities have been computed for drops in a dilute emulsion.

Drops have large self-diffusivities compared to rigid spherical particles. For smooth
rigid spheres, pairwise interactions are reversible; self-diffusion relies on multiparticle
interactions. For deformable drops or sterically stabilized spherical drops, pairwise
interactions produce net cross-flow displacements that generate self-diffusion of the
drops.

The results show that self-diffusivities depend strongly on the viscosity ratio and
moderately on the capillary number. Self-diffusivities are much larger in the velocity
gradient direction than in the vorticity direction. The interactions between deformable
drops were described with boundary integral calculations; O(1/N) numerical conver-
gence was obtained, where N is the number of boundary elements. Mobility functions
for spherical drops were used to describe the interactions between drops in the zero
deformation limit.

The coalescence of real drops (Ca>0) requires van der Waals attraction. If Ca� 1
or λ 6= O(1) the tendency for coalescence is greatest when drops are pressed together
by the shear flow. For a range of order-one viscosity ratios and Ca = O(1), the
tendency for coalescence is greatest when closely spaced drops are pulled apart in the
extensional quadrant of the flow field. For Ca� 1, drops behave like spherical drops
that are stabilized against coalescence by a singular short-range repulsion. These
results were obtained by scaling arguments and illustrated by numerical calculations.
Further studies are needed to confirm these predictions. In particular, more detailed
calculations are needed to resolve the complex behaviour that occurs when deformable
drops separate.

The calculations also indicate that drop interactions do not induce significantly
subcritical capillary number breakup. In dilute emulsions, the critical capillary
number is a weak function of volume fraction because deformable drops can easily
squeeze past each other.
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