skip to content

Department of Applied Mathematics and Theoretical Physics

list of arXiv preprints: http://arxiv.org/a/hofmann_j_1

  1. Exact relations for dipolar quantum gases

    J. Hofmann and W. Zwerger

    [arXiv:2007.13774].
  1. Robustness of embedded topological modes in bulk-like GeTe-Sb2Te3 heterostructures

    H. Nakamura, J. Hofmann, N. Inoue, S. Koelling, P. M. Koenraad, G. Mussler, D. Grützmacher, and V. Narayan

    [arXiv:1912.11167].
  1. High-temperature expansion of the viscosity in interacting quantum gases

    J. Hofmann

    Phys. Rev. A 101, 013620 (2020) [arXiv:1905.05133].

    Selected as an Editors' Suggestion
  1. Quantum oscillations in Dirac magnetoplasmons

    J. Hofmann

    Phys. Rev. B 100, 245140 (2019) [arXiv:1904.01583].
  1. Tunable surface plasmons in Weyl semimetals TaAs and NbAs

    G. Chiarello, J. Hofmann, Z. Li, V. Fabio, L. Guo, X. Chen, S. Das Sarma, and A. Politano

    Phys. Rev. B 99, 121401(R) (2019) [arXiv:1811.04639].
  1. Collective modes of an imbalanced unitary Fermi gas

    J. Hofmann, F. Chevy, O. Goulko, and C. Lobo

    Phys. Rev. A 97, 033613 (2018) [arXiv:1712.02181].
  1. Mesoscopic pairing without superconductivity

    J. Hofmann

    Phys. Rev. B 96, 220508(R) (2017) [arXiv:1707.05791].

    Selected as an Editors' Suggestion
  1. Deep inelastic scattering on ultracold gases

    J. Hofmann and W. Zwerger

    Phys. Rev. X 7, 011022 (2017) [arXiv:1609.06317].
  1. Surface plasmon polaritons in topological Weyl semimetals

    J. Hofmann and S. Das Sarma

    Phys. Rev. B 93, 241402(R) (2016) [arXiv:1601.07524].

    News coverage: A warm welcome for Weyl physics

             A closer look at Weyl physics
  1. Non-Markovian quantum friction of bright solitons in superfluids

    D. Efimkin, J. Hofmann, and V. Galitski

    Phys. Rev. Lett. 116, 225301 (2016) [arXiv:1512.07640].

    News coverage: Ultra-cold atoms may wade through quantum friction
  1. Parity effect in a mesoscopic Fermi gas

    J. Hofmann, A. M. Lobos, and V. Galitski

    Phys. Rev. A 93, 061602(R) (2016) [arXiv:1508.05947].
  1. Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7

    A. B. Sushkov, J. B. Hofmann, G. S. Jenkins, J. Ishikawa, S. Nakatsuji, S. Das Sarma, and H. Dennis Drew

    Phys. Rev. B 92, 241108(R) (2015) [arXiv:1507.01038].
  1. Efimov correlations in strongly interacting Bose gases

    M. Barth and J. Hofmann

    Phys. Rev. A 92, 062716 (2015) [arXiv:1506.06751].
  1. Many-body effects and ultraviolet renormalization in 3D Dirac materials

    R. E. Throckmorton, J. Hofmann, E. Barnes, and S. Das Sarma

    Phys. Rev. B 92, 115101 (2015) [arXiv:1505.05154].
  1. Plasmon signature in Dirac-Weyl liquids

    J. Hofmann and S. Das Sarma

    Phys. Rev. B 91, 241108(R) (2015) [arXiv:1501.04636].
  1. Excitonic and Nematic Instabilities on the Surface of Topological Kondo Insulators

    B. Roy, J. Hofmann, V. Stanev, J. D. Sau, and V. Galitski

    Phys. Rev. B 92, 245431 (2015) [arXiv:1410.1868].
  1. Interacting Dirac liquid in three-dimensional semimetals

    J. Hofmann, E. Barnes, and S. Das Sarma

    Phys. Rev. B 92, 045104 (2015) [arXiv:1410.1547].
  1. Why does graphene behave as a weakly interacting system?

    J. Hofmann, E. Barnes, and S. Das Sarma

    Phys. Rev. Lett. 113, 105502 (2014) [arXiv:1405.7036].
  1. Coarsening dynamics of binary Bose condensates

    J. Hofmann, S. S. Natu, and S. Das Sarma

    Phys. Rev. Lett. 113, 095702 (2014) [arXiv:1403.1284].
  1. Pairing effects in the non-degenerate limit of the two-dimensional Fermi gas

    M. Barth and J. Hofmann

    Phys. Rev. A 89, 013614 (2014) [arXiv:1309.6573].
  1. Short-distance properties of Coulomb systems

    J. Hofmann, M. Barth, and W. Zwerger

    Phys. Rev. B 87, 235125 (2013) [arXiv:1304.2891].
  1. Quantum anomaly, universal relations and breathing mode of a two-dimensional Fermi gas

    J. Hofmann

    Phys. Rev. Lett. 108, 185303 (2012) [arXiv:1112.1384].

    Selected as an Editors' Suggestion
  1. Current response, structure factor and hydrodynamic quantities of a two- and three-dimensional Fermi gas from the operator-product expansion

    J. Hofmann

    Phys. Rev. A 84, 043603 (2011) [arXiv:1106.6035].
  1. Dimensional reduction in quantum field theories at finite temperature and density

    J. Hofmann

    Phys. Rev. D 82, 125027 (2010) [arXiv:1009.4071].

 

Publications

Current response, structure factor and hydrodynamic quantities of a two- and three-dimensional Fermi gas from the operator-product expansion
J Hofmann
– Physical Review A
(2011)
84,
043603
Dimensional reduction in quantum field theories at finite temperature and density
J Hofmann
– Physical Review D
(2010)
82,
125027
  • <
  • 3 of 3

Room

H1.04