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0.0.1 Taylor series for analytic functions

If a function of a complex variable is analytic in a region R of the complex plane,

not only is it differentiable everywhere in R, it is also differentiable any number

of times. It follows that if f(z) is analytic at z = z0, it has an infinite Taylor

series

f(z) =
∞

∑
n=0

an(z − z0)n, where an =
1

n!
f
(n)(z0) ≡

1

n!

d
n
f

dzn
(z0) . (1)

As discussed in § 0.2, this series converges within some neighbourhood of z0.

Alternative definition of analyticity. An alternative definition of the analyt-

icity of a function f(z) at z = z0 is that f(z) has a Taylor series expansion

about z = z0 with a non-zero radius of convergence.
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0.1 Zeros, Poles and Essential Singularities

0.1.1 Zeros of complex functions

Definition: Order. The zeros of f(z) are the points z = z0 in the complex

plane where f(z0) = 0. A zero is of order N if

f(z0) = f ′(z0) = f ′′(z0) =⋯ = f
(N−1)(z0) = 0 but f

(N)(z0) ≠ 0

(2a)

The first non-zero term in the Taylor series of f(z) about z = z0 is then

proportional to (z − z0)N . Indeed

f(z) ∼ aN(z − z0)N as z → z0 (2b)

A simple zero is a zero of order 1. A double zero is one of order 2, etc.

Examples.
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1. f(z) = z has a simple zero at z = 0.

2. f(z) = (z − i)2 has a double zero at z = i.

3. f(z) = z2 − 1 = (z − 1)(z + 1) has simple zeros at z = ±1.

Worked exercise. Find and classify the zeros of f(z) = sinh z.

Answer.

sinh z = 1
2
(ez − e

−z) = 0

if

e
z
= e

−z
⇒ e

2z
= 1 ⇒ z = nπi, n ∈ Z .

Since f
′(z) = cosh z = cos(nπ) ≠ 0 at these points, all the zeros are simple

zeros.
0.1.2 Poles of complex functions

Definition: Order. Suppose g(z) is analytic and non-zero at z = z0. Consider

the function

f(z) = (z − z0)−Ng(z) , (3a)
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in which case

f(z) ∼ g(z0)(z − z0)−N as z → z0 . (3b)

f(z) is not analytic at z = z0, and we say that f(z) has a pole of order N .

We refer to a pole of order 1 as a simple pole, a pole of order 2 as a double

pole, etc.

Expansion of f(z) near a pole. Because g(z) is analytic, from (1) it has a

Taylor series expansion at z0:

g(z) =
∞

∑
n=0

bn(z − z0)n with b0 ≠ 0 . (4a)

Hence

f(z) = (z − z0)−Ng(z) =
∞

∑
n=−N

an(z − z0)n , (4b)

with an = bn+N , and a−N ≠ 0. This is not a Taylor series because it includes

negative powers of z − z0, and f(z) is not analytic at z = z0.
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Remarks.

1. If f(z) has a zero of order N at z = z0, then 1/f(z) has a pole of order N

there, and vice versa.

2. If f(z) is analytic and non-zero at z = z0 and g(z) has a zero of order N

there, then f(z)/g(z) has a pole of order N there.

0.1.3 Laurent series and essential singularities

Definition: Laurent series. It can be shown that any function that is ana-

lytic (and single-valued) throughout an annulus α < ∣z − z0∣ < β centred on

a point z = z0 has a unique Laurent series,

f(z) =
∞

∑
n=−∞

an(z − z0)n , (5)

which converges for all values of z within the annulus.
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If α = 0, then f(z) is analytic throughout the disk ∣z − z0∣ < β except

possibly at z = z0 itself, and the Laurent series determines the behaviour of

f(z) near z = z0. There are three possibilities:

1. If the first non-zero term in the Laurent series has n ⩾ 0, then f(z) is

analytic at z = z0 and the series is just a Taylor series.

2. If the first non-zero term in the Laurent series has n = −N < 0, then f(z)
has a pole of order N at z = z0.

3. Otherwise, if the Laurent series involves an infinite number of terms with

n < 0, then f(z) has an essential singularity at z = z0.
Example of a essential singularity. An example of an essential singularity

is f(z) = e
1/z

at z = 0, where the Laurent series can be generated from a

Taylor series in 1/z:

e
1/z

=

∞

∑
n=0

1

n!
(1z)

n

=

0

∑
n=−∞

1

(−n)!z
n

(6)
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Remark. The behaviour of a function near an essential singularity is remark-

ably complicated. Picard’s theorem states that, in any neighbourhood of an

essential singularity, the function takes all possible complex values (possibly

with one exception) at infinitely many points. In the case of f(z) = e
1/z

, the

exceptional value 0 is never attained.

0.1.4 Behaviour at infinity

We can examine the behaviour of a function f(z) as z → ∞ by defining a

new variable ζ = 1/z and a new function g(ζ) = f(z). Then z = ∞ maps

to a single point ζ = 0, the point at infinity.

If g(ζ) has a zero, pole or essential singularity at ζ = 0, then we can say that

f(z) has the corresponding property at z =∞.

Examples.
1.

f1(z) = e
z
= e

1/ζ
= g1(ζ) (7a)
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has an essential singularity at z =∞.

2. f2(z) = z2 = 1/ζ2 = g2(ζ) (7b)

has a double pole at z =∞.

3. f3(z) = e
1/z

= e
ζ
= g3(ζ) (7c)

is analytic at z =∞.
Remark. It can be shown that all entire functions f(z) have essential singu-

larities at z =∞ unless they are polynomials, and all polynomials have poles

at z =∞ unless they are constant.

0.2 Power Series of a Complex Variable

0.2.1 Convergence of Power Series

A power series about z = z0 of a complex variable has the form

f(z) =
∞

∑
r=0

ar(z − z0)r where ar ∈ C . (8)
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Hence the Taylor series for an analytic function, (1), is a power series.

Many of the tests of convergence for real series can be generalised for complex

series. Indeed, we have already noted that if the sum of the absolute values of

a complex series converges, i.e. if ∑ ∣ur∣ converges, then so does the series,

i.e. ∑ur. Hence if ∑ ∣ar(z − z0)r∣ converges, so does ∑ ar(z − z0)r.

0.2.2 Radius of convergence

If the power series (8) converges for z = z1, then the series converges abso-

lutely for all z such that ∣z − z0∣ < ∣z1 − z0∣.
Proof. Since ∑ ar(z1−z0)r converges, then from the necessary condition for

convergence,

lim
r→∞

ar(z1 − z0)r = 0 . (9a)

Hence for a given ε there exists N ≡ N(ε) such that if r > N then

∣ar(z1 − z0)r∣ < ε . (9b)
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Thus for r > N

∣ar(z − z0)r∣ = ∣ar(z1 − z0)r∣
»»»»»»
z − z0
z1 − z0

»»»»»»
r

< ε%
r

where % =
»»»»»»»»
z − z0
z1 − z0

»»»»»»»»
. (9c)

Thus, by means of a comparison with a geometric series, ∑ ar(z − z0)r

converges for % < 1, i.e. for ∣z − z0∣ < ∣z1 − z0∣.
Corollary. If the sum diverges for z = z1 then it diverges for all z such that

∣z − z0∣ > ∣z1 − z0∣. For suppose that it were to converge for some such

z = z2 with ∣z2 − z0∣ > ∣z1 − z0∣, then it would converge for z = z1 by the

above result; this is in contradiction to the hypothesis.

Definition: Radius and circle of convergence. These results imply there must

exist a real, non-negative number R such that

∑ ar(z − z0)r converges for ∣z − z0∣ < R
∑ ar(z − z0)r diverges for ∣z − z0∣ > R

. (10)
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R is called the radius of convergence, and ∣z − z0∣ = R is called the circle

of convergence, within which the series converges and outside of which it

diverges.

Remarks.
1. The radius of convergence may be be zero (exceptionally), positive or infinite.

2. On the circle of convergence, the series may either converge or diverge.

3. The radius of convergence of the Taylor series of a function f(z) about the

point z = z0 is equal to the distance of the nearest singular point of the

function f(z) from z0. Since a convergent power series defines an analytic

function, no singularity can lie inside the circle of convergence.

0.2.3 Determination of the radius of convergence

Without loss of generality take z0 = 0, so that (8) becomes

f(z) =
∞

∑
r=0

ur where ur = arz
r
. (11)
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Use D’Alembert’s ratio test. If the limit exists, then

lim
r→∞

»»»»»»»»
ar+1
ar

»»»»»»»»
=

1

R
. (12a)

Proof. We have that

lim
r→∞

»»»»»»»»
ur+1
ur

»»»»»»»»
= lim

r→∞

»»»»»»»»
ar+1
ar

»»»»»»»»
∣z∣ = ∣z∣

R
by hypothesis (12a).

Hence the series converges absolutely by D’Alembert’s ratio test if ∣z∣ < R.

On the other hand if ∣z∣ > R, then

lim
r→∞

»»»»»»
ur+1
ur

»»»»»» =
∣z∣
R

> 1 . (12b)

So the series does not converge. It follows that R is the radius of conver-

gence.

Remark. The limit (12a) may not exist, e.g. if ar = 0 for r odd then
»»»»»»»»
ar+1
ar

»»»»»»»»
is alternately 0 or ∞.
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Use Cauchy’s test (unlectured). If the limit exists, then

lim
r→∞

∣ar∣1/r =
1

R
. (13a)

Proof. We have that

lim
r→∞

∣ur∣1/r = lim
r→∞

∣ar∣1/r∣z∣ =
∣z∣
R

by hypothesis. (13b)

Hence the series converges absolutely by Cauchy’s test if ∣z∣ < R.

On the other hand if ∣z∣ > R, choose τ with 1 < τ < ∣z∣/R. Then there

exists M ≡M(τ) such that

∣ur∣1/r > τ > 1 , i.e. ∣ur∣ > τ r > 1 , for all r >M .

Thus, since ur /→ 0 as r →∞, ∑ur must diverge. It follows that R is the

radius of convergence.
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0.2.4 Examples

1. Suppose that ar = 1 for all r, then f(z) is the geometric series

f(z) =
∞

∑
r=0

z
r
. (14a)

Both D’Alembert’s ratio test, (12a), and Cauchy’s test, (13a), give R = 1:

»»»»»»»»
ar+1
ar

»»»»»»»»
= 1 and ∣ar∣1/r = 1 for all r. (14b)

Hence the series converges for ∣z∣ < 1. In fact

f(z) = 1

1 − z
, (14c)

where we note that it is the singularity at z = 1 which determines the radius

of convergence.

2. Suppose next that ar = (−1)r−1/r for all r, then f(z) is the geometric
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series

f(z) = −
∞

∑
r=1

(−z)r
r = z −

z
2

2
+
z
3

3
−⋯ . (15a)

D’Alembert’s ratio test gives

1

R
= lim

r→∞

»»»»»»»»
ar+1
ar

»»»»»»»»
= lim

r→∞

r

r + 1
= 1 . (15b)

For Cauchy’s test, we first note that

lim
r→∞

log ∣ar∣
1
r = lim

r→∞

1
r log

1
r = 0 , (15c)

and thence, as for D’Alembert’s ratio test,

1

R
= lim

r→∞
∣ar∣1/r = 1 . (15d)

Remark. The series converges to log(1+z) for ∣z∣ < 1, where the singularity

at z = −1 limits the radius of convergence. In fact it can be shown that the

series converges on the circle ∣z∣ = 1 except at the point z = −1.
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3. If ar =
1
r!

for all r, then f(z) is the series

f(z) =
∞

∑
r=0

z
r

r!
. (16a)

D’Alembert’s ratio test gives an infinite radius of convergence:

1

R
= lim

r→∞

»»»»»»»»
ar+1
ar

»»»»»»»»
= lim

r→∞

1

r + 1
= 0 . (16b)

For Cauchy’s test, we first note, using Stirling’s formula,
1

that

log ∣ar∣
1
r = −

1
r log r! ∼ − log r as r →∞ , (16c)

and thence we confirm an infinite radius of convergence:

1

R
= lim

r→∞
∣ar∣1/r = 0 . (16d)

1
Stirling’s formula states that

log r! ∼ r log r − r + 1
2
log(2πr) as r →∞ .
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The series converges to e
z

for all finite z, which is an entire function.

4. Instead consider ar = r!. This has zero radius of convergence since by

D’Alembert’s ratio test

ar+1
ar

= r + 1 →∞ as r →∞ . (17)

This conclusion can be confirmed using Cauchy’s test. The series ∑∞
r=0 r!z

r

fails to define a function since it does not converge for any non-zero z.

5. Finally consider

z
∞

∑
r=0

1

2r + 1
(−z2)r = z − z

3

3
+
z
5

5
−
z
7

7
+⋯ = arctan z . (18)

Thought of as a power series in (−z2), this has ∣ar+1/ar∣ = (2r+ 1)/(2r+
3) → 1 as r →∞. Therefore R = 1 in terms of (−z2). But since ∣−z2∣ = 1

is equivalent to ∣z∣ = 1, the series converges for ∣z∣ < 1 and diverges for

∣z∣ > 1.
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0.2.5 Why Do We Have To Do This Again?

You already know the ‘definition’

∫
b

a
f(t)dt = lim

N→∞

N

∑
j=1

f(a + jh)h where h = (b − a)/N , (19)

so why are mathematicians not really content with it?

One answer is that while (19) is OK for OK functions, consider Dirichlet’s

function

f = { 0 on irrationals,

1 on rationals.
(20)

If

• a = 0 and b = π, then (19) evaluates to 0,

• a = 0 and b = p/q, where p/q is a rational approximation to π (e.g. 22/7
or better), then (19) evaluates to p/q.
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0.2.6 Properties of the Riemann Integral

It is possible to show for integrable functions f and g, a < c < b, and k ∈ R,

that

∫
b

a
f(t) dt = −∫

a

b
f(t) dt , (21)

∫
b

a
f(t) dt = ∫

c

a
f(t) dt + ∫

b

c
f(t) dt , (22)

∫
b

a
kf(t) dt = k∫

b

a
f(t) dt , (23)

∫
b

a
(f(t) + g(t)) dt = ∫

b

a
f(t) dt + ∫

b

a
g(t) dt , (24)

»»»»»»»»
∫

b

a
f(t) dt

»»»»»»»»
⩽ ∫

b

a
∣f(t)∣ dt . (25)

It is also possible to deduce that if f and g are integrable then so if fg.
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Schwarz’s Inequality. For integrable functions f and g

(∫
b

a
fg dt)

2

⩽ (∫
b

a
f
2
dt) (∫

b

a
g
2
dt) . (26)

Proof. Using the above properties it follows that

0 ⩽ ∫
b

a
(λf + g)2dt = λ2∫

b

a
f
2
dt + 2λ∫

b

a
fg dt + ∫

b

a
g
2
dt . (27)

• If ∫ b
a
f
2
dt = 0 then

2λ∫
b

a
fg dt + ∫

b

a
g
2
dt ⩾ 0 .

This can only be true for all λ if ∫ b
a
fg dt = 0; the [in]equality follows.

• If ∫ b
a
f
2
dt ≠ 0 then choose

λ = −
∫

b

a
fg dt

∫
b

a
f
2
dt

, (28)
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and the inequality again follows.

Remark. This will not be the last time that we will find an analogy between

scalar/inner products and integrals.

0.2.7 The Fundamental Theorems of Calculus

Suppose f is integrable. Define

F (x) = ∫
x

a
f(t) dt . (29)

F is continuous. F is a continuous function of x since

∣F (x + h) − F (x)∣ =
»»»»»»»»
∫

x+h

x
f(t) dt

»»»»»»»»
⩽ ∫

x+h

x
∣f(t)∣ dt

⩽ ( max
x⩽t⩽x+h

∣f(t)∣)h ,
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and hence

lim
h→0

∣F (x + h) − F (x)∣ = 0 .

The First Fundamental Theorem of Calculus. This states that

dF

dx
=

d

dx
(∫

x

a
f(t) dt) = f(x) , (30)

i.e. the derivative of the integral of a function is the function.

Proof. Suppose that

m = min
x⩽t⩽x+h

f(t) and M = max
x⩽t⩽x+h

f(t) .

We can show from the definition of a Riemann integral that for h > 0

mh ⩽ ∫
x+h

x
f(t) dt ⩽Mh ,
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so

m ⩽
F (x + h) − F (x)

h
⩽M .

But if f is continuous, then as h → 0 both m and M tend to f(x). We

can similarly ‘sandwich’ (F (x + h) − F (x))/h. (30) then follows from the

definition of a derivative.

The Second Fundamental Theorem of Calculus. This essentially states that

the integral of the derivative of a function is the function, i.e. if g is differen-

tiable then

∫
x

a

dg

dt
dt = g(x) − g(a) . (31)

Proof. Define f(x) by

f(x) = dg

dx
(x) ,
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and then define F as in (29). Then using (30) we have that

d

dx
(F − g) = 0 .

Hence from integrating and using the fact that F (a) = 0 from (29),

F (x) − g(x) = −g(a) .

Thus using the definition (29)

∫
x

a

dg

dt
dt = g(x) − g(a) . (32)

The Indefinite Integral. Let f be integrable, and suppose f = F
′(x) for

some function F . Then, based on the observation that the lower limit a in

(29), etc. is arbitrary, we define the indefinite integral of f by

∫
x

f(t) dt = F (x) + c (33)

for any constant c.
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