
Analyzing the Structure of Multidimensional Compressed
Sensing Problems through Coherence

A. Jones
University of Cambridge

B. Adcock
Purdue Univesity

A. Hansen
University of Cambridge

Abstract

In previous work it was established that asymptotic incoherence can be used to facilitate subsam-
pling in a variety of continuous compressed sensing problems and the coherence structure of certain one-
dimensional Fourier sampling problems was determined. This paper extends the analysis of asymptotic
incoherence to cover multidimensional reconstruction problems. It is shown that Fourier sampling and
separable wavelet sparsity in any dimension can yield the same optimal asymptotic incoherence as in one
dimensional case. Moreover in two dimensions the coherence structure is compatible with many standard
two dimensional sampling schemes that are currently in use. However, in higher dimensional problems
with poor wavelet smoothness we demonstrate that there are considerable restrictions on how one can
subsample from the Fourier basis with optimal incoherence. This can be remedied by using a sufficiently
smooth generating wavelet. It is also shown that using tensor bases will always provide suboptimal decay
marred by problems associated with dimensionality. The impact of asymptotic coherence on the ability to
subsample is demonstrated with some simple two dimensional numerical experiments.

1 Introduction
Exploiting additional structure has always been central to the success of compressed sensing, ever since it
was introduced by Candès, Romberg & Tao [8] and Donoho [12]. Sparsity and incoherence has allowed us
to solve convex optimisation problems with uniform random subsampling. Recently [2] the more general
notions of sparsity in levels & asymptotic incoherence were introduced to solve a greater variety of inverse
problems using subsampling in levels.

There is a wide variety of problems that lack incoherence and instead posses asymptotic incoherence;
Magnetic Resonance Imaging (MRI) [14,25], X-ray Computed Tomography [9,27] and Electron Microscopy
[22,23] to name a few. This phenomena often originates from the inverse problems being based upon integral
transforms, for example, reconstructing a function f from pointwise evaluations of its Fourier transform. In
compressed sensing, such a transform is combined with an appropriate sparsifying transformation associated
to a basis or frame, giving rise to an infinite measurement matrix U . The ‘coherence1’ of U ∈ CN×N or
U ′ ∈ CN×N is defined by

µ(U) = max
i,j∈N

|Uij |2, µ(U ′) = max
i,j=1,...,N

|U ′ij |2.

Asymptotic incoherence is the phenomena of when

µ(P⊥NU), µ(UP⊥N )→ 0, N →∞, (1.1)

where P⊥N denotes the projection onto the indices N + 1, N + 2, .... As a general rule, the faster asymp-
totic incoherence decays the more we are able to subsample (see (1.5)). The study of more precise notions
of coherence has also been considered for the one and two dimensional discrete Fourier sampling, sepa-
rable Haar sparsity problems in [20]. This paper focuses on studying the structure of (1.1) in continuous
multidimensional inverse problems and the impact this has on the ability to effectively subsample.

In previous work [18], the structure of incoherence was analyzed as a general problem and theoretical
limits on how fast it can decay over all such inverse problems were established. Furthermore, the notion
of optimal decay was introduced, which describes the fastest asymptotic incoherence decay possible for a

1‘Incoherence’ refers to small coherence.
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given inverse problem. The notion of an optimal ordering was also introduced, which acted as a set of
instructions on how to actually attain this optimal incoherence decay rate by ordering the sampling basis.
Optimal decay rates and optimal orderings were determined for the one-dimensional Fourier-wavelet and
Fourier-polynomial cases and the former was found to attain the theoretically optimal2 incoherence decay
rate of N−1.

Figure 1: Fourier - Separable Haar Cases: Incoherence Structures in Different Dimensions
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(a) Coherence Matrix for
the 1D case
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(b) 1D Column Coherences (c) 2D analogue of (b) (d) Isosurface of 3D Case

In (b), the coherences are calculated by taking the maxima over the columns in (a), demonstrating decay that scales with frequency. In
2D this decay roughly matches that of the norm of the frequency as seen in (c). However in 3D there are hyperbolic spikes around the
coordinate axes that lead to poor incoherence decay (see (d)) when using sampling patterns with rotational invariance or linear scaling.

In the black and white plots, white indicates larger absolute value.

The optimal orderings in these one dimensional cases matched the leveled schemes that was already
used for subsampling. For example, when sampling from the 1D Fourier basis, the sampling levels are
usually ordered according to increasing frequency. In multiple dimensions there is no such consensus, instead
many different sampling patterns are used, especially when it comes to 2D sampling patterns where radial
lines [10], spirals [17] or other k-space trajectories are used. There are also a variety of other sampling
techniques used in even higher dimensional (3-10D) problems, such as in the field of NMR spectroscopy [5].
If one desires to exploit asymptotic incoherence to its fullest it must be understood whether the optimal
ordering is consistent with the sampling pattern that one intends to use.

This paper determines optimal orderings for the case of Fourier sampling and (separable) wavelet sparsity
in any dimension. It is shown that the optimal decay is always that of the one-dimensional case, and moreover
in two dimensions the optimal orderings are compatible with the structure of the 2D sampling patterns
mentioned above. However, in higher dimensions problems with poor wavelet smoothness, such as the three
dimensional separable Haar case, the class of optimal orderings3 are no longer rotationally invariant (as in
Figure 1), hindering the ability to subsample with traditional sampling schemes. It is also shown that using a
pair of tensor bases in general leads to optimal incoherence decay that is always anisotropic and suboptimal.

We should mention here that for many inverse problems in higher dimensions, using separable wavelets
as a reconstruction basis fairs poorly against other bases such as shearlets [21] and curvelets [6] for approx-
imating images with curve-like features. However, it is not our goal to focus on a particular reconstruction
basis in this paper, instead we wish to demonstrate how the incoherence structure can vary for different bases
and the impact this has on its application in compressed sensing problems, for good or for worse.

1.1 Setup & Key Concepts : Incoherence, Sparsity & Orderings
Throughout this paper we shall work in an infinite dimensional separable Hilbert space H, typically H =
L2([−1, 1]d), with two closed infinite dimensional subspaces V1, V2 spanned by orthonormal bases B1, B2

respectively,
V1 = Span{f ∈ B1}, V2 = Span{f ∈ B2}.

We call (B1, B2) a ‘basis pair’. If we are to form the change of basis U = (Ui,j)i,j∈N we must list the two
bases, which leads to following definitions:

Definition 1.1 (Ordering). Let S be a set. Say that a function ρ : N → S is an ‘ordering’ of S if it is
bijective.

2Optimal in the sense of over all inverse problems that has U an isometry. Furthermore, it is the fastest decay as a power of N .
3Technically we mean strongly optimal here (see Definition 1.8).
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Definition 1.2 (Change of Basis Matrix). For a basis pair (B1, B2), with corresponding orderings ρ : N→
B1 and τ : N→ B2, form a matrix U by the equation

Um,n := 〈τ(n), ρ(m)〉. (1.2)

Whenever a matrix U is formed in this way we write ‘U := [(B1, ρ), (B2, τ)]’.

Standard compressed sensing theory says that if x ∈ CN is s-sparse, i.e. x has at most s nonzero
components, then, with probability exceeding 1− ε, x is the unique minimiser to the problem

min
η∈CN

‖η‖l1 subject to PΩUη = PΩUx,

where PΩ is the projection onto span{ej : j ∈ Ω}, {ej} is the canonical basis, Ω is chosen uniformly at
random with |Ω| = m and

m ≥ C · µ(U) ·N · s · log(ε−1) · log(N), (1.3)

for some universal constant C > 0 (see [7] and [1]).
In [2] a new theory of compressed sensing was introduced based on the following three key concepts:

Definition 1.3 (Sparsity in Levels). Let x be an element of either CN or l2(N). For r ∈ N let M =
(M1, . . . ,Mr) ∈ Nr with 1 ≤ M1 < . . . < Mr and s = (s1, . . . , sr) ∈ Nr, with sk ≤ Mk −Mk−1,
k = 1, . . . , r, where M0 = 0. We say that x is (s,M)-sparse if, for each k = 1, . . . , r,

∆k := supp(x) ∩ {Mk−1 + 1, . . . ,Mk},

satisfies |∆k| ≤ sk. We denote the set of (s,M)-sparse vectors by Σs,M.

Definition 1.4 (Multi-level sampling scheme). Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . <
Nr, m = (m1, . . . ,mr) ∈ Nr, with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r,

are chosen uniformly at random, where N0 = 0. We refer to the set

Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr

as an (N,m)-multilevel sampling scheme.

Definition 1.5 (Local coherence). Let U be an isometry of either CN or l2(N). If N = (N1, . . . , Nr) ∈ Nr
and M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . .Nr and 1 ≤M1 < . . . < Mr the (k, l)th local coherence
of U with respect to N and M is given by

µN,M(k, l) =

√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U), k, l = 1, . . . , r, (1.4)

where N0 = M0 = 0 and P ab denotes the projection matrix corresponding to indices {a+ 1, . . . , b}.

[2] provided the following estimate4 regarding the local number of measurements mk in the kth level in
order to obtain a good reconstruction with probability ≥ 1− ε :

mk

Nk −Nk−1
≥ C · log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log (N) , k = 1, . . . , r. (1.5)

In particular, the sampling strategy (i.e. the parameters N and m) is now determined through the local
sparsities and incoherences. Since the local coherence (1.4) is rather difficult to analyze in its current form,
we bound it above by the following:

µN,M(k, l) =

√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U) (1.6)

≤
√

min(µ(P
Nk−1

Nk
U), µ(UP

Ml−1

Ml
)) · µ(P

Nk−1

Nk
U) (1.7)

≤
√

min(µ(P⊥Nk
U), µ(UP⊥Ml

)) · µ(P⊥Nk
U) (1.8)

4C > 0 is a universal constant
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It is arguably (1.8) rather than (1.7) that is the roughest bound here, however we shall see that this becomes
effectively an equality in what follows. The crucial improvement of (1.8) over (1.6) is that it is completely
in terms of the asymptotic incoherences µ(P⊥NU), µ(UP⊥N ), which depend only on the orderings of B1, B2

respectively, rather than both of them. Furthermore, we can treat the two problems of maximizing the decay
of µ(P⊥NU), µ(UP⊥N ) separately and then combine the two resulting orderings together at the end.

Next we describe how one determines the fastest decay of µ(P⊥NU). In [18] this was done via the notion
of optimality up to constants:

Definition 1.6 (Optimal Orderings). Let ρ1, ρ2 : N → B1 be any two orderings of a basis B1 and τ any
ordering of a basis B2. Let U1 := [(B1, ρ1), (B2, τ)], U2 := [(B1, ρ2), (B2, τ)] as in (1.2). Also let
QN := P⊥N−1. If there is a constant C > 0 such that

µ(QNU
1) ≤ C · µ(QNU

2), ∀N ∈ N,

then we write ρ1 ≺ ρ2 and say that ‘ρ1 has a faster decay rate than ρ2 for the basis pair (B1, B2)’. ρ1 is
said to be an ‘optimal ordering of (B1, B2)’ if ρ1 ≺ ρ2 for all other orderings ρ2 of B1.

It was shown in [18] that optimal orderings always exist. Optimal orderings are used to give us the
optimal decay rate:

Definition 1.7 (Optimal Decay Rate). Let f, g : N→ R>0 be decreasing functions. We write f . g to mean
there is a constant C > 0 such that

f(N) ≤ C · g(N), ∀N ∈ N.

If both f . g and g . f holds, we write ‘f ≈ g’.
Now suppose that ρ : N → B1 is an optimal ordering for the basis pair (B1, B2) and we let U =

[(B1, ρ), (B2, τ)] be a corresponding incoherence matrix (with some ordering τ ofB2). Then any decreasing
function f : N → R>0 which satisfies f ≈ g, where g is defined by g(N) = µ(QNU), ∀N ∈ N, is said to
‘represent the optimal decay rate’ of the basis pair (B1, B2).

Notice that the optimal decay rate is unique up to the equivalence relation ≈ defined on the set of de-
creasing functions f : N→ R>0.

We also have a stronger notion of optimality, which gives us finer details on the exact decay:

Definition 1.8 (Strong Optimality). Let U = [(B1, ρ), (B2, τ)] and πN denote the projection onto the single
index N . If f represents the optimal decay rate of the basis pair (B1, B2) then ρ is said to be ‘strongly
optimal’ if the function g(N) := µ(πNU) satisfies f ≈ g.

Estimates in terms of the row incoherence µ(πNU) have used before in [20], where it was called the
‘local coherence’. If ρ is a strongly optimal ordering, U = [(B1, ρ), (B2, τ)] and f represents the optimal
decay of (B1, B2) then

µ(QNU) ≤ C1 · f(N) ≤ C2 · µ(πNU) ≤ C2 · µ(PN−1+M
N−1 U), N,M ∈ N,

for some constants C1(ρ), C2(ρ) > 0, which can then be used to justify (1.8).
We shall introduce the Fourier basis here as it is used in all of the examples discussed in this paper:

Definition 1.9 (Fourier Basis). If we define

χk(x) =
√
ε exp(2πiεkx) · 1[(−2ε)−1,(2ε)−1](x), k ∈ Z,

then the (χk)k∈Z form a basis5 Bf(ε) of L2([−(2ε)−1, (2ε)−1]) . We can form a d-dimensional basis of
L2([−(2ε)−1, (2ε)−1]d) by taking tensor products (see Section 4)

χk :=

d⊗
j=1

χkj , k ∈ Zd,

and setting Bdf (ε) = {χk : k ∈ Zd}.
It shall be convenient to identify Bdf (ε) with Zd using the function

λd : Bdf → Zd, λd(χk) := (λ(χk1), ..., λ(χkd)) = (k1, ..., kd) = k. (1.9)
5The little f here stands for ‘Fourier’.
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1.2 Main Results
The primary focus of the paper is to study the Fourier-Separable wavelet case where we use any Daubechies
wavelet6. The definition of a separable wavelet basisBdsep is provided in Section 5. The main results on these
cases are summarized below:

Theorem 1.10. The optimal decay rate of both (Bdf , B
d
sep) and (Bdsep, B

d
f ) is represented by f(N) = N−1.

The optimal decay rate of (Bdsep, B
d
f ) is obtained by using an ordering τ that is consistent with the wavelet

levels and this ordering is strongly optimal.
In 2D the optimal decay rate of (Bdf , B

d
sep) is obtained by using an ordering ρ that satisfies, for some

constants C1, C2 > 0 and some norm ‖ · ‖ on Rd,

C1 ·N1/d ≤ max(‖λd(ρ(N))‖, 1) ≤ C2 ·N1/d, ∀N ∈ N. (1.10)

In fact ρ is strongly optimal if and only if (1.10) holds. An ordering satisfying (1.10) is called a ‘linear
ordering’. The class of linear orderings are rotation invariant and compatible with sampling schemes based
on linearly scaling a fixed shape from the origin (see Section 5.3).

In higher dimensions linear orderings can fail to be optimal, however with a sufficiently smooth wavelet
an ordering is strongly optimal if and only if (1.10) holds.

This theorem is a simplified version of Theorem 5.17. Optimal orderings in the case of high dimensions
and poor wavelet smoothness can be found by interpolating between the case of (1.10) and the hyperbolic
cross, which generates semi-hyperbolic orderings (see Definition 5.14). It is also shown that if a linear or-
dering is optimal then the wavelet used must have some degree of smoothness proportional to the dimension;
in 3D it is C0, 5D it is C1, 7D it is C2, etc. (see Section 5.6).

We also consider the general case of a pair of tensor bases where we describe a method of finding
optimal orderings and decay rates for all multidimensional cases, given that the incoherence structure of the
one-dimensional case is known. In particular, we have the following result for the Fourier-Tensor wavelet
case:

Theorem 1.11. Let Bdw be a tensor wavelet basis. The optimal decay rate of both (Bdf , B
d
w) and (Bdw, B

d
f )

is represented by f(N) = logd−1(N) · N−1. Optimal orderings for both cases are constructed using the
hyperbolic cross on the original one-dimensional optimal orderings.

This theorem is a restatement of Theorem 4.10. This demonstrates the typical curse of dimensionality
which is lacking in the separable case. The differences between the two incoherence structures of the Fourier-
Tensor wavelet and Fourier-Separable wavelet cases are tested in 2D in Section 6.

1.3 Outline for the Remainder
Some key tools that we use to find optimal orderings are given in Section 2. Those familiar with [18]
can skip the majority of this section except for the concept of characterization. We then cover the general
tensor case and introduce hyperbolic orderings in Section 4. In Section 5 we discuss the separable cases,
first covering how to optimally order the wavelet basis before quickly moving on to the central problem of
finding optimal orderings of the Fourier basis. Linear orderings are introduced first, then we justify the need
for semihyperbolic orderings. Finally we move onto some simple compressed sensing experiments, one
demonstrating the benefits of multilevel subsampling and one showing the impact of differing incoherence
structures between the 2D tensor and separable cases.

2 Tools for Finding Optimal Orderings & Theoretical Limits on Op-
timal Decay

The first tool is perhaps the most important, as it is a very easy way to identify a strongly optimal ordering:

6We use the convention that Daubechies wavelets includes the Haar wavelet.
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Lemma 2.1. 1): Let (B1, B2) be a basis pair and τ any ordering of B2. Furthermore, let B1 have an
ordering ρ1 : N → B1, and define U1 := [(B1, ρ1), (B2, τ)]. Suppose that that there is a decreasing
function f1 : N→ R>0 such that

f1(N) ≤ µ(πNU1), ∀N ∈ N.

Then if ρ2 : N→ B1 is an ordering, U2 = [(B1, ρ2), (B2, τ)] and f2 : N→ R>0 is a function with

µ(QNU2) ≤ f2(N), ∀N ∈ N,

then f1(N) ≤ f2(N) for every N ∈ N.
2): Let ρ be an ordering of B1 with U := [(B1, ρ), (B2, τ)] and f : N → R≥0 be a decreasing function

with f(N)→ 0 as N →∞. If, for some constants C1, C2 > 0, we have

C1f(N) ≤ µ(πNU) ≤ C2f(N), ∀N ∈ N, (2.1)

then ρ is a strongly optimal ordering and f is a representative of the optimal decay rate.

Proof. See Lemma 2.11 in [18].

Definition 2.2 (Best ordering). Let (B1, B2) be a basis pair. Then any ordering ρ : N → B1 is said to be
a ‘best ordering’ if for any other ordering τ of B2 and U = [(B1, ρ), (B2, τ)] we have that the function
g(N) := µ(πNU) is decreasing.

Notice that any best ordering is also a strongly optimal ordering. We shall need the notion of a best
briefly to prove Lemma 2.6.

Lemma 2.3. Suppose that we have a basis pair (B1, B2) with two orderings ρ : N → B1, τ : N → B2 of
B1, B2 respectively. If U = [(B1, ρ), (B2, τ)] satisfies

µ(πNU)→ 0 as N →∞,

then a best ordering exists.

Proof. See Lemma 2.10 in [18].

Throughout this paper we would like to define an ordering according to a particular property of the basis
but this property may not be enough to specify a unique ordering. To deal with this issue we introduce the
notion of consistency:

Definition 2.4 (Consistent ordering). Let F : S → R where S is a set. We say that an ordering ρ : N → S
is ‘consistent with F’ if

F (f) < F (g) ⇒ ρ−1(f) < ρ−1(g), ∀f, g ∈ S.

The notion of consistency becomes important if we want to convert bounds on the coherence into optimal
orderings:

Definition 2.5. 1.) Suppose F : S → R satisfies #{x ∈ S : F (x) ≤ K} <∞ for all K > 0, σ : N→ S
is consistent with 1/F and F (σ(N)) → 0 as N → ∞. Then any decreasing function f : N → R>0 such
that f ≈ F ◦ σ is said to ‘represent the fastest decay of F ’.

2.) Suppose (B1, B2) is a basis pair and ι : S → B1 a bijection. If there exists a function F : S → R
and a constant C1 > 0 such that

sup
g∈B2

|〈ι(s), g〉|2 ≤ C1 · F (s), ∀s ∈ S, (2.2)

then F is said to ‘dominate the optimal decay of (B1, B2)’. If the inequality is reversed we say F is ‘domi-
nated by the optimal decay of (B1, B2)’. Furthermore, if there is a constant C2 > 0 such that

C2 · F (s) ≤ sup
g∈B2

|〈ι(s), g〉|2 ≤ C1 · F (s), ∀s ∈ S, (2.3)

then F is said to ‘characterize the optimal decay of (B1, B2)’.
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Lemma 2.6. 1): Suppose f is a representative of the optimal decay rate for the basis pair (B1, B2),
ι : S → B1 is a bijection, F : S → R dominates the optimal decay of (B1, B2), σ : N → S is consistent
with 1/F and U = [(B1, ι ◦ σ), (B2, τ)] . Then if g represents the fastest decay of F then f, µ(π·U) . g.

2): If F is instead is dominated by the optimal decay of (B1, B2) then f, µ(π·U) & g.
3): If F now characterizes the optimal decay of (B1, B2) then f, µ(π·U) ≈ g and therefore ρ is a

strongly optimal ordering for the basis pair (B1, B2) if and only if F (ι−1 ◦ ρ(·)) ≈ g.

Proof. 1.) We may assume, without loss of generality, that g(N) → 0 as N → ∞ else there is nothing to
prove as f(N), µ(πNU) are bounded functions of N . Therefore, a best ordering exists by Lemma 2.3. (2.2)
becomes (for C ′1 > 0 a constant),

µ(πNU) ≤ C1 · F (σ(N)) ≤ C ′1 · g(N), ∀N ∈ N.

Since g is decreasing we have µ(QNU) ≤ C ′1 · g(N) and therefore we can apply part 1) of Lemma 2.1 to
f1 = f and f2 = g (using a best ordering as ρ1 and ρ2 = ι ◦ σ) to deduce that f . g.

2.) (2.2) reversed becomes

µ(πNU) ≥ C · F (σ(N)) ≥ C ′1 · g(N), ∀N ∈ N.

Therefore we can apply part 1) of Lemma 2.1 to f1 = g and f2 = f (using ρ1 = ι ◦ σ, ρ2 an optimal
ordering) to deduce that f . g.

3.) Notice that if F characterizes the optimal decay of (B1, B2) then (2.3) becomes

C ′2 · g(N) ≤ C2 · F (σ(N)) ≤ µ(πNU) ≤ C1 · F (σ(N)) ≤ C ′1 · g(N), ∀N ∈ N,

and we can then apply part 2) of Lemma 2.1 to show f, µ(π·U) ≈ g. If we let U ′ := [(B1, ρ), (B2, τ)] then
(2.3) becomes

C2 · F (ι−1 ◦ ρ(N)) ≤ µ(πNU
′) ≤ C1 · F (ι−1 ◦ ρ(N)), ∀N ∈ N,

and the result follows from Definition 1.8.

Before moving on, we recall from [18] some results on the fastest optimal decay rate for a basis pair:

Theorem 2.7. Let U ∈ B(l2(N)) be an isometry. Then
∑
N µ(QNU) diverges.

Proof. See Theorem 2.14 in [18].

Corollary 2.8. Let U ∈ B(l2(N)) be any isometry. Then there does not exist an ε > 0 such that

µ(QNU) = O(N−1−ε), N →∞.

It turns out that Theorem 2.7 cannot be improved without imposing additional conditions on U :

Lemma 2.9. Let f, g : N→ R be any two strictly positive decreasing functions and suppose that
∑
N f(N)

diverges. Then there exists U ∈ B(l2(N)) an isometry with

µ(QNU) ≤ f(N), µ(UQN ) ≤ g(N), N ∈ N. (2.4)

Proof. See Lemma 2.16 in [18].

If we restrict our decay function to be a power law, i.e. f(N) := CN−α for some constants α,C > 0
then the largest possible value of α > 0 such that (2.4) holds for an isometry U is α = 1. This gives us a
notion of the fastest optimal decay rate as a power of N over all pairs of bases where the span of B2 lies in
the span of B1.

3 One-dimensional Bases and Incoherence Results
Before we begin our review of the one-dimensional cases by quickly going the one-dimensional bases and
orderings that we shall be working with to construct multi-dimensional bases and orderings in Section 4.
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3.1 Fourier Basis
We recall the one-dimensional Fourier basis Bf(ε) = (χk)k∈Z from Definition 1.9.

Definition 3.1 (Standard ordering). We define Ff : Bf → N∪ {0} by Ff(χk) = |k| and say that an ordering
ρ : N→ Bf is a ‘standard ordering’ if it is consistent with Ff (recall Definition 2.4).

3.2 Standard Wavelet Basis
Take a Daubechies wavelet ψ and corresponding scaling function φ in L2(R) with

Supp(φ) = Supp(ψ) = [−p+ 1, p].

We write
φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k),

Vj := Span{φj,k : k ∈ Z}, Wj := Span{ψj,k : k ∈ Z}.

With the above notation, (Vj)j∈Z is the multiresolution analysis for φ, and therefore

Vj ⊂ Vj+1, Vj+1 = Vj ⊕Wj , L2(R) =
⋃
j∈Z

Vj ,

where Wj here is the orthogonal complement of Vj in Vj+1. For a fixed J ∈ N we define the set7

Bw :=

 Supp(φJ,k) ∩ (−1, 1) 6= ∅,
φJ,k, ψj,k : Supp(ψj,k) ∩ (−1, 1) 6= ∅,

j ∈ N, j ≥ J, k ∈ Z

 , (3.1)

Let ρ be an ordering of Bw. Notice that since L2(R) = VJ ⊕
⊕∞

j=JWj for all f ∈ L2(R) with supp(f) ⊆
[−1, 1] we have

f =

∞∑
n=1

cnρ(n) for some (cn)n∈N ∈ `2(N).

Definition 3.2 (Leveled ordering (standard wavelets)). Define Fw : Bw → R by

Fw(f) =

{
j, if f ∈Wj

−1, if f ∈ VJ
,

and say that any ordering τ : N→ Bw is a ‘leveled ordering’ if it is consistent with Fw.

Notice that Fw(ψj,k) = j. We use the name “leveled” here since requiring an ordering to be leveled
means that you can order however you like within the individual wavelet levels themselves, as long as you
correctly order the sequence of wavelet levels according to scale.

Suppose that U = [(Bf(ε), ρ), (Bw, τ)] for orderings ρ, τ . If we require U to be an isometry we must
impose the constraint (2ε)−1 ≥ 1 + 2−J+1(p − 1) otherwise the elements in Bw do not lie in the span of
Bf(ε). For convenience we rewrite this as ε ∈ IJ,p where

IJ,p := (0, (2 + 2−J+2(p− 1))−1].

3.3 Boundary Wavelet Basis
We now look at an alternative way of decomposing a function f ∈ L2([−1, 1]) in terms of a wavelet basis,
which involves using boundary wavelets [26, Section 7.5.3]. The basis functions all have support contained
within [−1, 1], while still spanning L2[−1, 1]. Furthermore, the boundary wavelet basis retains the ability to
reconstruct polynomials of order up to p− 1 from the corresponding standard wavelet basis. We shall not go
into great detail here but we will outline the construction; we take, along with a Daubechies wavelet ψ and

7‘w’ here stands for ‘wavelet’.
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corresponding scaling function φ with Supp(ψ) = Supp(φ) = [−p+ 1, p], boundary scaling functions and
wavelets (using the same notation as in [26] 8)

φleft
n , φright

n , ψleft
n , ψright

n , n = 0, · · · , p− 1.

Like in the standard wavelet case we shift and scale these functions,

φleft
j,n(x) = 2j/2φleft

n (2j(x+ 1)), φright
j,n (x) = 2j/2φright

n (2j(x− 1)).

We are then able to construct nested spaces , (V int
j )j≥J , (W int

j )j≥J for a fixed base level J ≥ dlog2(p)e,
such that L2([−1, 1]) =

⊕∞
j=J V

int
j , V int

j+1 = V int
j ⊕W int

j with W int
j the orthogonal complement of V int

j in
V int
j+1 by defining

V int
j = Span

{
φleft
j,n, φ

right
j,n

φj,k
:
n = 0, · · · , p− 1

k ∈ Z s.t. Supp(φj,k) ⊂ (−1, 1)

}
,

W int
j = Span

{
ψleft
j,n, ψ

right
j,n

ψj,k
:
n = 0, · · · , p− 1

k ∈ Z s.t. Supp(ψj,k) ⊂ (−1, 1)

}
.

We then take the spanning elements of V int
J and the spanning elements of W int

j for every j ≥ J to form
the basis Bbw (bw for ’boundary wavelets’).

Definition 3.3 (Leveled ordering (boundary wavelets)). Define Fw : Bbw → R by the formula

Fbw(f) =

{
j, if f ∈W int

j

−1, if f ∈ V int
J

.

Then we say that an ordering τ : N→ Bbw of this basis is a ‘leveled ordering’ if it is consistent with Fbw.

3.4 Legendre Polynomial Basis
If (pn)n∈N denotes the standard Legendre polynomials on [−1, 1] (so pn(1) = 1 and p1(x) = 1 for x ∈
[−1, 1]) then the L2-normalised Legendre polynomials are defined by p̃n =

√
n− 1/2 · pn and we write

Bp := (p̃n)∞n=1 (the p here stands for “polynomial” ). Bp is already ordered; call this the natural ordering .

3.5 Incoherence Results for One-dimensional Bases
Next we recall the one-dimensional incoherence results proved in [18], which shall be used to prove the
corresponding multi-dimensional tensor results in Section 4:

Theorem 3.4. Let ρ be a standard ordering of Bf(ε) with ε ∈ IJ,p, τ a leveled ordering of Bw and U =
[(Bf(ε), ρ), (Bw, τ)]. Then we have, for some constants C1, C2 > 0 the decay

C1

N
≤ µ(πNU), µ(UπN ) ≤ C2

N
, ∀N ∈ N, (3.2)

The same conclusions also hold if the basisBw is replaced byBbw and the condition ε ∈ IJ,p by ε ∈ (0, 1/2].

Theorem 3.5. Let ρ be a standard ordering of Bf(ε) with ε ∈ (0, 0.45], τ a natural ordering of Bp and
U = [(Bf(ε), ρ), (Bp, τ)]. Then we have, for some constants C1, C2 > 0 the decay

C1

N2/3
≤ µ(πNU), µ(UπN ),≤ C2

N2/3
, ∀N ∈ N. (3.3)

8We use [−1, 1] instead of [0, 1] as our reconstruction interval here, but everything else is the same.
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4 Multidimensional Tensor Cases

4.1 General Estimates
Definition 4.1 (Tensor basis). Suppose that B is an orthonormal basis of some space T ≤ L2(R) (i.e. T is
a subspace L2(R)) and we already have an ordering ρ : N→ B. Define ρd : Nd →

⊗d
j=1 T ≤ L2(Rd) by

the formula (m ∈ Nd)

ρd(m)(x) :=
( d⊗
j=1

ρ(mj)
)

(x) =

d∏
j=1

ρ(mj)(xj).

This gives a basis of
⊗d

j=1 T ≤ L2(Rd) because of the formula

〈ρd(m), ρd(n)〉L2(Rd) =

d∏
j=1

〈ρ(mj), ρ(nj)〉L2(R). (4.1)

We call Bd := (ρd(m))m∈Nd a ‘tensor basis’. The function ρd is said to be the ‘d-dimensional indexing
induced by ρ’. Notice that ρd is not an ordering unless d = 1.

Now suppose that we have two one-dimensional bases B1, B2 with corresponding optimal orderings
ρ1, ρ2. Let ρd1, ρ

d
2 be the d-dimensional indexings induced by ρ1, ρ2 of the bases Bd1 , B

d
2 . What are optimal

orderings of the basis pair (Bd1 , B
d
2 ) and what is the resulting optimal decay rate? Some insight is given by

the following Lemma:

Lemma 4.2. Let (B1, B2) be a pair of bases with corresponding tensor bases Bd1 , B
d
2 . Let ρ1 be a strongly

optimal ordering of B1 and ρd1 be the d-dimensional indexing induced by ρ1. Finally, for some ordering τ of
B2, let U = [(B1, ρ1), (B2, τ)] . Then if f represents the optimal decay rate corresponding to the basis pair
(B1, B2) we have, for some constants C1, C2 > 0,

d∏
i=1

Cd1 · f(ni) ≤ sup
g∈Bd

2

|〈ρd1(n), g〉|2 =

d∏
i=1

µ(πni
U) ≤

d∏
i=1

Cd2 · f(ni), n ∈ Nd. (4.2)

Consequently, if we let ι := ρd1 then F (n) :=
∏d
i=1 f(ni) characterizes the optimal decay of (B1, B2).

Proof. Let τd denote the d-dimensional indexing induced by τ . Then by breaking the down the tensor
product into terms and using the bijectivity of τd we have

sup
g∈Bd

2

|〈ρd1(n), g〉|2 = sup
m∈Nd

|〈ρd1(n), τd(m)〉|2 = sup
m∈Nd

d∏
i=1

|〈ρ1(ni), τ(mi)〉|2

=

d∏
i=1

sup
m∈N
|〈ρ1(ni), τ(m)〉|2 =

d∏
i=1

µ(πni
U).

Therefore (4.2) follows from applying the definition of a strongly optimal ordering to each term in the
product.

Lemma 4.2 says that if we have a strongly optimal ordering for the basis pair (B1, B2) then we can
use Lemma 2.6 to find all strongly optimal orderings for the corresponding tensor basis pair (Bd1 , B

d
2 ). In

particular, we have

Corollary 4.3. We use the framework of the previous Lemma. Let σ : N→ Nd be consistent with 1/F . Then
an ordering ρ is strongly optimal for the basis pair (Bd1 , B

d
2 ) if and only if there are constants C1, C2 > 0

such that
C1F (σ(N)) ≤ F ((ρd1)−1 ◦ ρ(N)) ≤ C2F (σ(N)), N ∈ N.

Suppose that we have a strongly optimal ordering ρ1 of B1 such that the optimal decay rate is a power
of N , namely that f(n) = n−α for some α > 0, which is the case for the one dimensional examples
we covered in Section 3. The above Lemma tells us that to find the optimal decay rate we should take an
ordering σ : N → Nd that is consistent with 1/F (n) :=

∏d
i=1 1/f(ni) =

∏d
i=1 n

α
i which is equivalent to

being consistent with 1/F 1/α(n) =
∏d
i=1 ni. This motivates the following:
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Definition 4.4 (Corresponding to the hyperbolic cross). Define FH : Nd → R by FH(n) =
∏d
i=1 ni. Then

we say a bijective function σ : N→ Nd ‘corresponds to the hyperbolic cross’ if it is consistent with FH .

The name ‘hyperbolic cross’ originates from its use in approximation theory [3, 11]. We now claim that
if σ corresponds to the hyperbolic cross and d ≥ 2, then

d∏
i=1

σ(N)i ∼
(d− 1)!N

logd−1(N + 1)
as N →∞. (4.3)

Next we proceed to prove this claim.

Definition 4.5. For d ∈ N let fd(x) = x logd−1 x be defined on [1,∞). We define gd as the inverse function
of fd on [1,∞), and so gd : [0,∞)→ [1,∞). Furthermore, we define

hd(x) :=
x

logd−1(x+ 1)
, x ∈ [1,∞). (4.4)

Lemma 4.6. The following holds:
1.) gd(x)/hd(x)→ 1 as x→∞.
2.) Let f̃(x) = x logd−1 x+ xp(log(x)) + β with p a polynomial of degree at most d− 2, β ∈ R and let g̃
be its inverse function defined for large x ∈ R+. Then we also have g̃(x)/hd(x)→ 1 as x→∞.

Proof. 1.) For notational convenience we shall prove the equivalent result

gd(x) logd−1(x)

x
→ 1 as x→∞.

By taking logarithms we change the problem from studying the asymptotics of a fraction to the asymptotics
of the difference

log(gd(x))− log(hd(x)) = log(gd(x))− log x+ (d− 1) log log x→ 0 as x→∞. (4.5)

With this in mind we notice that the function log(gd) (defined on [0,∞)) is the inverse function of ed(x) :=
fd(exp(x)) = xd−1 expx (defined on [0,∞)).

Notice that for x large we have ed(x − (d − 1) log x) = (x−(d−1) log x)d−1

xd−1 exp(x) ≤ exp(x) which
implies that x− (d− 1) log x ≤ log(gd(exp(x))). Now if we let ε > 0 then we deduce that

ed(x− (d− 1) log x+ ε) =
(x− (d− 1) log x+ ε)d−1

xd−1
exp(x+ ε) ≥ exp(x) for x large.

This implies that x− (d− 1) log x+ ε ≥ log(gd(exp(x))) for x large. We therefore conclude that for all x
sufficiently large we have

x− (d− 1) log x ≤ log(gd(exp(x))) ≤ x− (d− 1) log x+ ε,

from which (4.5) follows since ε > 0 is arbitrary.
2.) Notice that by part 1. it suffices to show that g̃(x)/gd(x) → 1 as x → ∞. Again, we shall show

this by taking logarithms, reducing the proof to showing

log(g̃(x))− log(gd(x))→ 0 as x→∞.

Notice that log(g̃(x)) is the inverse function, defined for large x, of

ẽ(x) := f̃(exp(x)) = xd−1 exp(x) + p(x) · exp(x) + β,

Then since
ẽ′(x) = xd−1 exp(x) + ((d− 1) · xd−2 + p′(x) + p(x)) · exp(x),

we can use the hypothesis that p is of a lower order than xd−1 to show that for every ε > 0, there is an
L(ε) > 0 such that for all x ≥ L(ε) we have ε · ẽ′(x − ε) ≥ |ẽ(x) − ed(x)| = |p(x) · exp(x) + β|. We
therefore deduce from the mean value theorem that for x ≥ exp(L(ε)) we have

ẽ(log(gd(x))− ε) ≤ ed(log(gd(x))) =x ≤ ẽ(log(gd(x)) + ε)

⇒ log(gd(x))− ε ≤ log(g̃(x)) ≤ log(gd(x)) + ε,

where we applied log(g̃) to the inequality in the last step (this preserves the inequality since log(g̃) is an
increasing function of x for x large).
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Lemma 4.7. 1). For every d ∈ N we have

RN :=

N∑
i=1

1

i
(log(N)− log(i))d =

1

d+ 1
logd+1N +O(logdN) N →∞. (4.6)

2). Let Sd(N) for d,N ∈ N be defined by

Sd(N) := #
{
m ∈ Nd :

d∏
i=1

mi ≤ N
}
. (4.7)

Then for every d ∈ N, there exists polynomials p
d
, pd both of degree d− 1 with identical leading coeffi-

cient 1/(d− 1)! such that
Np

d
(log(N)) ≤ Sd(N) ≤ Npd(log(N)). (4.8)

3). If we let σ : N→ Nd correspond to the hyperbolic cross then (4.3) holds.

Proof. 1). Let IN :=
∫ N

1
1
x (log(N)− log(x))d dx. Since the integrand is a decreasing function of x (with

N fixed) we find that by the Maclaurin integral test that 0 ≤ RN − IN ≤ logd(N). This means that showing
(4.6) is equivalent to showing that∫ N

1

1

x
(log(N)− log(x))d dx =

1

d+ 1
logd+1N +O(logdN).

Now, by expanding out the factors of the integrand and integrating (recall that the integral of x−1 logk x is
1
k+1 · logk+1 x) the integral becomes

logd+1(N) ·
d∑
i=0

1

i+ 1

(
d

i

)
(−1)i.

Since 1
i+1

(
d
i

)
= 1

d+1

(
d+1
i+1

)
we see that the sum simplifies to 1

d+1 and we are done.
2). We use induction on the dimension d. The case d = 1 is immediate since p

1
(x) = p1(x) = 1

satisfies inequality (4.8). Therefore suppose that inequality (4.8) holds for dimension d = k. We shall
extend the result to d = k + 1 using the equality:

Sk+1(N) =

N∑
i=1

Sk

(⌊N
i

⌋)
. (4.9)

This equality follows from rewriting the set defining Sk+1 as the following disjoint union:

{
m ∈ Nk+1 :

k+1∏
i=1

mi ≤ N
}

=

N∐
j=1

{
m ∈ Nk+1 : mk+1 = j,

k∏
i=1

mi ≤
⌊
N

i

⌋}
.

Upper Bound: We may assume without loss of generality that pk has all coefficients positive. Therefore,
by replacing bNi c with N

i and using the upper bound in (4.8), we can upper bound equation (4.9) by

N∑
i=1

N

i
· pk
(

log
(N
i

))
≤ N

N∑
i=1

1

i
· pk(log(N)− log(i)).

We can then get the required upper bound by applying part 1) of the lemma to each term in the polynomial;
for example the highest order term becomes

N∑
i=1

N

i
· 1

(k − 1)!
(log(N)− log(i))k−1 ≤ N

k!
logkN + CN logk−1N, ∀N ∈ N,

for some constant C > 0 sufficiently large. The other terms in pk are handled similarly.
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Lower Bound: Notice that without loss of generality we can assume all the coefficients of p
k

apart from
the leading coefficient are negative. Using the lower bound in (4.8), we can lower bound equation (4.9) by

N∑
i=1

⌊
N

i

⌋
· pk
(

log
(⌊N

i

⌋))
.

This means we can tackle the < k − 1 order terms in the same way as in the upper bound since we can
replace

⌊
N
i

⌋
with N

i (recall we have assumed these terms are negative). Now we are left with bounding the
highest order term:

N∑
i=1

⌊
N

i

⌋
1

(k − 1)!
(log

(⌊N
i

⌋)
)k =

N∑
i=1

⌊
N

i

⌋
1

(k − 1)!
·
[

log
(N
i

)
−
(

log
(N
i

)
− log

(⌊N
i

⌋))]k
.

(4.10)
Therefore expanding out the binomial term, setting the sign of all terms except the first to be negative, and
noticing log

(
N
i

)
− log

( ⌊
N
i

⌋ )
≤ 1 for every i,N we get the lower bound

N∑
i=1

⌊
N

i

⌋
1

(k − 1)!
logk

(N
i

)
−

N∑
i=1

k−1∑
j=0

⌊
N

i

⌋(
k

j

)
1

(k − 1)!
logj

(N
i

)
.

From here we can replace
⌊
N
i

⌋
by N

i for the right term,
⌊
N
i

⌋
by N

i − 1 on the left term and use part 1) of
the lemma again to prove the lower bound.

3.) From the second part of the lemma we know that for some degree d − 1 polynomials p
d
, pd with

leading coefficient 1/(d− 1)! we have Np
d
(log(N)) ≤ Sd(N) ≤ Npd(log(N)). Now notice that if m ∈ N

then because of consistency we must have Sd(FH(σ(m))− 1) ≤ m since σ must first list all the terms n in
Nd with FH(n) ≤ FH(σ(m)) − 1 before listing σ(m). Likewise we must have m ≤ Sd(FH(σ(m))) since
the Sd(FH(σ(m))) terms with FH(n) ≤ FH(σ(m)), n ∈ Nd must be listed by σ first, including m , before
any others. Consequently we deduce

(FH(σ(m))− 1)p
d
(log(FH(σ(m))− 1)) ≤ m ≤ FH(σ(m))pd(log(FH(σ(m)))). (4.11)

We now treat both sides separately. Looking at the LHS we get the estimate FH(σ(m))−1 ≤ g̃d(m), where
g̃d(m) is the inverse function (defined for large m) of

f̃d(x) :=
1

(d− 1)!
x logd−1(x) + (degree d− 2 poly)(log(x)),

and so we may apply part 2. of Lemma 4.6 to deduce FH(σ(m)) ≤ hd((d − 1)!m) · (1 + ε(m)), where
ε(m) → 0 as m → ∞. The right hand side is handled similarly to get the same asymptotic lower bound
on FH(σ(m)), namely FH(σ(m)) ≥ hd((d − 1)!m) · (1 + ε(m)), where ε(m) → 0 as m → ∞. Since
hd((d−1)!x)
(d−1)!hd(x) → 1 as x→∞ the proof is complete.

(4.3) allows us to determine the optimal decay rate for when the optimal one dimensional decay rate is a
power of N .

Theorem 4.8. Returning to the framework of Corollary 4.3, if f(n) = n−α for n ∈ N, F (n) =
∏d
i=1 f(n)

for n ∈ Nd and σ : N→ Nd corresponds to the hyperbolic cross then

F (σ(N)) =

(
d∏
i=1

σ(N)i

)−α
∼
(
(d− 1)! · hd(N)

)−α
, N →∞. (4.12)

Consequently h−αd is representative of the optimal decay rate for the basis pair (Bd1 , B
d
2 ). Furthermore, an

ordering ρ is strongly optimal for the basis pair (Bd1 , B
d
2 ) if and only if there are constants C1, C2 > 0 such

that

C1 · hd(N) ≤
d∏
i=1

(
(ρd1)−1 ◦ ρ(N)

)
i
≤ C2 · hd(N), N ∈ N. (4.13)
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Proof. (4.12) follows immediately from (4.3). This implies that F ◦ σ ≈ h−αd . The statement on the
optimal decay rate then follows from the characterization result from Lemma 4.2 applied to Lemma 2.6. The
statement on strongly optimal orderings follows from Corollary 4.3.

Definition 4.9. Using the framework of Lemma 4.2, any ordering ρ : N → Bd1 such that (4.13) holds is
called a ’hyperbolic’ ordering. with respect to ρ1. Notice that by (4.12) that if σ : N → Nd corresponds to
the hyperbolic cross then ρd1 ◦ σ is hyperbolic with respect to ρ1.

We now apply Theorem 4.8 to the one-dimensional cases we have already covered:

4.1.1 Fourier-Wavelet Case

Theorem 4.10. We use the setup of Lemma 4.2. Suppose B1 = Bf(ε), B2 = Bw for some ε ∈ IJ,p, ρ1

is a standard ordering of B1 and τ1 is a leveled ordering of B2. Let Ud = [(Bd1 , ρ), (Bd2 , τ)] where ρ, τ is
hyperbolic with respect to ρ1, τ1 respectively. Then we have, for some constants9 C1, C2 > 0,

C1 logd−1(N + 1)

N
≤ µ(πNUd), µ(UdπN ) ≤ C2 logd−1(N + 1)

N
, N ∈ N. (4.14)

The above also holds if the basis Bw is replaced by Bbw and the condition ε ∈ IJ,p by ε ∈ (0, 1/2].

Proof. Inequality (4.14) follows from applying Theorem 3.2 to Theorem 4.8.

4.1.2 Fourier-Polynomial Case

Theorem 4.11. We use the setup of Lemma 4.2. Suppose B1 = Bf(ε), B2 = Bp for some ε ∈ (0, 0.45],
ρ1 is a standard ordering of the Fourier basis and τ1 is the natural ordering of the polynomial basis. Let
Ud = [(Bd1 , ρ), (Bd2 , τ)] where ρ, τ is hyperbolic with respect to ρ1, τ1 respectively. Then we have, for some
constants C1, C2 > 0, that

C1(logd−1(N + 1))2/3

N2/3
≤ µ(πNUd), µ(UdπN ) ≤ C2(logd−1(N + 1))2/3

N2/3
, N ∈ N. (4.15)

Proof. Inequality (4.15) follows from applying Theorem 3.3 to Proposition 4.8.

4.1.3 Examples of Hyperbolic Orderings

The generalisation introduced by Definition 4.9, apart from allowing us to characterise all orderings that
are strongly optimal, may seem to fulfil little other purpose. However, as we shall see in this section, this
definition admits orderings which in specific cases are very natural and appear a little less abstract than an
ordering derived from the hyperbolic cross.

Example 4.1 (Hyperbolic Cross in Zd) Our first example is unremarkable but nonetheless important. In d
dimensions, take Bd1 := Bdf as a d-dimensional tensor Fourier basis. Recall we can identify this basis with
Zd using the function λd. Suppose that we define a function Hd : Zd → R by

Hd(m) =

d∏
i=1

|max(|mi|, 1)|, (4.16)

and say that a bijective function σ : N → Zd ‘corresponds to the hyperbolic cross in Zd’ if it is consistent
with Hd. Figure 2 shows the first few contour lines of Hd in two dimensions. With this definition we can
then prove the analogous result of Lemma 4.7:

Lemma 4.12. Let σ : N→ Zd correspond to the hyperbolic cross and let hd be as in (4.3). Then we have

d∏
i=1

|max(|σ(m)i|, 1)| ∼ (d− 1)!

2d
· hd(m) as m→∞. (4.17)

Moreover, if ρ1 is a standard ordering of Bf and σ : N → Zd corresponds to the hyperbolic cross. Then
λ−1
d ◦ σ is a hyperbolic ordering with respect to ρ1.

9Constants that are dependent on ε.
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Figure 2: Hyperbolic Fourier Ordering in Two Dimensions:
A Contour Plot of H2
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Proof. Let Rd(n) denote the number of lattice points in the hyperbolic cross of size n in Zd, namely

Rd(n) := #{m ∈ Zd :

d∏
i=1

max(|mi|, 1) ≤ n}.

Call the set in the above definitionHd(n). If we remove the hyperplanes {mi = 0} for every i fromHd(n),
we are left with 2d quadrants in Zd which are congruent to set in equation (4.7). From the second part of
Lemma 4.7 we therefore have

Rd(n) ≥ 2dnp
d
(log(n)).

Next notice that the intersection of Hd(n) with each hyperplane {mi = 0} can be identified with Hd−1(n)
and so we also have the upper bound

Rd(n) ≤ 2dnpd(log(n)) + d ·Rd−1(n) ⇒ Rd(n) ≤ nrd(log(n)),

for some degree d−1 polynomial rd with leading coefficient 2d

(d−1)! . Combining the upper and lower bounds

we see that for some polynomials rd, rd of degree d− 1 with leading coefficient 2d

(d−1)! we have

nrd(log(n)) ≤ Rd(n) ≤ nrd(log(n)).

Therefore for m ∈ N since

Rd(Hd(σ(m))− 1) ≤ m ≤ Rd(Hd(σ(m))),

we have

(Hd(σ(m))− 1)rd(log(Hd(σ(m))− 1)) ≤ m ≤ Hd(σ(m))rd(log(Hd(σ(m)))).

Consequently we can apply Lemma 4.6 to both sides to derive (4.17) like in the proof of Lemma 4.7.
For the last part of the Lemma notice that since ρ1 is a standard ordering then max(|λ1◦ρ1(N)|, 1) ≈ N .

This means that the bounds on µ(πNU) in Theorem 3.4 can be rephrased as (for some constants C1, C2 > 0)

C1 · (max(|n|, 1))−1 ≤ sup
g∈Bw

|〈λ−1
1 (n), g〉|2 ≤ C2 · (max(|n|, 1))−1, n ∈ Z,

and by Lemma 4.2 this extends to the dD tensor case:

Cd1 ·
d∏
i=1

(max(|ni|, 1))−1 ≤ sup
g∈Bd

w

|〈λ−1
d (n), g〉|2 ≤ Cd2 ·

d∏
i=1

(max(|ni|, 1))−1, n ∈ Zd. (4.18)

This describes a characterization of the optimal decay of (Bdf (ε), Bdw). Lemma 2.6 tells us that λ−1
d ◦ σ is

strongly optimal for (Bdf (ε), Bdw), which by Theorem 4.8 is hyperbolic with respect to ρ1.
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Example 4.2 (Tensor Wavelet Ordering) Now we look at an example of a less obvious hyperbolic ordering.
We first introduce some notation to describe a tensor wavelet basis: For j ∈ N, k ∈ Z let φ0

j,k := φk, φ
1
j,k :=

ψj,k. Now for s ∈ {0, 1}d, j ∈ Nd, k ∈ Zd define

Ψs
j,k :=

d⊗
i=1

φsiji,ki .

Then it follows that for J ∈ N fixed, we have

Bdw :=


Supp(φsiji,ki) ∩ (−1, 1) 6= ∅ ∀i,

Ψs
j,k : si = 0⇒ ji = J, si = 1⇒ ji ≥ J

j ∈ Nd, s ∈ {0, 1}d, k ∈ Zd

 , (4.19)

The same approach can be applied to the boundary wavelet basis Bbw to generate a boundary tensor wavelet
basisBdbw, although we must include the extra boundary terms, which can be done by letting s ∈ {0, 1, 2, 3}d
where φ2

J,n would be a boundary scaling function term and φ3
j,n a boundary wavelet term.

Lemma 4.13. Let ρ1 be any leveled ordering of a one-dimensional Haar10 wavelet basis Bdw. Setting j =∑d
i=1 ji define Fhyp : Bdw → R by the formula

Fhyp(f) = j if f = Ψs
j,k.

Then any ordering ρ : N→ Bdw that is consistent with Fhyp is a hyperbolic ordering with respect to ρ1.

Remark 4.1 Such an ordering ρ is used to implement a tensor wavelet basis in Section 6.

Proof. By recalling inequality (3.10) in [18] or by using Lemma 5.3 in the case d = 1 we know that there
are constants C1, C2 > 0 such that for ρ1(N) = φsj,k, s ∈ {0, 1}, j ∈ N, k ∈ Z,

C12j ≤ N ≤ C22j , N ∈ N.

Therefore, writing ρd1(m) = Ψ
s(m)
j(m),k(m),

Cd1 2j(m) ≤
d∏
i=1

mi ≤ Cd2 2j(m), m ∈ Nd.

Consequently if we rewrite this with an actual ordering ρ(N) = Ψ
s(N)
j(N),k(N) for N ∈ N we deduce

Cd1 2j(N) ≤
d∏
i=1

(
(ρd1)−1 ◦ ρ(N)

)
i
≤ Cd2 2j(N), (4.20)

and so we have reduced the problem to determining how j(N) scales with N . Notice that from our ordering
of the wavelet basis that j(N) is a monotonically increasing function in N and moreover, for every value of
j(N) there are rd(j(N))2j(N) terms11 in Bdw with this value of j(N) in the wavelet basis, where

rd(N) := #

{
(j, s) ∈ Nd × {0, 1}d : j = N, ji ≥ J, (si − 1)(ji − J) = 0 ∀i = 1, ..., d

}
,

which is a polynomial of degree d−1. With this in mind notice we can define, consistent12 for n ∈ N, n ≥ J ,

Td(x)“ = ”

x∑
i=J

rd(i)2
i := pd(x)2x + αd,

10For the sake of simplicity we only work with the Haar wavelet case, although we could cover the boundary wavelet case with the
same argument.

11This is where we use that the support of the Haar wavelet is [0, 1] and so there are 2j shifts of φj,0, ψj,0 in Bw.
12To see how this is possible, take the formula for the geometric series expansion and differentiate repeatedly.
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for some degree d − 1 polynomial pd and constant αd. By the consistency property of ρ we deduce the
inequality

Td(j(N)− 1) ≤ N ≤ Td(j(N)) ⇒ j(N)− 1 ≤ T−1
d (N) ≤ j(N)

⇒ 2j(N)−1 ≤ 2T
−1
d (N) ≤ 2j(N).

Notice that 2T
−1
d (x) is the inverse function of Td(log2 x) which is of the form x · pd(log2 x) + α, Therefore,

applying parts 2. & 3. of Lemma 4.6 gives, for some constants D1, D2 > 0 and N large,

(1 + ε1(N)) ·D1 · 2j(N) ≤ gd(N) ≤ (1 + ε2(N)) ·D2 · 2j(N), (4.21)

where ε1(N), ε2(N)→ 0 asN →∞. Combining this with (4.20) shows that we have a hyperbolic ordering.

4.2 Plotting Tensor Coherences
Let us consider a simple illustration of this theory applied to a 2D tensor Fourier-Wavelet case (B2

f , B
2
w).

We can identify the 2D Fourier Basis B2
f with Z2 using the function λ2, so the row incoherences can also be

identified with Z2 and therefore they can be imaged directly in 2D, as in Figure 3.

Figure 3: 2D Tensor Fourier - Tensor Haar Incoherences
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We show the subset {−250,−249, ..., 249, 250}2 ⊂ Z2. Notice that the scaled coherences have no vanishing values (no pure black)
and no values that blow up (no pure white, baring the center value which = 1) indicating that we have characterised the coherence in

terms of the hyperbolic scaling used. Formally this is shown by equation (4.18). The coherences shown in the Figure are square rooted
to reduce contrast (i.e. we image

√
µ(πNU) instead of µ(πNU)).

5 Multidimensional Fourier - Separable Wavelet Case
We repeat the notation of the one-dimensional case, with scaling function φ (in one dimension) & Daubechies
wavelet ψ:

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

We can construct a d-dimensional scaling function Φ by taking the tensor product of φ with itself, namely

Φ(x) :=
( d⊗
j=1

φ
)

(x) =

d∏
j=1

φ(xj), x ∈ Rd,

which has corresponding multiresolution analysis (Ṽj)j∈Z with diagonal scaling matrix A ∈ Rd×d with
Ai,j = 2δi,j .

Let φ0 := φ, φ1 := ψ and for s ∈ {0, 1}d, j ≥ J, k ∈ Zd where J ∈ N is fixed define the functions

Ψs
j,d :=

d⊗
i=1

φsij,ki . (5.1)
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If we write (for s ∈ {0, 1}d \ {0}, j ≥ J)

W s
j := Span{Ψs

j,k : k ∈ Zd}.

Then it follows that

Ṽj+1 = Ṽj ⊕
⊕

s∈{0,1}d\{0}

W s
j , L2(Rd) = ṼJ ⊕

⊕
s∈{0,1}d\{0}

j≥J

W s
j .

This corresponds to taking 2d − 1 wavelets for our basis in d dimensions (see [26]). As before we take the
spanning functions from the above whose support has non-zero intersection with [−1, 1]d as our basis B2

(called a ‘separable wavelet basis’):

Bdsep :=


Supp(φsij,ki) ∩ (−1, 1) 6= ∅ ∀i,

Ψs
j,k : s = 0⇒ j = J,

j ∈ N, s ∈ {0, 1}d, k ∈ Zd

 , (5.2)

Remark 5.1 We can also construct a separable boundary wavelet basis in the same manner like in the one-
dimensional case however, for the sake of simplicity, we stick to the above relatively simple construction
throughout (although all the coherence results we cover here also hold for the separable boundary wavelet
case as well).

5.1 Ordering the Separable Wavelet Basis
We note a few key equalities from the one-dimensional case that will come in handy:

Fφj,k(ω) = e−2πi2−jkω2−j/2Fφ(2−jω), Fψj,k(ω) = e−2πi2−jkω2−j/2Fψ(2−jω), (5.3)

where F here denotes the Fourier Transform, i.e. for f ∈ L2(Rd) we define

Ff(ω) =

∫
Rd

f(x)e−2πiω·x dx, ω ∈ Rd.

Recall χk from Definition 1.9. We observe that by (5.1)

〈Ψs
j,k, χn〉 = εd/2 · FΨs

j,k(εn) = εd/2
d∏
i=1

Fφsij,ki(εni), n ∈ Zd,

⇒ sup
n∈Nd

|〈Ψs
j,k, χn〉|2 = εd2−dj ·

d∏
i=1

sup
n∈N
|Fφsi(ε2−jn)|2.

(5.4)

By careful treatment of the product term we can determine the optimal decay of (Bdsep, B
d
f (ε)), using the

following result:

Proposition 5.1. There are constants C1, C2 > 0 such that for all ε ∈ IJ,p,Ψs
j,k ∈ Bdsep we have

C1 · εd2−dj ≤ sup
n∈Nd

|〈Ψs
j,k, χn〉|2 ≤ C2 · εd2−dj .

Consequently, fixing ε, the function Fpower : Bdsep → R defined by Fpower(Ψ
s
j,k) = 2−dj characterizes the

optimal decay of (Bdsep, B
d
f (ε)).

Proof. Let A = max(supω∈R |Fφ(ω)|2, supω∈R |Fψ(ω)|2). Then (5.4) gives us the upper bound

sup
n∈Nd

|〈Ψs
j,k, χn〉|2 ≤ εd2−dj ·Ad.

This leaves the lower bound. This can be achieved if we can show that there exists constants D1, D2 > 0
such that for all ε ∈ IJ,p13

F1(ε) := sup
n∈N
|Fφ(ε2−Jn)| ≥ D1, F2(ε) := sup

n∈N
|Fψ(ε2−Jn)| ≥ D2. (5.5)

13notice that replacing J with j ≥ J below would have been redundant.
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By the Riemann-Lebesgue Lemma the functions F1,F2 are continuous on IJ,p and

F1(ε)→ sup
ω∈R
|Fφ(ω)| > 0 as ε→ 0.

Likewise for F2. Therefore F1,F2 can be extended to continuous functions over the closed interval IJ,p ∪
{0}. Since F1(ε) > 0,F2(ε) > 0 for every ε ∈ IJ,p14 the infimums over IJ,p ∪ {0} are attained and are
strictly positive, proving (5.5) and the lower bound.

Let Flevel : Bdsep → R be defined by Flevel(Ψ
s
j,k) = j. Lemma 2.6 tells that an ordering that is consistent

with 1/Fpower, i.e. consistent with Flevel will be strongly optimal.

Definition 5.2. We say that an ordering ρ : N→ Bdsep is ‘leveled’ if it is consistent with Flevel.

Lemma 5.3. Let ρ : N→ Bdsep be leveled. Then there are constants D1, D2 > 0 such

D1 ·N ≤ 2dFlevel(ρ(N)) ≤ D2 ·N. (5.6)

Proof. Let a ∈ N denote the length of the support of φ, ψ. Notice that for each j ∈ N and s ∈ {0, 1}d,
there are (2j+1 + a− 1)d shifts of Ψs

j,0 whose support lies in [−1, 1]d. For convenience we use the notation
j(N) := Flevel(ρ(N)) and shall also be using the simple bounds 2j(N)+1 ≤ 2j(N)+1+a−1 ≤ 2j(N)+a. Now
for every N ∈ N with j(N) > J , we must have had all the terms of the form f ∈ Bdsep, Flevel(f) = j(N)−1

come before N in the leveled ordering and there are at least (2d − 1) · 2dj(N) of these terms, implying that

(2d − 1) · 2dj(N) ≤ N.

This completes the upper bound for j(N) > J . Likewise for every N ∈ N with j(N) ≥ J there can be no
more than

2d ·
j(N)∑
i=J

2d(i+a) ≤ 2d · 2d(j(N)+a+1) = 2d(a+2) · 2dj(N),

terms such that Flevel(f) ≤ j(N). This shows that N ≤ 2d(a+2) · 2dj(N), completing the upper bound for
j(N) > J . Extending (5.6) to all N ∈ N (i.e. j(N) ≥ J) is trivial since we have only omitted finitely many
terms so a change of constants will suffice.

Corollary 5.4. Any ordering ρ of Bdsep that is leveled is strongly optimal for the basis pair (Bdsep, B
d
f (ε)).

Furthermore, the optimal decay rate of (Bdsep, B
d
f (ε)) is represented by the function f(N) = N−1.

Proof. Lemma 2.6 applied to Proposition 5.1 tells us that ρ is strongly optimal and moreover the optimal
decay rate is represented by Fpower(ρ(N)) which by Lemma 5.3 is of order N−1.

5.2 Ordering the Fourier Basis - Hyperbolic & Linear Orderings
We now want to find the optimal decay rate of (Bdf (ε), Bdsep) which means looking at orderings of the Fourier
basis. It might be tempting to try and extend the standard ordering definition from the one dimensional
Fourier basis. Recall as well that, using the function λd defined in (1.9), ordering Bdf (ε) is equivalent to
ordering Zd.

If we let s ∈ {0, 1}d, j ∈ N, k ∈ Zd, then in order to bound the coherence µ(πNU) we need to be
bounding terms of the form

|〈Ψs
j,k, λ

−1
d (n)〉|2 = εd2−dj

d∏
i=1

|Fφsi(2−jεni)|2. (5.7)

In the one-dimensional case in [18] the following decay property of the Fourier transform of the scaling
function φ was used:

14if it was zero then since the span of Bd
f (ε) covers L2[−1, 1] we would deduce that φ, ψ has no support in [−1, 1] which is a

contradiction.
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Lemma 5.5. If φ is any Daubechies scaling function with corresponding mother wavelet ψ then there exists
a constant K > 0 such that for all ω ∈ R \ {0},

|Fφ(ω)|, |Fψ(ω)| ≤ K

|ω|
. (5.8)

Furthermore, suppose that for some α > 0 we have, for some constantK > 0, the decay |Fφ(ω)| ≤ K|ω|−α
for all ω ∈ R \ {0}. Then, for a larger constant K > 0, |Fψ(ω)| ≤ K|ω|−α for all ω ∈ R \ {0}.

Proof. The first result is a direct result of Lemma 3.5 in [18]. The last statement follows immediately from
the equality (taken from equation (3.14) in [18]):

|Fψ(2ω)| = |m0(ω + 1/2) · Fφ(ω)|, (5.9)

where m0 is the low pass filter corresponding to φ which satisfies |m0(ω)| ≤ 1 for all ω ∈ R.

Therefore let us first consider the case where we use (5.8) to bound every term in the product, giving us
(n ∈ Zd, ni 6= 0, i = 1, ..., d)

|〈Ψs
j,k, λ

−1
d (n)〉|2 ≤ εd2−dj

d∏
i=1

K2

|ε2jni|
=

K2d∏d
i=1 |ni|

. (5.10)

Making adjustments to prevent dividing by zero by using supω∈R max(|Fφ(ω)|, |Fψ(ω)|) ≤ 1 15, this can
then be rephrased as

sup
g∈Bd

sep

|〈g, λ−1
d (n)〉|2 ≤ max(K2d, 1)∏d

i=1 max(|ni|, 1)
, n ∈ Zd. (5.11)

This tells us that the function Fhyp : Zd → R, Fhyp(n) = (
∏d
i=1 max(|ni|, 1))−1 dominates the optimal

decay of (Bdf , B
d
sep) (see Definition 2.5 for the definition of domination). Therefore if we want to maximise

the utility of this bound then we should use an ordering σ of Zd so that
∏d
i=1 max(|σ(N)i|, 1) is increasing,

namely an ordering corresponding to the hyperbolic cross in Zd (see Example 4.1). However, using such an
ordering will not give us the N−1 decay rate that we got from the one dimensional case:

Proposition 5.6. Let σ : N → Zd correspond to the hyperbolic cross in Zd and define an ordering ρ of
Bdf (ε) by ρ := λ−1

d ◦ σ, where ε ∈ IJ,p. Next let U = [(Bdf (ε), ρ), (Bdsep, τ)] for any ordering τ and fix ε.
Then there are constants C1, C2 > 0

C1 logd−1(N + 1)

N
≤ µ(QNU) ≤ C2 logd−1(N + 1)

N
, N ∈ N.

As this result is primarily for motivation, its proof is left to the appendix.
Since this approach gives us suboptimal results, we return to our bound of (5.7). Instead of using (5.8)

on every term in the product, why not just use it once on the term that give us the best decay instead? To
bound the remaining terms we can simply use supω∈R max(|Fφ(ω)|, |Fψ(ω)|) ≤ 1 . This approach gives
us the following bound

|〈Ψs
j,k, λ

−1
d (n)〉|2 ≤ εd2−dj · min

i=1,...d

K2

|ε2jni|
= εd−12−(d−1)j · K2

maxi=1,...,d |ni|
, n ∈ Zd. (5.12)

As we shall see in Lemma 5.9, choosing ρ so that we maximise the growth of the maxi=1,...,d |ni| leads to
maxi=1,...,d |ni| ≥ E ·N1/d for some constant E > 0 and so (5.12) is bounded above by constant ·N−1/d,
which is very poor decay. However, if we instead replace (5.8) by the stronger condition

|Fφ(ω)| ≤ K

|ω|d/2
, ω ∈ R \ {0}. (5.13)

15For φ this follows from Proposition 1.11 in [16]. We extend this to ψ using equation (5.9)
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then we can obtain the following upper bound16

|〈Ψs
j,k, ρ(N)〉|2 ≤ εd2−dj · min

i=1,...d

K2d

|ε2jni|d
=

K2d

maxi=1,...,d |ni|d
. (5.14)

Let us write ‖n‖∞ := maxi=1,...,d |ni|. The above can be rephrased as

sup
g∈Bd

sep

|〈g, λ−1
d (n)〉|2 ≤ max(K2d, 1)

max(‖n‖d∞, 1)
, n ∈ Zd. (5.15)

Therefore we deduce that Flin : Zd → R, Flin(n) = (max(‖n‖d∞, 1))−1 dominates the optimal decay of
(Bdf (ε), Bdsep). In fact in can be shown that Flin also characterizes the optimal decay (i.e. a lower bound of
the same form is possible) by using the following preliminary Lemma:

Lemma 5.7. For any compactly supported wavelet ψ there exists anR ∈ N such that for all q ≥ R, (q ∈ N)
we have

Lq := inf
ω∈[2−(q+1),2−q ]

|Fψ(ω)| > 0. (5.16)

Proof. See Lemma 3.6 in [18].

Proposition 5.8. We fix the choice of wavelet basisBdsep and recall the function λd : Bdf (ε)→ Zd from (1.9).
1.) Then there are constants C1(φ) > 0, D(J) > 0 such that for all ε ∈ IJ,p and n ∈ Zd with

‖n‖∞ ≥ Dε−1 we have

sup
g∈Bd

sep

|〈g, λ−1
d (n)〉|2 ≥ C1

‖n‖d∞
. (5.17)

Therefore (by fixing ε) the function Flin is dominated by the optimal decay of (Bdf (ε), Bdsep).
2.) Suppose that φ satisfies (5.13). Then there is a constant C2(φ) > 0 such that for all ε ∈ IJ,p and

n ∈ Zd,

sup
g∈Bd

sep

|〈g, λ−1
d (n)〉|2 ≤ C2

max(‖n‖d∞, 1)
. (5.18)

Therefore (by fixing ε) the function Flin characterizes the optimal decay of (Bdf (ε), Bdsep).

Proof. 2.) Follows from (5.15).
1.) If we set j = dlog2 ε‖n‖∞e+ q for some q ∈ N fixed we observe that |ε2−jni| ∈ [0, 2−q] for every

i = 1, ..., d and, since we are using the max norm, |ε2−jni| ∈ [2−q−1, 2−q] for at least one i, say i′ . Set
si = 0 for i 6= i′ and si′ = 1. Then, assuming j ≥ J , by (5.7) we have the lower bound.

|〈Ψs
j,0, λ

−1
d (n)〉|2 ≥ 2−d(q+1)

‖n‖d∞

d∏
i=1

|Fφsi(ε2−jni)|2

≥ 2−d(q+1)

‖n‖d∞
· inf
ω∈(2−q−1,2−q ]

|Fψ(ω)|2 · inf
ω∈[0,2−q ]

|Fφ(ω)|2(d−1).

(5.19)

Recall that by Lemma 5.7 there exists a q ∈ N such that Lq > 0 and infω∈[0,2−q ] |Fφ(ω)| > 017 and
therefore (5.18) follows as long as j ≥ J .

To ensure that j = dlog2(ε‖n‖∞)e+ q satisfies j ≥ J we must therefore impose the constraint that n is
sufficiently large. j ≥ J is satisfied if

J ≤ log2(ε‖n‖∞) ⇒ ‖n‖∞ ≥ 2Jε−1.

Remark 5.2 If d = 2 then (5.13) always holds by Lemma 5.5. This means we have characterized every 2D
Separable wavelet case (for Daubechies Wavelets).

16noting that (5.13) also holds for ψ by (5.9).
17We are using the fact that |Fφ(0)| = 1 and continuity of Fφ here which follows from φ ∈ L1(R).
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Remark 5.3 A similar upper bound in two dimensions based on the norm of n ∈ Z2 has already been
considered in a discrete framework for separable Haar wavelets [20].

Let Fnorm(n) := max(‖n‖∞, 1) . By 2.6 we know that if (5.13) holds then the optimal decay of
(Bdf , B

d
sep) is determined by the fastest growth of Fnorm. This motivates the following:

Lemma 5.9. Let σ : N→ Zd be consistent with Fnorm. Then there are constants E1, E2 > 0 such that

E1 ·N1/d ≤ max(‖σ(N)‖∞, 1) ≤ E2 ·N1/d, ∀N ∈ N. (5.20)

Proof. If ‖σ(N)‖∞ = L ≥ 2, then σ must have enumerated beforehand all points m in Zd with ‖m‖∞ ≤
L− 1 and there are (2L− 1)d of such points. This means that

N ≥ (2L− 1)d ⇒ ‖σ(N)‖∞ ≤
N1/d + 1

2
, N ∈ N.

which proves the upper bound when ‖σ(N)‖∞ = L ≥ 2. The lower bound is tackled similarly by noting σ
must first list all m ∈ Zd with ‖m‖∞ ≤ L, including σ(N) which shows

N ≤ (2L+ 1)d ⇒ ‖σ(N)‖∞ ≥
N1/d − 1

2
, N ∈ N.

This proves (5.9) for ‖σ(N)‖∞ = L ≥ 2. Extending this to all N ∈ N is trivial since we have only omitted
finitely many terms, so changing the constants will suffice since all terms are strictly positive.

Definition 5.10 (Linear Ordering). Any ordering ρ : N → Bdf (ε) such that σ = λd ◦ ρ satisfies (5.20) is
called a ‘linear ordering’.

Corollary 5.11. Assuming (5.13) holds for the scaling function corresponding to Bdsep, an ordering ρ of
Bdf (ε) is strongly optimal for the basis pair (Bdf (ε), Bdsep) if and only if it is linear. Furthermore, the optimal
decay rate of (Bdf (ε), Bdsep) is represented by the function f(N) = N−1.

Proof. If we apply part 2.) of Proposition 5.8 to Lemma 2.6 we kow that if σ : N → Zd is consistent with
1/Flin = F dnorm, i.e. consistent with Fnorm, then Flin(σ(·)) = 1/F dnorm(σ(·)) represents the optimal decay
rate. Lemma 5.9 tells us that this optimal decay is 1/(N1/d)d = 1/N . Furthermore, Lemma 2.6 says that an
ordering ρ is strongly optimal for (Bdf (ε), Bdsep) if and only if Flin(λd ◦ ρ(·)) ≈ Flin(σ(·)) which holds if and
only if Fnorm(λd ◦ ρ(·)) ≈ Fnorm(σ(·)), namely ρ is linear.

Corollary 5.11 gives us the same optimal decay as in one dimension, which is in contrast to the multidi-
mensional tensor case, where the best we can do is have d− 1 extra log factors.

Example 5.1 If we do not have condition (5.13) then our argument can break down very badly: For Haar
wavelets we have an explicit formula for the Fourier transform of the one-dimensional mother wavelet,

Fφ(ω) =
exp(2πiω)− 1

2πiω
.

Therefore we have that (5.13) is not satisfied for d ≥ 3 and furthermore we have (for ε < 1 and J ∈ N fixed)

|Fφ(ε2−Jk)| ≥ 1

2πεk
, (5.21)

for infinitely many k ∈ N.
Now consider the case of dD separable Haar wavelets with a linear ordering ρ of the Fourier Basis. Then,

for m ∈ N such that λd ◦ ρ(m) = (λd ◦ ρ(m)1, 0, · · · , 0) we know that by (5.21) there are infinitely many
m such that

|〈Φ, ρ(m)〉|2 = εd|Fφ(ε2−Jλd ◦ ρ(m)1)|2 · |Fφ(0)|2(d− 1)

≥ εd · 1

(2πε|λd ◦ ρ(m)1|)2
≥ εd−2E

4π2m2/d
,

(5.22)

for some constant E using Lemma 5.9. Therefore an upper bound of the form Constant ·N−1 is not possible
for a linear scaling scheme if d ≥ 3. This can be rectified by applying a semi-hyperbolic scaling scheme, as
in the next subsection.
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5.3 Examples of Linear Orderings - Linear Scaling Schemes
A wide variety of sampling schemes that are commonly used happen to be linear. In particular we demon-
strate that sampling according to how a shape scales linearly from the origin always corresponds to a linear
ordering (see Figure 4):

Figure 4: A Simple Linear Scaling Scheme

(a) Scaling shape
(b) Sampling according to a linear
scaling scheme with scaling shape
(a)

Definition 5.12. Let D ⊂ Rd be bounded with 0 in its interior and define SD : Zd :→ R

SD(x) := inf
{
κ > 0 : x ∈ κD

}
.

An ordering σ : N → Zd is said to ‘correspond to a linear scaling scheme with scaling shape D’ if it is
consistent with SD. Furthermore, an ordering ρ : N → Bdf (ε) is said to ‘correspond to a linear scaling
scheme with scaling shape D’ if it is consistent with SD ◦ λd.

Remark 5.4 If we put a norm ‖ · ‖ on Zd and take an ordering consistent with this norm then this ordering
corresponds to a linear scaling scheme with scaling shape {x ∈ Rd : ‖x‖ = 1}.

Lemma 5.13. Let ρ : N → Bdf (ε) corresponds to a linear scaling scheme with scaling shape D. Then ρ is
linear.

Proof. Let σ = λd ◦ ρ. Because the scaling shape D is bounded and contains 0 in its interior we have that
there exists constants C1, C2 > 0 such that C1S ⊂ D ⊂ C2S where S is defined to be the unit hypercube,
i.e. S := {x ∈ Rd : ‖x‖∞ = 1}. Therefore if ‖σ(N)‖∞ = L, then since D ⊂ C2S we have that
SD(σ(N)) ≥ LC−1

2 . Applying this to C1S ⊂ D we deduce that σ must have enumerated beforehand all
points m in Zd with ‖m‖∞ < LC1C

−1
2 and there are at least (2(LC1C

−1
2 − 1) + 1)d of such points. This

means that

N ≥ (2(‖σ(N)‖∞C1C
−1
2 − 1) + 1)d ⇒ ‖σ(N)‖∞ ≤

N1/d + 1

2C1C1
2

≤ N1/d

C1C
−1
2

, N ∈ N.

which proves the upper bound. The lower bound is tackled similarly to prove (5.20).

5.4 2D Separable Incoherences
By Remark 5.2 we have shown that linear orderings are strongly optimal for all 2D Fourier - separable
wavelet cases, so this is a good point to have a quick look at a few of these in Figure 5.

5.5 Semi-Hyperbolic Orderings
By Example 5.1 we know that if (5.13) does not hold then our approach of using a linear ordering can fail.
We therefore return once more to (5.7). Let us now try to use an approach that is halfway between our
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Figure 5: 2D Fourier - Separable Wavelet Coherences
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We show the subset {−250,−249, ..., 249, 250}2 ⊂ Z2. Notice again that the scaled coherences are bounded above zero and below
1 indicating that we have characterised the incoherence in terms of the linear scaling used, as shown in Proposition 5.8. The

incoherences shown in the Figure are square rooted to reduce contrast.

two previous linear/hyperbolic approaches. Let r ∈ {1, ..., d − 1} be fixed. We shall first impose a decay
condition that is stronger than (5.8) but weaker than (5.13):

|Fφ(ω)| ≤ K

|ω|d/2r
, ω ∈ R \ {0}. (5.23)

Instead of just taking out the dominant term of the product in (5.7), let us take out the r smallest terms:

|〈Ψs
j,r, λ

−1
d (n)〉|2 ≤ εd2−dj · min

i1,...,ir∈{1,...,d}
i1<...<ir

r∏
r=1

K2

|ε2jnir |

d/r

= K2r ·
(

max
i1,...,ir∈{1,...,d}

i1<...<ir

r∏
r=1

|nir |
)−d/r

, n ∈ Zd, ni 6= 0, i = 1, ..., d.

(5.24)

Again we can extend this bound to all n ∈ Zd:

sup
g∈Bd

sep

|〈g, λ−1
d (n)〉|2 ≤ max(K2r, 1) ·

(
max

i1,...,ir∈{1,...,d}
i1<...<ir

r∏
r=1

max(|nir |, 1)
)−d/r

, n ∈ Zd. (5.25)

We deduce that the function Fhyp,r : Zd → R, Fhyp,r(n) =
(

maxi1,...,ir∈{1,...,d}
i1<...<ir

∏r
r=1 max(|nir |, 1)

)−d/r
dominates the optimal decay of of (Bdf , B

d
sep).

Definition 5.14. Let us define, for r, d ∈ N, r ≤ d the function

Hd,r(n) := max
i1,...,ir∈{1,...,d}

i1<...<ir

r∏
j=1

max(|nij |, 1), n ∈ Zd.
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Then we say an ordering σ : N → Zd is ‘semi-hyperbolic of order r in d dimensions’ if it is consistent with
Hd,r.

Figure 6 presents some isosurface plots of H3,r for the various values of r
Notice that a semi-hyperbolic ordering of order d in d dimensions corresponds to the hyperbolic cross

in Zd (see Example 4.1). Furthermore, if σ : N → Zd is a semi-hyperbolic ordering of order 1 in d
dimensions then, by Remark 5.4, σ corresponds to a linear scaling scheme because Hd,1(n) = ‖n‖∞ for the
componentwise max norm ‖ · ‖∞ on Rd. Like in the linear and hyperbolic cases discussed in the previous
sections, we want to determine how Hd,r(σ(n)) scales with n ∈ N.

Figure 6: Isosurfaces of H3,r , r = 1, 2, 3 describing the three types of ordering available in 3D

(a) Case r = 1 (Linear) ;
Isosurface value=10.

(b) Case r = 2 (Semi-Hyperbolic) ;
Isosurface value=20.

(c) Case r = 3 (Hyperbolic) ;
Isosurface value=20.

Lemma 5.15. 1). Let r, d ∈ N, r ≤ d− 1 be fixed. Let us define

Sd,r(n) := #{m ∈ Zd : Hd,r(m) ≤ n}, n ∈ N.

Then there is a constant C > 0 such that

nd/r ≤ Sd,r(n) ≤ C · nd/r, n ∈ N.

2). If σ : N → Zd is semi-hyperbolic of order r with r ≤ d − 1 then there are constants C1, C2 > 0 such
that

C1 · nr/d ≤ Hd,r(σ(n)) ≤ C2 · nr/d, n ∈ N.

Proof. 1). For notational simplicity we prove the same bounds but with Sd,r replaced by the smaller set

S̃d,r(n) := #{m ∈ Nd : Hd,r(m) ≤ n}, n ∈ N.

The same bounds for Sd,r then follows immediately, albeit with a larger constant C > 0. The lower bound
is straightforward since the set defining S̃d,r(n) contains the set {m ∈ Nd : mi ≤ n1/r, i = 1, .., d}. We
prove the upper bound by induction on r. The case r = 1 is clear because S̃d,1(n) is simply the number of
points inside a d-dimensional hypercube with side length n. Suppose the result holds for r = r′− 1. We use
the following set inclusion:

{m ∈ Zd : Hd,r′(m) ≤ n} ⊂{m ∈ Nd : mi ≤ n1/r′ , i = 1, .., d}

∪
d⋃
i=1

{m ∈ Nd : n1/r′ ≤ mi ≤ n, Hd−1,r′−1(m̃i) ≤ n/mi},
(5.26)

where m̃i here refers tom with the ith entry removed. The cardinality of the first set on the right is just nd/r
′

and so we are done if we can show that for some constant C > 0,

#{m ∈ Nd : n1/r′ ≤ m1 ≤ n, Hd−1,r′−1((m2, ...,md)) ≤ n/m1} ≤ Cnd/r
′
, n ∈ N
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We achieve this by applying our inductive hypothesis:

#{m ∈ Nd : n1/r′ ≤ m1 ≤ n, Hd−1,r′−1((m2, ...,md)) ≤ n/m1}

≤
n∑

i=bn1/r′c

Sd−1,r′−1(bn/ic) ≤ C ′ ·
n∑

i=bn1/r′c

(
n/i
)(d−1)/(r′−1)

≤ C ′n(d−1)/(r′−1) ·
∫ n

n1/r′−2

x−(d−1)/(r′−1) dx

≤ C ′n(d−1)/(r′−1) · (n1/r′ − 2)(1−(d−1)/(r′−1)), (noting r′ ≤ d− 1)

(5.27)

where C ′ > 0 is some constant. We can replace (n1/r′ − 2) by n1/r′ in the above by changing the constant
C ′ and assuming n > 2r

′
. Finally, we notice that the exponents add to the desired expression:

d− 1

r − 1
+

1

r′

(
1− d− 1

r′ − 1

)
=
d− 1

r′ − 1
− d− r′

r′(r′ − 1)
=
d

r′
.

This gives the required upper bound for n > 2r
′
. Since the terms involved are all positive, we can just

increase the constant C ′ to include the cases n ≤ 2r
′
. This shows that the result holds for r = r′ and the

induction argument is complete.
2.) By consistency we know that

Sd,r(Hd,r(σ(n))− 1) ≤ n ≤ Sd,r(Hd,r(σ(n))), n ∈ N

and therefore we can directly apply part 1 to deduce

(Hd,r(σ(n))− 1)d/r ≤ n ≤ C · (Hd,r(σ(n)))d/r, n ∈ N,

from which the result follows.

Armed with this result, we can now completely tackle the separable wavelet case.

Proposition 5.16. Suppose that the scaling function φ corresponding to the separable wavelet basis Bdsep,
satisfies (5.23) for some constant K ≥ 0 and r ∈ {1, ..., d− 1}. Next let σ : N→ Zd be semi-hyperbolic of
order r in d dimensions and ρ := λ−1

d ◦σ. Finally, we let U = [(Bdf (ε), ρ), (Bdsep, τ)], where τ is an ordering
of Bdsep. Let us also fix ε ∈ IJ,p. Then there are constants C1, C2 such that

C1

N
≤ µ(QNU) ≤ C2

N
,N ∈ N

Furthermore it follows that the ordering ρ is optimal for the basis pair (Bdf (ε), Bdsep).

Proof. Applying part 1.) from Proposition 5.8 (with ε fixed) to part 2.) of Lemma 2.6 immediately gives us
the lower bound for the semihyperberbolic ordering since this bound also holds for the optimal decay rate.
Furthermore this lower bound holds for any other ordering and therefore if we have the upper bound then the
ordering ρ is automatically optimal. We now focus on the upper bound.

By (5.25) we know that the optimal decay of (Bdf (ε), Bdsep) is dominated by Fhyp,r. Therefore by part 1.)
of Lemma 2.6 if σ : N → Zd is consistent with 1/Fhyp,r, i.e. σ is semihyperbolic of order r then we can
bound the row incoherence µ(πNU) by Fhyp,r(σ(N)) = H

−d/r
d,r (σ(N)) ≈ (Nr/d)−d/r = N−1 by Lemma

5.15. Since N−1 is decreasing this bound extends to µ(QNU).

Finally we can summarise our results on the (Bdf (ε), Bdsep) case as follows:

Theorem 5.17. Let ρ be a Linear ordering of the d-dimensional Fourier basis Bdf (ε) with ε ∈ IJ,p, τ a
leveled ordering of the d-dimensional separable wavelet basis Bdsep and U = [(Bdf (ε), ρ), (Bdsep, τ)]. Fur-
thermore, suppose that the decay condition (5.8) holds for the wavelet basis. Then, keeping ε > 0 fixed, we
have, for some constants C1, C2 > 0 the decay

C1

N
≤ µ(πNU), µ(UπN ),≤ C2

N
∀N ∈ N. (5.28)
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Let us now instead replace ρ by a semi-hyperbolic ordering of order r in d dimensions with r ∈ {1, ...., d−1}
and assume the weaker decay condition (5.23). Then, keeping ε > 0 fixed, we have, for some constants
C1, C2 > 0 the decay

C1

N
≤ µ(QNU), µ(UπN ),≤ C2

N
∀N ∈ N, (5.29)

and furthermore ρ is optimal for the basis pair (Bdf (ε), Bdsep). Since, for any separable Daubechies wavelet
basis, (5.23) always holds for r = d − 1 any semi-hyperbolic ordering of order d − 1 in d dimensions will
produce (5.29).

Proof. (5.28) follows from Corollaries 5.4 and 5.11. (5.29) follows from Corollary 5.4 and Proposition 5.16.
To show that (5.29) always holds for a d− 1 degree semi-hyperbolic ordering in d dimensions, we note that
the weakest decay on the scaling function φ is |Fφ(ω)| ≤ K · |ω|−1 (see Lemma 5.5) and therefore (5.23) is
automatically satisfied for r = d− 1.

5.6 Optimal Orderings & Wavelet Smoothness
Theorem 5.17 demonstrates how certain degrees of smoothness, in terms of decay of the Fourier transform,
allows us to show certain orderings are optimal and this smoothness requirement becomes increasingly more
demanding as the dimension increases. But if a certain ordering is optimal for the basis pair (Bdf , B

d
sep), does

this mean that the wavelet must also have some degree of smoothness as well? The answer to this question
turns out to be yes, and it is the goal of this section to prove this result.

We shall rely heavily on the following simple result from [19, Thm. 9.4]:

Theorem 5.18. Let18 f : R/Z→ C be continuous and for k ∈ Z define f̂(k) =
∫ 1

0
f(x) exp(2πikx) dx. If∑∞

k=−∞ |k||f̂(k)| <∞ then f ∈ C1. Consequently19 if
∑∞
k=−∞ |k|n|f̂(k)| <∞ then f ∈ Cn.

Now the main result itself:

Theorem 5.19. Let σ : N → Zd be semihyperbolic of order r < d in d dimensions and let ρ := λ−1
d ◦ σ :

N → Bdf (ε) where ε ∈ IJ,p. Then if ρ is optimal for the basis pair (Bdf (ε), Bdsep) then φ ∈ Cl for any
l ∈ N ∪ {0} with l + 1 < d/2r.

Proof. By Theorem 5.17 we know that the optimal decay rate for the basis pair is N−1, therefore if ρ is
optimal we must have, for some constant C1 > 0, the bound

sup
g∈Bd

sep

|〈g, λ−1
d ◦ σ(N)〉|2 ≤ C1 ·N−1, N ∈ N.

Next since σ is semihyperbolic we also know that, by Lemma 5.15, there is a constant C2 > 0 such that

Hd,r(σ(N)) ≤ C2 ·Nr/d, N ∈ N.

Consequently we deduce,

sup
g∈Bd

sep

|〈g, λ−1
d ◦ σ(N)〉|2 ≤ C1 ·N−1 ≤ C1C

−d/r
2 ·H−d/rd,r (σ(N)), N ∈ N.

⇒ sup
g∈Bd

sep

|〈g, λ−1
d (n)〉|2 ≤ C1C

−d/r
2(

maxi1,...,ir∈{1,...,d}
i1<...<ir

∏r
j=1 max(nij , 1)

)d/r , n ∈ Zd.
(5.30)

Letting g = Ψs
J,0 where s = {0, ..., 0} and n = (k, 0, ..., 0) for k ∈ Z we see that (5.30) becomes

εd2−dJ |Fφ(2−Jεk)|2 ≤ C1C
−d/r
2

max(|k|, 1)d/r
, k ∈ Z. (5.31)

Since the scaling function φ has compact support in [−p + 1, p] and ε ∈ IJ,p, φJ,0 can be viewed as a
function on R/Z and (5.31) describes a bound on the Fourier coefficients of φ. Formally, if we write ϕ(x) :=

18R/Z denotes the unit circle which we write as [0, 1) with the quotient topology induced by M : R→ [0, 1),M(x) = x(mod 1).
19Using f̂ ′(k) = (2πik)−1 · f̂(k).
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φ(2Jε−1(x − 1/2)), then since ε ∈ IJ,p we have that ϕ is supported in [0, 1] and (5.31) becomes, for some
constant D(ε, J, p) > 0:

|Fϕ(k)|2 = |ϕ̂(k)|2 ≤ D

max(|k|, 1)d/r
, k ∈ Z.

If φ ∈ C0 then the result follows from Theorem 5.18. If φ /∈ C0, i.e. φ corresponds to a Haar wavelet basis,
then (5.31) cannot hold with d/2r > 1 as this would contradict (5.21).

Corollary 5.20. Let the scaling function φ corresponding to the Daubechies wavelet basis Bdsep be fixed.
Then for every order r ∈ N, there exists a dimension d′ ∈ N, d′ > r such that for all d ≥ d′, we have that a
semihyperbolic ordering σ of order r in d dimensions is such that ρ = λ−1

d ◦ σ is not optimal for the basis
pair (Bdf (ε), Bdsep).

Proof. If this result was not true then we would deduce by Theorem 5.19 that the wavelet φ satisfies φ ∈
C∞, which is a contradiction because no compactly supported wavelet can be infinitely smooth [16, Thm.
3.8].

5.7 Hierarchy of Semihyperbolic Orderings
One other notable point from Theorem 5.17 is that we can have multiple values of r such that if σ is semi-
hyperbolic of order r in d dimensions then ρ = λ−1

d ◦σ is optimal for the basis pair (Bdf , B
d
sep), so which one

should we choose? We know that in the case of sufficient smoothness linear orderings are strongly optimal
and therefore this suggests that the lower the order r the stronger the optimality result. We now seek to prove
this conjecture.

Lemma 5.21. Let r, r′, d ∈ N, r ≤ r′ ≤ d. Then for all n ∈ Zd we have that Hr
d,r′(n) ≤ Hr′

d,r(n).

Proof. Let n ∈ Zd be fixed. For each j = 1, ..d let ij denote the jth largest terms of the form max(|nij |, 1).
Observe that

Hd,r(n) =

r∏
j=1

max(|nij |, 1), Hd,r′(n) =

r′∏
j=1

max(|nij |, 1),

⇒
Hr′

d,r(n)

Hr
d,r′(n)

=

∏r
j=1 max(|nij |, 1)r

′−r∏r′

j=r+1 max(|nij |, 1)r
.

Finally we observe that the numerator and denominator have the same number (r(r′ − r)) of terms in the
product and that each term in the numerator is greater than each term in the denominator, proving the in-
equality.

Corollary 5.22. Let r, r′, d ∈ N, r ≤ r′ < d and σ, σ′ be semihyperbolic of orders r, r′ in d dimensions
respectively. If ρ = λ−1

d ◦ σ is optimal for the basis pair (Bdf (ε), Bdsep) then so is ρ′ = λ−1
d ◦ σ′.

Proof. Recalling (5.30) we know that there is a constant C > 0 such that

sup
g∈Bd

sep

|〈g, λ−1
d ◦ σ(N)〉|2 ≤ C ·H−d/rd,r (σ(N)), N ∈ N,

⇒ sup
g∈Bd

sep

|〈g, λ−1
d ◦ σ

′(N)〉|2 ≤ C ′ ·H−d/r
′

d,r′ (σ′(N)), N ∈ N,

where we have used Lemma 5.21 on the second line. We then apply Lemma 5.15 to deduce the result.

Remark 5.5 Corollary 5.22 tells us that if there are several orders r that give us optimality then the smallest
r possible, say r∗, is the strongest result.
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Figure 7: 3D Fourier - Separable Wavelet Incoherence Isosurface Plots

(a) Daubechies4 - Isosurface Value = 5 · 10−3 (b) Daubechies8 - Isosurface Value = 5 · 10−3

(c) Haar - Isosurface Value = 5 · 10−3 (d) 3D slice of 5D Daubechies4 - Isosurface Value = 5·10−4

We draw the isosurface plots over the subset {−50,−49, ..., 49, 50}3 ⊂ Z3. These pictures should be compared with the ordering
plots in Figure 6. Notice that for the smoother wavelets in (a) & (b), the growth matches that of a linear ordering however the 3D Haar

case lacks this smoothness, resulting in semi-hyperbolic scaling in (c). If we keep the wavelet basis fixed and let the dimension
increase, the scaling becomes increasingly hyperbolic, as seen in (d) and proved in Corollary 5.20.

5.8 3D Separable Incoherences
We have found optimal orderings for every multidimensional Fourier- separable wavelet case however, we
have not shown that (apart from in the linear case with sufficient Fourier decay) that the ordering is strongly
optimal and we have not characterized the decay. Therefore it is of interest to see how the incoherence scales
in further detail by directly imaging them in 3D. We do this by drawing levels sets in Z3, as seen in Figure 7.

6 Asymptotic Incoherence and Compressed Sensing in Levels
We now return to the original compressed sensing problem which was described in the introduction of this
paper and aim to study how asymptotic incoherence can influence the ability to subsample effectively. We
shall be working exclusively in 2D for this section.

Consider the problem of reconstructing a function f ∈ L2([−1, 1]2) from its samples {〈f, g〉 : g ∈
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B2
f (2−1)}. The function f is reconstructed as follows: Let U := [(B2

f (2−1), ρ), (B2, τ)] for some orderings
ρ, τ and a reconstruction basis B2. The number 2−1 is present here to ensure the span of Bf contains
L2([−1, 1]2). Next let Ω ⊂ N denote the set of subsamples from B2

f (2−1) (indexed by ρ), PΩ the projection
operator onto Ω and f̂ := (〈f, ρ(m)〉)m∈N. We then attempt to approximate f by

∑∞
n=1 x̃nτ(n) where

x̃ ∈ `1(N) solves the optimisation problem

min
x∈`1(N)

‖x‖1 subject to PΩUx = PΩf̂ . (6.1)

Figure 8: Simple Resolution Phantom Experiment

(a) Rasterized Phantom
Resolution = 212 × 212

(b) Reconstruction from pattern A
L1 error = 0.0735

(c) Reconstruction from pattern B
L1 error = 0.0620

(d) Rasterized Phantom - Closeup (e) Closeup of (b) (f) Closeup of (c)

(g) Sampling Pattern A
Number of Samples: 40401

(h) Sampling Pattern B
Number of Samples: 39341

Samples are from the subset {−200,−199, ..., 199, 200}2 ⊂ Z2. Notice that the checkerboard feature are captured by the leveled
sampling pattern but not by pattern (a), even though it uses fewer samples. Reconstructions are at a resolution of 210 × 210.

Since the optimisation problem is infinite dimensional we cannot solve it numerically so instead we
proceed as in [1] and truncate the problem, approximating f by

∑R
n=1 x̃nτ(n) (for R ∈ N large) where

x̃ = (x̃n)Rn=1 now solves the optimisation problem

min
x∈CR

‖x‖1 subject to PΩUPRx = PΩf̂ . (6.2)
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We shall be using the SPGL1 package [4] to solve (6.2) numerically.

6.1 Demonstrating the Benefits of Multilevel Subsampling
We shall first demonstrate directly how subsampling in levels is beneficial in situations with asymptotic
incoherence (µ(QNU) → 0) but poor global incoherence (µ(U) is relatively large). The image f that we
will attempt to reconstruct is made up of regions defined by Bezier curves with one degree of smoothness,
as in [15]. This image is intended is model a resolution phantom20 which is often used to calibrate MRI
devices [13]. A rasterization of this phantom is provided in image (a) of Figure 8.

We reconstruct with 2D separable Haar wavelets, ordered according to its resolution levels, from a base
level of 0 up to a highest resolution level of 8. The Fourier basis is ordered by the linear consistency function
H2,1, which gives us a square leveling structure when viewed in Z2. We choose these orderings because we
know that they are both strongly optimal for the corresponding bases, and therefore should allow reasonable
degrees of subsampling when given an (asymptotically) sparse problem.

By looking at Figure 8, we observe that subsampling in levels (pattern (b)) allows to pick up features that
would be otherwise impossible from a direct linear reconstruction from the first number of samples (pattern
(a)) and moreover the L1 error is smaller.

6.2 Tensor vs Separable - Finding a Fair Comparison
We would like to study how different asymptotic incoherence behaviours can impact how well one can
subsample. In 2D it would be unwise to compare 2 different separable wavelet bases, since we know that
they have the same optimal orderings and decay rates in 2D (see Corollary 5.11). Therefore we are left with
comparing a separable wavelet basis to a tensor basis. The incoherence decay rates for the 2D Haar cases
are shown in the table below for Linear and Hyperbolic orderings of the Fourier basis B2

f :

2D Haar Basis Incoherence Decay Rates
Ordering Tensor Separable
Linear N−1/2 N−1

Hyperbolic log(N + 1) ·N−1 log(N + 1) ·N−1

Table 1: The decay rates for the hyperbolic case comes from Theorem 4.10 and Proposition 5.6. For the linear case, the separable result
comes from Theorem 5.17 and the tensor result can be deduced from Lemma 5.9 applied to (4.18), although we do not provide the
details here.

Observe that for linear orderings, there is a large discrepancy between the decay rates, however they are
the same for hyperbolic orderings. Therefore, comparing separable and tensor reconstructions appears to be
a good method for testing the behaviour of differing speeds of asymptotic incoherence.

However, there is one serious problem, namely the choice of image f that we would like to reconstruct.
Recall from (1.5) that the ability to subsample depends on both the coherence structure of the pair of bases
and the sparsity structure of the function f we are trying to reconstruct. Ideally, to isolate the effect of
asymptotic incoherence we would like to choose an f that has the same sparsity structure in both a tensor
and separable wavelet basis. If f was chosen to be the resolution phantom like before then the tensor wavelet
approximation would be a poor comparison to that of the separable wavelet reconstruction (due to a poor
resolution structure). Therefore we need to choose a function that we expect to reconstruct well in tensor
wavelets, for example a tensor product of one dimensional functions.

Such an example is provided by NMR spectroscopy [24, Eqn. (5.24)]. A 2D spectrum is sometimes
modelled as a product of 1D Lorentzian functions:

f(x) =

r∑
i=1

L2,p(i),s(i)(x), x, p(i), s(i) ∈ R2,

L2,p,s(x) = Lp1,s1(x1) · Lp2,s2(x2), x, p, s ∈ R2

Lp,s =
s

s2 + (x− p)2
, x, p, s ∈ R.

(6.3)

20‘resolution’ here refers to ‘resolving’ a signal from a MRI device.
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Figure 9: Spectrum Model and ‘Full Sampling’ Reconstructions
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(a) Rasterized Spectrum
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(b) Separable Reconstruction
L1 error = 0.0157

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

(c) Tensor Reconstruction
L1 error = 0.0159

Reconstructions uses all samples from the subset {−200,−199, ..., 199, 200}2 ⊂ Z2. Images are at a resolution of 210 × 210. Haar
wavelets are used for tensor and separable cases. Observe that both reconstructions match the original very closely and have similar

L1 approximation errors.

We consider a specific spectrum f of the above form. By looking at Figure 9 we observe that, without
any subsampling from the subset {−200,−199, ..., 199, 200}2 ⊂ Z2, the tensor and separable Haar wavelet
reconstructions have almost identical L1 errors, suggesting that this problem does not bias either reconstruc-
tion basis. We order the tensor and separable reconstruction bases using their corresponding level based
orderings, which are defined in Lemma 4.13 and Definition 5.2 respectively. For separable wavelets we start
at a base level of J = 0 and stop at level 8 (so we truncate at the first 210 × 210 wavelet coefficients) and for
tensor wavelets we start at level J = 0 and stop at level 10 21.

Figure 10: Sampling Patterns

(a) Linear Sampling Pattern
(b) Hyperbolic Sampling Pattern
(Boxed in)

Samples are from the subset {−200,−199, ..., 199, 200}2 ⊂ Z2. White indicates sample is taken.

We are now going to test how well these two bases perform under subsampling with different order-
ings of B2

f . Two subampling patterns, one based on a linear ordering and another on a hyperbolic order-
ing, are presented in Figure 10. Ideally the hyperbolic subsampling pattern would not be restricted by the
{−200,−199, ..., 199, 200}2 but this is numerically unfeasible.

Let us first consider what happens when using pattern (a) (see Figure 11). Notice that the separable re-
construction performs far better than the tensor reconstruction and therefore is more tolerant to subsampling
with a linear ordering than the tensor case. This is unsurprising as the tensor problem suffers from noticeably
large 1/

√
N incoherence when using a linear ordering when compared to the 1/N separable decay rate.

Of course we should have fully considered the sparsity of these two problems which also factor into
the ability to subsample, however f was specifically chosen because it was sparse in the tensor basis and
moreover we have seen that it provides a comparable reconstruction to the separable case when taking a full
set of {−200,−199, ..., 199, 200}2 samples.

Next we observe what happens when using the pattern (b) (Figure 12). There is now a stark contrast to the
linear case, in that both separable and tensor cases provide very similar reconstructions and furthermore the

21When the problem was truncated at higher wavelet resolutions the improvement in reconstruction quality was negligible.
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Figure 11: Reconstructions from Linear Sampling Pattern

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

(a) Separable Reconstruction
L1 error = 0.0367
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(b) Separable Closeup
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(c) Tensor Reconstruction
L1 error = 0.0592
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(d) Tensor Closeup

L1 errors are very close. This suggests that both problems have similar susceptibility to subsampling when
using hyperbolic sampling, which is reflected by their identical rates of incoherence decay with hyperbolic
orderings.

7 Appendix
Proof of Proposition 5.6: (5.11) applied to part 1.) of Lemma 2.6 shows that the decay of µ(πNU) is bounded
above by22 Fhyp(σ(N)) = 1/Hd(σ(N)) ≈ 1/hd(N), which gives us the upper bound for µ(QNU) since
1/hd(N) is decreasing.

For the lower bound, we focus on terms of the form λd ◦ ρ(m) = (t, ..., t) for some t ∈ N and we set,
for a fixed q ∈ N

s = (1, ..., 1), j := dε log2 te+ q,

where we assume for now that j ≥ J is satisfied. This gives us

|〈Ψs
j,0, ρ(m)〉|2 = εd2−dj

d∏
i=1

|Fψ(ε2−jt)|2

≥ 1

2d(1+q)td
· |Fψ(ε2−(dε log2 te+q)t)|2

≥ 1

2d(1+q)td
· L2d

q (using (5.7)).

(7.1)

Let m now be arbitrary with
∏d
i=1 max(|λd ◦ ρ(m)i|, 1) = M ≥ 1 and let t = dM1/de + 1. Because ρ

corresponds to the hyperbolic cross there exists an m′ > m such that
∏d
i=1 max(|λd ◦ ρ(m′)i|, 1) = td

where λd ◦ ρ(m′) = (t, ..., t). Notice that td ≤ E(d)M for some constant dependent on the dimension d.

22for the definitions of Hd, hd see (4.4) and (4.16).
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Figure 12: Reconstructions from Hyperbolic Sampling Pattern
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(a) Separable Reconstruction
L1 error = 0.0263
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(b) Separable Closeup
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(c) Tensor Reconstruction
L1 error = 0.0277
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(d) Tensor Closeup

Furthermore, (7.1) holds for m = m′ if we have that j ≥ J , which is satisfied if m is sufficiently large.
Therefore we deduce by (7.1) that

µ(QmU) ≥ |〈Ψs
j,0, ρ(m′)〉|2 ≥ 1

2d(1+q)td
· L2d

q

≥ 1

E2d(1+q)+1M
· L2d

q

=
1

E2d(1+q)
∏d
i=1 max(|λd ◦ ρ(m)i|, 1)

· L2d
q

≥ C

E2d(1+q)hd(m)
· L2d

q (using (4.17), C > 0 some constant).

This proves the lower bound.
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