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Exercise 1 (Integral operators - submit)
For Q = [0,1]? and X = L?(2), we consider the integral operator A : X — X with

(Auxy):=/£k0ayﬁdw)du

for k € L%(Q x Q). Show that
(a) A is linear with respect to u,

(b) A is a bounded linear operator, i.e. ||Aullx < [[Al sy x)llullx. Give also an estimate for
1Al £(,2)

(c) the adjoint A* is given via
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Exercise 2 (Inverse problem of differentiation - submit)
We consider the problem of differentiation, formulated as the inverse problem of finding u from
Au = f with the integral operator A : L%([0,1]) — L?([0,1]) defined as

(a) Let f be given by

Show that f € R(A).

(b) Let f be given as in a). Show that f € R(A) \ R(A4).
Hint: Consider the Picard criterion.

(c) Prove or falsify: “The Moore-Penrose inverse of A continuous.”

Please turn over!



Exercise 3 (Generalised inverse)

(a)

(b)

Let m,n € N with m > n > 2. Compute the Moore-Penrose inverses of the following matrices:
(i) A=(1,1,...,1) ¢ RIxn
(i) A = diag(ai,...,a,) € R"*" with a; € R for j € {1,...,n}
(ii) A € R™*" with ATA =1,
Let a,b € R with a < b. Compute the Moore-Penrose inverse of the operator A : L?([a,b]) — R
with

Au = /abu(x) dzx.

Exercise 4 (Convolution)

Many forward problems are either modelled as convolutions or they are modelled as the composition
of several components one of which is a convolution. Therefore convolutions play an important role
in inverse problems. As in Exercise 1, let Q = [0,1]? be the unit square and let X = L?(Q). A
convolution is the special case of an integral operator A : X — X where the kernel has a simple
structure:

(Au)(y) = /Q Ky — z)u(x) d,

for k € L%(Q). It follows easily from Exercise 1 that A is linear and bounded.

(a)
(b)

Although shown in general in Exercise 1, give an explicit form of the adjoint of the convolution.

Let f = Au. It follows from the convolution theorem that a convolution can be inverted by

means of the Fourier transform
n g (F(f)
— (2 F-l( A7 1
wm 7 (25), .

where F is the Fourier transform and F~! its inverse. Implement this formula in MATLAB to
deblur (deconvolve) the blurry tree image f generated by the script ex4b_generate data.m,
which is provided on the course web page. Note that the script also outputs F (k). Add some
noise to the data and show that the inversion formula is ill-conditioned.

Hint: Make use of the MATLAB commands fft2 and ifft2.

Reformulate equation (1) so that the denominator is non-negative and give a stable approxi-
mation of this formula. Implement this formula in MATLAB and empirically show that it is
stable.

Hint: Make use of the MATLAB command conj.



Exercise 5 (The Radon transform)

(a)

The Matlab command f = radon (u, phi); computes a discretised two-dimensional radon
transform of a discrete image u for a vector of angles phi. Use this command to set up a matrix
R that maps the column-vector representation of u into the column-vector representation of
the sinogram f for an arbitrary image u € R%XM and angles phi with phi (3) = j for

jef0,2,...,178}.

Create a noisy sinogram by applying R to a down-sampled version of the Shepp-Logan phan-
tom (built-in in Matlab; use the command phantom) and subsequently adding non-negative,
random numbers to the sinogram. Create multiple versions with different noise levels.

Compute a singular value decomposition of R via the Matlab command svd and visualise
selected singular vectors of your choice.

Create a 'pseudo’-inverse of R by constructing an appropriate matrix with inverted singular
values and apply this matrix to the column-vector representations of your noisy sinograms.
Regularise the Moore-Penrose inverse using

(i) Truncated singular value decomposition;

(ii) Tikhonov regularisation.



