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Recall that an ODE has the Painlevé property if the moveable singularities of its solutions are limited to
poles. For example, the ODE
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does not have the Painlevé property, whereas
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does have the Painlevé property. Painlevé classified all the second order ODEs of the form
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possessing this property, where F is rational function of its arguments. Of these ODEs, all but six were
reducible, i.e. their solutions can be written in terms of known functions (Sine, Cosine, Jacobi elliptic
functions, Bessel functions, Airy functions...). The remaining six irreducible equations are called the Painlevé
equations. They are, up to simple coordinate transformations
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Here α, β, γ, δ are constants. The solutions to these equations define new functions, called the Painlevé
transcendents.
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