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The main aim is to discuss quantum mechanics in the framework of Hilbert space, following

Dirac. Along the way, we talk about transformations and symmetries, angular momentum,

composite systems, dynamical symmetries, perturbation theory (both time–independent

and time–dependent, degenerate and non–degenerate). We’ll finish with a discussion of

various interpretations of quantum mechanics, entanglement and decoherence.
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Preliminaries

These are the notes for the Part II course on Principles of Quantum Mechanics o↵ered in

Part II of the Maths Tripos, so I’ll feel free to assume you took the IB courses on Quantum

Mechanics, Methods and Linear Algebra last year. For Part II, I’d expect the material

presented here to complement the courses on Classical Dynamics, Statistical Physics and

perhaps Integrable Systems very well on the Applied side, in addition to being a prerequisite

for Applications of Quantum Mechanics next term. On the pure side, the courses Linear

Analysis or Functional Analysis and Representation Theory are probably the most closely

related to this one.

Books & Other Resources

There are many textbooks and reference books available on Quantum Mechanics. Di↵erent

ones emphasise di↵erent aspects of the theory, or di↵erent applications in physics, or give

prominence to di↵erent mathematical structures. QM is such a huge subject nowadays

that it is probably impossible for a single textbook to give an encyclopaedic treatment

(and absolutely impossible for me to do so in a course of 24 lectures). Here are some of the

ones I’ve found useful while preparing these notes; you might prefer di↵erent ones to me.

• Weinberg, S. Lectures on Quantum Mechanics, CUP (2013).

This is perhaps the single most appropriate book for the course. Written by one of

the great physicists of our times, this book contains a wealth of information. Highly

recommended.

• Binney, J.J. and Skinner, D. The Physics of Quantum Mechanics, OUP (2014).

The number 1 international bestseller... Contains a much fuller version of these notes

(with better diagrams!). Put it on your Christmas list.

• Dirac, P. Principles of Quantum Mechanics, OUP (1967).

The notes from an earlier version of this course! Written with exceptional clarity

and insight, this is a genuine classic of theoretical physics by one of the founders of

Quantum Mechanics.

• Messiah, A. Quantum Mechanics, Vols 1 & 2, Dover (2014).

Another classic textbook, originally from 1958. It provides a comprehensive treat-

ment of QM, though the order of the presentation is slightly di↵erent to the one we’ll

follow in this course.

• Shankar, R. Principles of Quantum Mechanics, Springer (1994).

A much-loved textbook, with particular emphasis on the physical applications of

quantum mechanics.

• Hall, B. Quantum Theory for Mathematicians, Springer (2013).

If you’re more interested in the functional analysis & representation theory aspects

of QM rather than the physical applications, this could be the book for you. Much

of it is at a more advanced level than we’ll need.
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• Sakurai, J.J. and Napolitano, J. Modern Quantum Mechanics, CUP (3rd edition,

2020).

By now, another classic book on QM, presented from a perspective very close to this

course. Also contains an excellent introduction to path integrals.

• Townsend, J. A Modern to Approach to Quantum Mechanics, 2nd edition, Univer-

sity Science Books (2012).

Very accessible, but also fairly comprehensive textbook on QM. Starts by considering

spin-12 particle as a simple example of a two–state system.

Textbooks are expensive, so check what’s available in your college library before shelling

out – any reasonably modern textbook on QM will be adequate for this course. There are

also lots of excellent resources available freely online, including these:

• Here are the lecture notes from another recent version of this course.

• Here are the lecture notes from the Part II Further Quantum Mechanics course in

the Cavendish.

• These are the lecture notes from Prof. W. Taylor’s graduate course on QM at MIT.

The first half of his course covers material that is relevant here, while scattering

theory will be covered in next term’s Applications of Quantum Mechanics Part II

course.

• This is the lecture course on Quantum Mechanics from Prof. R. Fitzpatrick at the

University of Texas, Austin.
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1 Introduction

In classical mechanics, a particle’s motion is governed by Newton’s Laws. These are second

order o.d.e.s, so to determine the fate of our particle we must specify two initial conditions.

We could take these to be the particle’s initial position x(t0) and velocity v(t0), or it’s initial

position x(t0) and momentum p(t0). Once these are specified the motion is determined

(provided of course we understand how to describe the forces that are acting). This means

that we can solve Newton’s Second Law to find the values (x(t),p(t)) for t > t01. So as time

passes, our classical particle traces out a trajectory in the space M of possible positions

and momenta, sketched in figure 1. The space M is known as phase space and in our case,

for motion in three dimensions, M is just R6. In general M comes with a rich geometry

known as a Poisson structure; you’ll study this structure in detail if you’re taking the Part

II courses on Classical Dynamics or Integrable Systems, and we’ll touch on it later in this

course, too.

Classical observables are represented by functions

f : M ! R f : (x,p) 7! f(x,p) .

For example, we may be interested in the kinetic energy T = p2/2m, potential energy

V (x), angular momentum L = x ⇥ p, or a host of other possible quantities. A priori,

these functions are defined everywhere over M , but if we want to know about the energy

or angular momentum of our specific particle then we should evaluate them not at some

random point (x,p) 2 M , but along the particle’s phase space trajectory. For example, if

at time t the particle has position x(t) and momentum p(t), then its angular momentum

is x(t) ⇥ p(t). Thus the values of the particle’s energy, angular momentum etc. may

depend on time, though of course our definition of these quantities does not2. In this way,

1We can certainly do this numerically, at least for t in a su�ciently small open subset around t0.
2Technically, we take the pullback of f by the embedding map ı : [t0,1) ! M .

z

x

y

� �
�

+ + +

(x0, p0)

(x(t), p(t))
R2d

R
f

Figure 1: A particle’s trajectory in phase space. Observables are represented by functions

f : R2d ! R, evaluated along a given particle’s trajectory.
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everything we could possibly want to know about a single, pointlike particle is encoded in

its phase space trajectory.

But that is not our World. To the best of our current experimental knowledge, our

World is a quantum, not classical, one. Initially, these experiments were based on careful

studies of atomic spectroscopy and blackbody radiation, but nowadays I’d prefer to say

that the best evidence of quantum mechanics is simply that we use it constantly in our

everyday lives. Each time you listen to music on your stereo, post a photo on Instagram

or make a call on your phone you’re relying on technology that’s only become possible

due to our understanding of the quantum structure of matter. Whenever you plug some-

thing into the mains, you’re using electricity that’s in part generated by nuclear reactions

in which quantum mechanics is essential, while much of modern medicine relies on new

drugs designed with the benefit of the improved understanding of chemistry that quantum

mechanics provides.

In such a quantum world, instead of a phase space trajectory, everything we could want

to know about a particle is encoded in a vector  in Hilbert space H. As you met in IB

Quantum Mechanics, this state vector evolves in time according to Schrödinger’s equation.

In the quantum world, observables are represented by certain operators O. The operators

you saw in IB QM had the same sort of form as observables classical mechanics, such as the

kinetic energy operator T̂ = p̂2/2m or angular momentum operator L̂ = x̂ ⇥ p̂. However,

rather than being functions, these operators are (roughly) linear maps

O : H ! H .

Again, in the first instance these operators are defined throughout H, but if we’re interested

in knowing about the energy or angular momentum of our particular quantum particle,

then we should find out what happens when they act on the specific  2 H that describes

the state of our particle at time t. (See figure 2.)

z
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 � = O 
O

Figure 2: In Quantum Mechanics, complete knowledge of a particle’s states is determined

by a vector in Hilbert space. Observables are represented by Hermitian linear operators

O : H ! H.
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In the following chapters we’ll study what Hilbert space is and what it’s operators

do in a more general framework than you saw last year, building your insight into the

mathematical structure of quantum mechanics. Much of this is just linear algebra, but

the Hilbert spaces we’ll care about in QM are often infinite-dimensional, so we also make

contact with Functional Analysis. Furthermore, although last year you ‘guessed’ the form

of quantum operators by analogy with their classical counterparts, we’ll see that at a

deeper level many of them can be understood to have their origins in symmetries of space

and time; the operators just reflect the way these symmetry transformations act on Hilbert

space, rather than on (non-relativistic) space-time. In this way, Quantum Mechanics makes

contact with Representation Theory.

So, mathematically, much of Quantum Mechanics boils down to a mix of Functional

Analysis and Representation Theory. It’s even true that it provides a particularly interest-

ing example of these subjects. But this is not the reason we study it. We study Quantum

Mechanics in an e↵ort to understand and appreciate our World, not some abstract mathe-

matical one. You’re all intimately familiar with vector spaces, and you’re (hopefully!) also

very good at solving Sturm–Liouville type eigenfunction / eigenvalue problems. But the

real skill is in understanding how this formalism relates to the world we see around us.

It’s not obvious. Newton’s laws are (at least generically) non-linear di↵erential equa-

tions and we can’t usually superpose solutions. General Relativity teaches us that space-

time is not flat. So it’s not at all clear that our particle should in fact be described by a

point in a vector space, any more than it was obvious to Aristotle that bodies actually stay

in uniform motion unless acted on by a force, or clear to the Ancients that the arrival of

solar eclipses, changes of the weather, or any other natural phenomenon are actually gov-

erned by calculable Laws, rather than the whims of various gods. For this reason, instead

of emphasising how weird and di↵erent Quantum Mechanics is, I’d prefer to make you

appreciate how it actually underpins the physics you’re already familiar with. No matter

how good you are at solving eigenvalue problems, if you don’t see how these relate to your

everyday physical intuition, knowledge you’ve built up since first opening your eyes and

learning to crawl, then you haven’t really understood the subject.

Let’s begin.
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