
3 The Harmonic Oscillator

I now want to use Dirac’s formalism to study a simple system – the one-dimensional

harmonic oscillator – with which you should already be familiar. Our aim here is not to

learn new things about harmonic oscillators; indeed, we’ll mostly just recover results you’ve

known about since you first heard of simple harmonic motion. Rather, our aim is to get

accustomed to this more abstract approach to QM, seeing how it’s a very powerful way to

think about the subject.

The steps we follow in our treatment of the harmonic oscillator will form a good

prototype for the way we’ll approach many other problems in QM. We’ll see these same

steps repeated in various contexts throughout thef course.

3.1 Raising and Lowering Operators

The Hamiltonian of a harmonic oscillator of mass m and classical frequency ! is

H =
P 2

2m
+

1

2
m!2X2 . (3.1)

where X and P are the position and momentum operators, respectively. To analyse this,

we begin by defining the dimensionless combination

A =
1p

2m~!
(m!X + iP ) . (3.2)

A is not a Hermitian operator, but since X and P are both Hermitian, we see that the

adjoint of A is

A† =
1p

2m~!
(m!X � iP ) . (3.3)

Roughly, the motivation for introducing these operators is that they allow us to ‘factorize’

the Hamiltonian. More precisely, we have

A†A =
1

2m~! (m!X � iP ) (m!X + iP )

=
1

2m~!
�
P 2 + m2!2X2 + im![X, P ]

�

=
H

~! � 1

2

(3.4)

so we can write our Hamiltonian as

H = ~!
✓

A†A +
1

2

◆
= ~!

✓
N +

1

2

◆
, (3.5)

where

N = A†A . (3.6)

A and A† are often called lowering and raising operators, respectively, whilst N is often

called the number operator. (The reason for these names will become apparent soon.) No-

tice that computing the spectrum of H is obviously equivalent to computing the spectrum

of N .
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Whenever we’re presented with some new operators, the first thing to do is to work

out their commutation relations. In this case, the fundamental commutation relations

[X,P ] = i~ show that
h
A, A†

i
=

1

2m~!
�
m2!2[X,X] � im![X, P ] + im![P, X] + [P, P ]

�

= � im!

2m~! ([X, P ] � [P, X])

= 1 ,

(3.7)

whilst [A, A] = 0 = [A†, A†] trivially. It will also be useful to compute commutators

involving N . We have

[N, A†] = [A†A, A†] =
⇣
A†[A, A†] + [A†, A†]A

⌘
= A† , (3.8)

where the final step uses (3.7). We learn that, similarly, [N, A] = �A by taking the adjoint

of (3.8).

Let’s see what these commutators teach us about the possible energy levels. Suppose

that |ni is a correctly normalised eigenstate of N , so that N |ni = n|ni and hn|ni = 1. We

have

NA†|ni = (A†N + [N, A†])|ni = A†(N + 1)|ni = (n + 1)A†|ni (3.9)

so A†|ni is an eigenstate of N with eigenvalue n + 1. Similarly,

NA|ni = (AN + [N, A])|ni = (n � 1)A|ni (3.10)

so A|ni is an eigenstate of N with eigenvalue n�1. Acting with A† thus raises the eigenvalue

of N by one unit, whilst acting with A lowers it by one, giving these operators their names.

The above algebra shows that if we can find just one energy eigenstate |ni, then we can

construct a whole family of them by repeatedly applying either A† or A. The energies of

these new states will be (n+k+ 1
2)~! for some k 2 Z. However, we can’t yet conclude that

the energy levels are quantized, because we don’t yet know that there isn’t a continuum of

possible starting-points |ni (or indeed any!).

This brings us to the second key step: we must now investigate the norm of our states.

Since N is Hermitian all its eigenvalues must certainly be real, but in fact they’re also

non-negative, because

n = nhn|ni = hn|N |ni = hn|A†A|ni = kA|nik2 � 0 (3.11)

with n = 0 i↵ A|ni = 0, by properties of the norm. If A|ni 6= 0 then it is an eigenstate of

N with eigenvalue n � 1, but we’ve just shown that there are no states in H with negative

eigenvalue for N , so this lowering process must terminate. That will be the case i↵ n is a

non-negative integer.

Putting all this together, we have a ground state |0i of energy 1
2~! and an infinite

tower of excited states |ni of energy

En =

✓
n +

1

2

◆
~! , where n 2 N0 . (3.12)
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These energy levels should be familiar from IB QM.

Acting on an energy eigenstate with the raising operator does not necessarily give us

an excited state that is correctly normalised. In d = 1, energy eigenstates of the harmonic

oscillator are non-degenerate16, so we must have A†|ni = cn|n + 1i for some constant cn
(which may depend on n). Taking the norm of both sides shows that

|cn|2 = kA†|nik2 = hn|AA†|ni = hn|N + 1|ni = n + 1 . (3.13)

Therefore, the correctly normalised state is

|n + 1i =
1p

n + 1
A†|ni =

1p
(n + 1)!

(A†)n+1|0i . (3.14)

Likewise, you can check that |n � 1i = 1
p
n
A|ni for n � 1, whilst again A|0i = 0.

We’ve seen that everything about the energy levels of the harmonic oscillator follows

from i) the algebra (i.e. the commutation relations) of raising and lowering operators,

together with ii) considering the norm. Again, we’ll follow these same two steps in analysing

the eigenvalues and eigenstates of various operators throughout this course. This also

parallels what you did in IB QM: there, by looking for series solutions of Schrödinger’s

equation, you could find an energy eigenstate for all E 2 R. However, these eigenstates

were only normalizable if the series you found terminated. It was requiring this termination

(i.e. normalizability) that lead to quantization of the energies.

I hope I’ve persuaded you that the algebraic approach above is somewhat cleaner and

more e�cient than looking for series solutions to Schrödinger’s equation. Nothing has been

lost, and we can easily use Dirac’s formalism to recover the explicit wavefunctions of our

eigenstates. For example, in the position representation, the defining equation A|0i = 0 of

the ground state becomes

0 =
p

2m~! hx|A|0i = hx|m!X + iP |0i =

✓
m!x + ~ d

dx

◆
 0(x) , (3.15)

16Here is a proof, which holds for any potential V (x) and energy E for which 9 x0 > 0 s.t. V (x)�E > 0

8 |x| > x0. In one dimension, the TISE �~2 00/2m+ V (x) = E is a 2nd-order ode. Thus, for any fixed

value of E, it has exactly two linearly independent solutions. Let  1(x) and  2(x) be the two solutions

defined by the conditions
 1(x0) = 1 and  0

1(x0) = 0 ,

 2(x0) = 0 and  0
2(x0) = 1 ,

where x0 is chosen so that V (x) � E � M2 > 0 for all |x| > x0 and some M > 0. Any solution of

Schrödinger’s equation for this V (x) and E is a linear combination of these two; our aim is to prove that

(up to overall scale) there is only one combination that is normalizable.

Since they each solve the TISE, the Wronskian

W ( 1, 2) =  1 
0
2 �  2 

0
1

is constant 8 x, and evaluating at x = x0 gives W ( 1, 2) = 1. Also, our condition on V (x) � E implies

that  1,2(x) remain positive over the entire range x 2 (x0,1) and grow at least as fast as eMx as x ! 1.

Since they are normalizable,  1,2(x) ! 0 as |x| ! 1. By itself, this does not quite allow us to conclude

that W = 0, since we need to know that  0 are bounded. For this we’ll need a condition on the potential,

and it turns out that a su�cient criterion is that To see this, suppose
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where  0(x) = hx|0i is the position space wavefunction of our ground state. This is a first

order o.d.e. whose solution is

 0(x) =
⇣m!

⇡~

⌘1/4
exp

⇣
�m!

2~ x2
⌘

, (3.16)

where the overall constant is fixed (up to phase) by the normalization requirement h0|0i =R
R | 0(x)|2 = 1. This is the same Gaussian wavefunction for the ground state of the har-

monic oscillator familiar from IB QM. If needed, the wavefunctions of the excited states

may be found by acting with A† = (m!X � iP )/
p

2m~!, which in the position represen-

tation is the di↵erential operator 1
p
2

�
�↵ d

dx
+ x/↵

�
, where ↵ =

p
~/m!. You can check

(or just Google) that these operators generate the usual Hermite polynomials.

3.2 Dynamics of Oscillators

At this stage, we’ve learned everything about the set {|ni} of energy eigenstates of the

quantum harmonic oscillator and their corresponding energies En = (n + 1
2)~!. However,

we still haven’t said anything about the physics of how quantum oscillators actually behave.

Classically, we know that a harmonic oscillator would undergo periodic motion with a

period T = 2⇡/!. Furthermore, the energy of the classical oscillator is independent of the

period, but is proportional to the square of the amplitude of oscillation. To what extent is

the same true of our quantum oscillator?

To say anything about the motion of a quantum system, we need to examine the TDSE.

To get started, first suppose our system is prepared at time t = 0 to be in some energy

eigenstate |ni. Then by the TDSE, at a later time t it will have evolved to

|n, ti = e�i(n+1/2)!t|ni . (3.17)

Consequently, no eigenstate has a time dependence which oscillates at the classical fre-

quency !. Even worse, no matter which energy eigenstate our oscillator is in, the expected

position of the oscillator at any given time t is

hn, t|X|n, ti = e+i(n+1/2)!t hn|X|ni e�i(n+1/2)!t = hn|X|ni , (3.18)

where we’ve used the linearity / antilinearity properties of the inner product. The rhs is

independent of time, so none of these states move – our oscillator does not appear to be

oscillating!

To find some interesting dynamics, we must consider not a single energy eigenstate,

but rather a superposition. This is a much more realistic assumption: there’s no practical

way we could prepare a macroscopic system to be in just one energy eigenstate. Let’s now

suppose our oscillator is prepared at t = 0 to be in some generic state | , 0i =
P

n
cn|ni.

The cn should be chosen so that h | i = 1, but are otherwise arbitrary. Then at time t

this state will have evolved to

| , ti =
1X

n=0

cn e�iEnt/~ |ni (3.19)
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by the TDSE.

Now let’s examine where we expect to find such a generic state. We have

h , t|X| , ti =

 
X

m

cm eiEmt/~hm|
!

X

 
X

n

cn e�iEnt/~ |ni
!

=
X

n,m

cm cn ei(m�n)!t hm|X|ni .
(3.20)

To evaluate the inner product hm|X|ni, we write17

X =

r
~

2m!

⇣
A + A†

⌘
(3.21)

in terms of the raising and lowering operators. Recalling that A†|ni =
p

n + 1 |n + 1i and

A|ni =
p

n |n � 1i, we have

hm|X|ni =

r
~

2m!

�p
n hm|n � 1i +

p
n + 1 hm|n + 1i

�
, (3.22)

showing that hm|X|ni is non-zero only when m = n ± 1. The double sum in (3.20) thus

reduces to

h , t|X| , ti =

r
~

2m!

 
1X

n=1

p
n cn�1cn e�i!t +

p
n cncn�1 e+i!t

!

=
X

n

xn cos(!t + �n) ,

(3.23)

where the real numbers xn and �n are defined by
r

2n~
m!

cncn�1 = xn ei�n . (3.24)

Equation (3.23) shows that hXi oscillates sinusoidally at exactly the classical frequency !

whenever our oscillator is prepared in any generic18 superposition of energy eigenstates.

Furthermore, as for the classical oscillator, the frequency of oscillation is independent of

the energy. In the calculation above, this occurs because the separation between every

adjacent pair of energy levels is always ~!.

For a macroscopic oscillator, the only non-negligible amplitudes will be those where

n ⇡ ncl for some ncl � 1. Consequently, a measurement of the energy is certain to yield

some value close to Encl
= (ncl +

1
2)~! ⇡ ncl~!. For each eigenstate, we have

hn|X2|ni =
~

2m!
hn|AA† + A†A|ni =

En

m!2
(3.25)

17To do this calculation using the techniques of IB QM, you would have worked in the position represen-

tation and said

hm|X|ni =

Z 1

�1

⇣
Hm(x) e�x2/2↵

⌘⇤
xHn(x) e

�x2/2↵ dx

where Hn(x) are Hermite polynomials of degree n and ↵ = ~/m!. This is correct, but the integral looks

rather unpleasant to evaluate. Fortunately, our operator formalism means we never even have to try!
18Here, ‘generic’ simply means we must have non-zero amplitudes cn = hn| i for at least one pair of

adjacent energy levels.
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so the mean value hX2i = Encl
/(m!2). Classically, the time average of x2 is proportional to

the average potential energy, which for a harmonic oscillator is just half the total energy.

Thus, classically we have x2 = E/(m!2) in agreement with the quantum result. The

correspondence principle requires that the quantum and classical results agree for large

values of E. That they agree even for low energies is a coincidence due to special symmetries

of the harmonic oscillator.

3.2.1 Anharmonic Oscillations

Suppose that, instead of the pure harmonic oscillator, we have a potential that has a mini-

mum at x = 0 around which it grows approximately quadratically while |x| ⌧ a, but then

asymptotes to a constant value at large |x|. Particles of low energy will have position space

wavefunctions that are supported near the minimum of V (x), so we’d expect the low-lying

energy levels to be roughly equal to those of a corresponding harmonic oscillator. Particles

of higher energy would start to see the fact that the potential is not purely harmonic. In

fact, for any such asymptotically constant potential with a single extremum, the separa-

tion between energy levels gets smaller and smaller as we approach the asymptotic value

limx!1 V (x) of the potential (beyond which we have a continuum of non-bound states)19.

Let’s prepare a state to be in two adjacent energy levels, say

| i = cn|ni + cn+1|n + 1i ,

where |ni is the nth energy eigenstate of our anharmonic potential, whatever it may be.

Since the potential is symmetric around x = 0, its eigenstates have definite parity and so

hn|X|ni = 0 for all |ni. Therefore, at time t,

h , t|X| , ti = cncn+1 ei(En�En+1)t/~ hn|X|n + 1i + c.c. . (3.26)

This is again a sinusoidally oscillating function of time, but now the period T = 2⇡~/(En+1�
En) depends on n since we no longer expect the energy levels to be equally spaced. In fact,

since the energy levels get closer together as n increases, if we give our particle a larger

amplitude of oscillation – and hence more energy – it will take longer to execute a complete

an oscillation. This is just what we’d expect classically.

For example, consider the Pöschl-Teller potential

V (X) = �V0 sech2(X) (3.27)

for some constant V0 > 0 and length scale a = 1/ (see figure 3). This has bound state

energy levels20

En = �~22

2m
(⌫ � n)2 for 0  n < ⌫ , (3.28)

where ⌫ is the positive root of ⌫(⌫ + 1) = 2mV0/~22. The separation between adjacent

bound state energy levels is thus

En+1 � En = (2(⌫ � n) � 1)~22/2m (3.29)

19For a proof, see e.g. chapter 6 of S. Gustafson & I.M. Singer, Mathematical Concepts of Quantum

Mechanics, Springer (2010). (Both this result and its proof are non-examinable in this course.)
20Exercise: Try to prove this. It’s similar to one of the questions on Problem Sheet 1.
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Figure 3: The Pöschl-Teller potential V (x) = �V0 sech2(X) and its energy levels. Figure

by Nicoguaro, taken from this Wikipedia page.

and deceases as n increases towards ⌫. (These formulæbreak down when n � ⌫, where we

enter the continuum of non-normalizable states.)

If V0 � ~22/2m then the potential is very deep and contains many bound states. In

this regime, we have ⌫ ⇡
p

2mV0/~22 � 1 and so from (3.29) we find that a superposition

of low-lying states will oscillate with a frequency

! ⇡ ~2
m

⌫ ⇡ 

r
2V0

m
. (3.30)

For x ⌧ 1/, we may approximate �V0 sech2(x) ⇡ �V0 + V02x2, so this frequency is

indeed just what we’d expect for the corresponding harmonic oscillator. On the other

hand, a superposition of states clustered around n = ⌫/2 will oscillate at around half this

frequency as neighbouring energy levels in this region are only separated by about half as

much.

If we include a wider range of states in our initial superposition, then we’ll instead find

a sequence of terms21

h , t|X| , ti = · · · + cn�1cn ei(En�1�En)t/~ hn � 1|X|ni + cn+1cn ei(En+1�En)t/~ hn + 1|X|ni

+ cn+3cn ei(En+3�En)t/~ hn + 3|X|ni + · · · .
(3.31)

Since this is no longer a harmonic oscillator, we do not generically expect hn+3|X|ni = 0.

Let’s define a frequency ⌦ = (Encl+1 � Encl
)/~ where ncl � 1. Provided the cn’s are

clustered around this large central value n = ncl su�ciently tightly that the di↵erence

between adjacent energy levels is roughly constant over the range of n for which the cn are

21Note that for a symmetric potential, we again have hn+ 2k|X|ni = 0 by parity.
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appreciable, then, to reasonable accuracy, all the terms that contribute to (3.31) oscillate

with frequencies that are integer multiples of ⌦ncl
. Thus the motion will be periodic, but

anharmonic, just as we expect classically.

If we release the anharmonic oscillator from some large extension x0, then initially the

wavefunction will be a superposition of many energy levels, with coe�cients that ensure

hx| i =
P

n
cnhx|ni is sharply peaked around x0. At time t, this state will evolve to

| , ti = e�iEn
cl
t/~
X

n

cn ei(En
cl
�En)t/~ |ni .

Since the separation between energy levels varies, the frequencies appearing in this sum

are not all integer multiples of any ⌦N . Consequently, after a time of order 2⇡/⌦N , most

terms in the sum will have not quite returned to their original values, so the wavefunction

at t = 2⇡/⌦ will be less sharply peaked around X. With each subsequent passing of time

2⇡/⌦N , the wavefunction will become more and more di↵usely spread. Classically, if we

release an oscillator with a rather uncertain value for it’s energy, then for a pure harmonic

oscillator we always know where to find the oscillator at later times, since it’s period is

independent of the energy. However, for an anharmonic oscillator, the period depends on

the energy, so after a long time our oscillator is equally likely to be located anywhere.
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