
4 Transformations and Symmetries

While classical physics is firmly rooted in space-time, quantum mechanics takes place in

the more abstract Hilbert space. Actions such as translations or rotations around a given

origin have a straightforward space-time interpretation, but how can these a↵ect a quantum

particle living in Hilbert space?

In this chapter, we’ll return to the general formalism of QM. We’ll understand how

transformations such as spatial translations or rotations a↵ect states in Hilbert space,

linking together the world of quantum mechanics with our familiar experience in ‘normal’

space R3. In so doing, we’ll obtain a deeper appreciation of the origin of many of the most

common commutation relations, including most of the ones you’re familiar with from 1B.

We’ll also understand why the momentum operator P̂ = �i~ @/@x, a fact which probably

seemed rather mysterious in 1B QM.

4.1 Transformations of States and Operators

If we apply a transformation such as a translation or rotation to our physical system,

we’d expect states to be di↵erent before and after the transformation. For example, if a

particle is prepared in a state | i that is strongly peaked around the origin 0 2 R3 and

we translate our system through a vector a, after this transformation we should expect to

find our particle in a new state | 0i whose wavefunction is strongly peaked around x = a.

This suggests that the e↵ect of any given spatial transformation should be represented on

Hilbert space by a linear operator

U : H ! H U : | i 7! | 0i = U | i . (4.1)

where the operator in question depends on the specific type of transformation.

Whatever state we start with, after applying the transformation, we still expect to find

it somewhere in space. Thus, properly normalised states should remain so after applying

U , or in other words

1 = h | i = h 0| 0i = h |U †U | i for all | i 2 H. (4.2)

We’ll now show that the requirement that U preserves the norm of our state fixes it to

be a unitary operator16. The required trick is sometimes called the polarization identity.

We first write | i as | i = |�i + �|�i for some states |�i, |�i 2 H and some � 2 C.

Equation (4.2) becomes

h�|�i+�̄h�|�i+�h�|�i+|�|2h�|�i = h�|U †U |�i+�̄h�|U †U |�i+�h�|U †U |�i+|�|2h�|U †U |�i
(4.3)

16Because physical states are represented by rays in H, rather than actual vectors, there is one other

possibility, transformations may be represented by operators that are both anti-linear, in the sense that

U(c1| 1i+ c2| 2i) = c1U | 1i+ c2U | 2i), and anti-unitary, meaning that h�|U†U |�i = h�|�i = h�|�i for all

|�i, |�i 2 H. Such antiunitary operators turn out to be related to reversing the direction of time; we will

not discuss them further in this course. Wigner showed that all transformations are represented by either

linear, unitary operators or anti-linear, anti-unitary ones.
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where we recall that the inner product is antilinear in its left entry. By assumption

h�|U †U |�i = h�|�i and h�|U †U |�i = h�|�i, so this simplifies to

�
⇣
h�|�i � h�|U †U |�i

⌘
= �

⇣
h�|U †U |�i � h�|�i

⌘
. (4.4)

In order for this to hold for every | i 2 H, it must continue to hold as we vary �. In

particular, as the phase of � varies, the only way for (4.4) to be satisfied is if

h�|�i = h�|U †U |�i . (4.5)

Finally, for this hold for arbitrary states |�i and |�i we must have U †U = 1. Multiplying

through on the right by U�1 shows that

U † = U�1 (4.6)

which says that the adjoint of U is equal to its inverse. Operators with this property are

said to be unitary17.

There’s one further condition on our operators U . Transformations of space such as

translations and rotations form a group. For example, the composition of two rotations

is again a rotation, the trivial rotation forms the identity, and the inverse of a rotation

is a rotation of the same amount around the same axis, but in the opposite sense (e.g.

clockwise instead of anticlockwise). Let’s suppose that our spatial transformations form a

group G. To reflect this group structure, our operators should18 provide a homomorphism

from G to the group of unitary operators in the sense that, for all g1, g2 2 G,

U(g2) � U(g1) = U(g2 · g1) and U(1) = 1H (4.7)

where · denotes the group multiplication in G and � denotes the composition of linear

operators acting on H. (We’ll typically suppress these composition symbols from now on.)

Note that if U1 and U2 are each unitary operators, then (U2U1)�1 = U�1
1 U�1

2 = U †

1U
†

2 =

(U2U1)† and so the composite operator U2U1 is also unitary. Note also that the identity

operator 1H is trivially unitary.

A particularly important class of transformations are those that depend smoothly on

some parameter ✓. For example, we can smoothly vary both the axis about which and

the angle through which we rotate, or the magnitude and direction of a translation vector.

If ✓ = 0 is trivial transformation, represented on H by the identity operator, then for

infinitesimal transformation we have

U(�✓) = 1 � i �✓ T + O(�✓2) (4.8)

where T is some operator that is independent of ✓. (The factor of �i in this equation is

just a convention for later convenience.) T is called the generator of the transformation.

For such infinitesimal transformations, the condition (4.6) that U is unitary becomes

1 + i �✓ T † + O(�✓2) = 1 + i�✓ T + O(�✓2) , (4.9)

17Note that unitary operators are certainly bounded, and in fact have unit norm in the operator topology.
18This statement is not quite accurate – there’s an important refinement that we’ll return to later in the

course.
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which to first order in �✓ gives

T = T † . (4.10)

Thus the generator T is Hermitian and hence a good candidate for an observable quantity.

A finite transformation can be generated by repeatedly performing an infinitesimal one.

Specifically, if we set �✓ = ✓/N and transform N times with U(�✓), then in the limit

N ! 1 we have

U(✓) = lim
N!1

✓
1 � i

✓

N
T

◆
N

= e�i✓T , (4.11)

where the exponential of an operator may be defined by (2.42), or equivalently by its power

series expansion. This form of the unitary operator U(✓) is especially useful when states

are expressed in terms of the basis of eigenstates of the Hermitian generator T .

We obtain an important equation by using (4.8) to evaluate | 0i = U(�✓)| i. Sub-

tracting | i from both sides and dividing through by �✓, in the limit �✓ ! 0 we obtain

i
@| i
@✓

= T | i (4.12)

There is no assumption here that the wavefunction  (x) = hx| i should be di↵erentiable

as a function of space. We merely say that as our transformation varies smoothly away

from the identity, so too does the state | i vary smoothly inside H. The rate at which | i
varies is governed by the generator.

Having described how transformations act on states in H, we should now understand

how they act on operators. Suppose A is some operator whose matrix elements we are

interested in. If our transformation maps | i ! | 0i, then the expectation value of A will

be mapped as

h |A| i 7! h 0|A| 0i = h | U †(✓)AU(✓) | i . (4.13)

Consequently, we can find the expectation value A will take after the transformation by

working with the original states, but instead transforming the operator as

A 7! A0 := U †(✓)AU(✓) = U�1(✓)AU(✓) , (4.14)

using the fact that U is unitary. This is known as a similarity transform. Note that

[A0, B0] = [U�1AU, U�1BU ] = U�1[A, B]U , (4.15)

so the commutator of two similarity transforms is the similarity transform of the commu-

tator. Also, similarity transforms do not change the spectrum of any operator: if | i is

an eigenstate of A with eigenvalue a, then U�1| i is an eigenstate of A0 with the same

eigenvalue.

Finally, for an infinitesimal transformation, we have

U †(�✓) A U(�✓) = A + i �✓ [T, A] + O(�✓2) , (4.16)

so �A = i �✓ [T, A]. Thus, while the rate of change of states themselves is given by the action

of the generator, the rate of change of operators under a transformation is determined by
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the commutator of the generator with the operator. We’ll see that most of the commutation

relations we meet in quantum mechanics (and certainly all the familiar ones) arise this way.

Furthermore, because Hermitian operators represent observable quantities with which we

are familiar, in practice it’s often easier to understand how a transformation should act on

an operator, rather than on the more abstract notion of a state in Hilbert space.

The above discussion has been rather abstract. Let’s ground it by looking at a few of

the most important examples of transformations and their corresponding generators.

4.2 Translations

When we move an object around, we expect to find it in a new place. Specifically, suppose

h |X| i = x0 for some normalised state | i. Since x0 just labels a spatial point, it must

behave under translations and rotations like any vector. Thus, after the translation we

expect our object to be described by a new state | 0i with h 0|X| 0i = x0 +a. The general

theory of the previous section asserts that this translation is represented on Hilbert space

by a unitary operator19 U(a) so that | 0i = U(a)| i. Therefore we can write the expected

location of the translated state as

h 0|X| 0i = h |X| i + a = h |(X + 1Ha)| i
= h |U�1(a)XU(a)| i ,

(4.17)

where 1H represents the identity operator on H. (We’ll often drop the identity operator

where it’s unambiguous.) Since this is true for any state | i, the same argument as above

shows that

U�1(a)XU(a) = X + a1H . (4.18)

Let’s be clear about what this equation means. In this course, we’re interested in Quantum

Mechanics on R3, so the (boldface) position operator X : H ! H is really a collection

of three operators corresponding to the three coordinates of R3. Taking the standard

Cartesian basis of R3, in more detail (4.18) says

0

B@
U�1(a)XU(a)

U�1(a)Y U(a)

U�1(a)ZU(a)

1

CA =

0

B@
X + ax1H
Y + ay1H
Z + az1H

1

CA . (4.19)

In other words, conjugating the X (component!) operator by U(a) gives a new operator

U�1(a)XU(a) : H ! H that we identify with X + ax, and similarly for Y and Z. If

U(a) acted on the position operator in any other way, it could not represent a translation,

so equation (4.18) may be taken as the defining property of the translation operator,

distinguishing it from other unitary transformations.

19Strictly, we should label this as Utrans(a) to emphasise that it is the unitary operator generating

translations, as opposed to anything else we might associate to a. We typically drop such additional labels.

Exactly which unitary operator we’re talking about should hopefully be clear from the context.
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For an infinitesimal translation �a, equation (4.8) states that the translation operator

can be written as20

U(�a) = 1 � i

~ �a · P + O(�a2) (4.20)

where P is Hermitian, I’ve named this operator P, so I’m not going to be able to fool any

of you that it will turn out to be anything other than the momentum operator. But that’s

not how I want you to think of it yet. By definition, P/~ is the generator of infinitesimal

translations.

The translation generator P/~ must have units 1/(length) so that it makes sense to

add the second term of (4.20) to the first. Because we’ve included a factor of ~, our P

must have dimensions of (mass⇥velocity). In fact, this is just a convention. We could

choose to measure masses in units of 1/(length⇥velocity), using ~ as a conversion factor

for our units. In relativity, the speed of light c provides a further natural conversion factor

between lengths and times, so in units of ~/c, masses are equivalent to inverse lengths.

In natural units, we work with length and time scales adapted to Nature rather than our

civilisation, so we set ~ = 1 and c = 1. In these units, the translation generator is precisely

P. Incidentally, you may be worried about setting ~ = 1 when it is such a ‘small’ number;

~ ⇡ 1.0547 ⇥ 10�34 Js/rad. But this is quite wrong. Every atom in the Universe knows

that ~ is not at all small or insignificant. It only appears small when measured in units

such as Joules and seconds that are relevant for steam engines and pocketwatches. The

real, deep question is not why ~ appears small, but why humans are so big.

Plugging (4.20) into the defining equation (4.18) for the translation operator we find

i

~ [�a · P , X ] = �a (4.21)

and since this holds for any infinitesimal translation,

[Xi , Pj ] = i~ �ij . (4.22)

These, as I’m sure you recognise, are the fundamental commutation relations of quantum

mechanics. I’m prepared to bet that the first time you met them (and perhaps even up

until now) you thought they were a weird and mysterious feature of quantum mechanics.

Here they’re revealed as little more than common sense: asking where you are and then

translating is not the same as first translating and then asking where you are. What is

weird and quantum about this equation is not that X and P don’t commute, but the fact

that they are operators acting on a Hilbert space.

By repeatedly performing the same infinitesimal translation, we can write

U(a) = exp

✓
� i

~a · P
◆

(4.23)

for a translation through the finite vector a. Since U(a) provides a homomorphism of this

group of translations to the group of linear operators on H, we have

U(b) U(a) = U(b + a) = U(a + b) = U(a) U(b) , (4.24)

20Here, �a · P =
P

3

i=1
�ai Pi involves the standard dot product in R3. Note that the result is still an

operator on H, a linear combination of the three operators P.
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where in the second equality we used the fact that a + b = b + a, stating that the order

in which we perform two translations doesn’t matter21. Using (4.20) to expand the far left

& far right of this equation to lowest non–trivial order in aibj shows that the generators P

obey

[Pi, Pj ] = 0 for all i, j (4.25)

and so commute with eachother. Again, the fundamental meaning of this equation is simply

that translations form an Abelian group — the order of translations doesn’t matter. It only

says anything about our ability to simultaneously know all three components of a particle’s

momentum once we identify P as corresponding to momentum, which we haven’t yet done.

Now let’s think about what the translation operator does to states. Let |xi repre-

sent an eigenstate of the position operator with eigenvalue x, so that X|xi = x|xi, with

normalisation condition

hx0|xi = �3(x0 � x) (4.26)

as usual for continuum states22. This state represents a particle which is definitely located

at x 2 R3. Applying the translation operator,

X(U(a)|xi) = ([X, U(a)] + U(a)X) |xi . (4.27)

We can evaluate the commutator by multiplying (4.18) through by U(a) on the left, finding

[X, U(a)] = U(a)a. Since a is just a constant vector (not an operator on H) it commutes

with the translation operator, so

X(U(a)|xi) = (x + a) (U(a)|xi) . (4.28)

As anticipated, our new state U(a)|xi is certainly located at x+a. Consequently, U(a)|xi
must be proportional to the state |x + ai, the normalised state that is definitely located

at x + a. Setting U(a)|xi = c|x + ai for some c 2 C and taking the inner product with

another position eigenstate |x0i we have23

c �3(x0 � x � a) = c hx0|x + ai = hx0|U(a)|xi =
�
U�1(a)|x0i

�† |xi

=

✓
1

c
|x0 � ai

◆
†

|xi =
1

c
�3(x0 � a � x)

(4.29)

21Here this is of course the statement that the group of spatial translations is (R3,+), where the group

operation ‘+’ is commutative. Groups for which the group operation is commutative are often called

Abelian.
22Technically, |xi is a non-normalizable state, which really means it doesn’t live in the Hilbert space

L2(R3, d3x). This is related to the fact that the position operator X is unbounded – there is no constant

M such that kX| ik  Mk| ik for all | i 2 H. Näıvely, this means that ‘the eigenvalues of X can be

arbitrarily large’, which is physically reasonable since our particle may be located very far away. However,

in general, unbounded operators do not have any eigenstates in H, so do not really have eigenvalues. The

distinction between bounded and unbounded operators is tremendously important in functional analysis,

but will not play a role in this course.
23Note the slight awkwardness of the Dirac notation here. Because operators act to the right, we have to

write h�|U |�i = (U�1
|�i)†|�i for any unitary operator U , as we used in the third equality. In mathematical

notation we would simply write (�, U�) = (U�1�,�).
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where we used the fact that U(a) is unitary and the fact that if U(a)|xi = c|x + ai then

U�1(a)|x + ai = c�1|xi. Comparing both sides shows that |c|2 = 1, so c is a pure phase

and without loss of generality we can set c = 1.

Now suppose we consider translating an arbitrary state | i. The position space wave-

function of this state is simply its coe�cient

 (x) = hx| i (4.30)

in the position basis. Thus the wavefunction  trans(x) of the translated state | transi =

U(a)| i is

 trans(x) = hx| transi = hx|U(a)| i =
�
U�1(a)|xi

�† | i
= hx � a| i =  (x � a) .

(4.31)

Eq. (4.31) says that the wavefunction of the translated state takes the same value at x as

the original wavefunction took at x�a. This is completely natural as we’ve translated our

state through a!

In particular, for an infinitesimal translation �a, on the one hand we can Taylor expand

the translated wavefunction to find24

 trans(x) �  (x) = ��a · r (x) , (4.32)

while on the other we expand the operator U(�a) to find

 trans(x) �  (x) =

⌧
x

����1 � i

~ �a · P
���� 
�

� hx| i = � i

~�a · hx|P| i (4.33)

using (4.20) to lowest order in �a. Consequently, for any state | i the momentum operator

P acts in the position representation as

hx|P| i = �i~r (x) . (4.34)

This is just what you would have said in IB QM last year, here derived from the point of

view of the e↵ect a translation of R3 has on states in Hilbert space.

As a special case, let’s apply this argument to the state |pi that obeys25 P|pi = p|pi,
representing a particle whose momentum is certainly p. In this case the above argument

becomes
 p(x � a) = hx � a|pi = hx|U(a)|pi = hx|e�ia·P/~|pi

= e�ia·p/~hx|pi = e�ia·p/~  p(x) ,
(4.35)

where in going to the second line we used the fact that |pi is an eigenstate of P. Comparing

the first and last expression, we deduce that the position space wavefunction of a momentum

eigenstate must take the form

 p(x) = C eip·x/~ (4.36)

24At least if the wavefunction is su�ciently smooth.
25As with the position operator, the momentum operator P is unbounded, so the ‘momentum eigenstates’

|pi are necessarily non-normalizable, as we’ll soon see explicitly.
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Figure 4: An infinitesimal rotation transforms v 7! v + �↵ ⇥ v.

for some x-independent factor C. It’s convenient to choose C to be (2⇡~)�3/2 since in this

case we have

hp0|pi =

Z
d3y d3x hp0|yihy|xihx|pi =

Z
d3x d3y

(2⇡~)3
e�ip0

·y/~ �3(y � x) eip·x/~

=

Z
d3x

(2⇡~)3
e�i(p0

�p)·x/~ = �3(p0 � p)

(4.37)

so that the momentum eigenstates are normalised in the same way as the position eigen-

states (and in the same way as for any continuum states). Again, the form

 p(x) =
1

(2⇡~)3/2
eip·x/~ (4.38)

of the wavefunction for momentum eigenstates is familiar, but here we’ve derived it from

first principles rather than using the position space representation (4.34) of the momentum

operator. (We assumed this result earlier when showing that the position and momen-

tum space wavefunctions are eachother’s Fourier transforms.) Note also that | p(x)|2 =

1/(2⇡~)3, so
R

R3 | p(x)|2 d3x diverges. Like position eigenstates, momentum eigenstates

are also non-normalizable.

4.3 Rotations

We now consider the e↵ect rotating R3 has on a quantum state | i 2 H. For a vector v 2 R3

a rotation anticlockwise around the axis ↵̂ by an amount |↵| is a linear transformation

R(↵) : R3 ! R3 R(↵) : v 7! v0 = R(↵)v (4.39)

that obeys

v0 · v0 = v · v and det(R(↵)) = +1 . (4.40)

The first of these conditions says that rotations preserve lengths, and implies that R(↵)

must be an orthogonal transformation. The second ensure that R(↵) preserves the orien-

tation. For infinitesimal rotations, figure 4 shows that

v0 = v + �↵ ⇥ v + O(�↵2) . (4.41)
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(Note that this obeys (4.40).) Given two orthogonal transformations R(↵) and R(�)

the composite R(�)R(↵) is again an orthogonal transformation with unit determinant.

Spatial rotations form a group, known as SO(3), with the identity being the trivial rotation

and the inverse of R(↵) being a rotation of the same amount around the same axis ↵, but

now clockwise. However, in general R(�)R(↵) 6= R(↵)R(�), so the order in which we

apply rotations is important and the rotation group is non–Abelian.

As for any group of transformations, in quantum mechanics the group of rotations is

represented on H by unitary operators. We denote the unitary operator corresponding to

R(↵) as U(↵). U(↵) acts on the position operator as

U�1(↵)XU(↵) = R(↵)X (4.42)

where the lhs involves composition of operators in H, while the rhs here is the usual action

of a rotation on the three components of X. For example, if ↵ = ↵ẑ so that the rotation

is around the z-axis in R3, then in more detail (4.42) says
0

B@
U�1(↵)XU(↵)

U�1(↵)Y U(↵)

U�1(↵)ZU(↵)

1

CA =

0

B@
cos↵ � sin↵ 0

sin↵ cos↵ 0

0 0 1

1

CA

0

B@
X

Y

Z

1

CA . (4.43)

Thus, conjugating the operator X by this rotation operator changes it to a new operator

U�1(↵)XU(↵) on Hilbert space, which we identity with the usual linear combination

X cos↵ � Y sin↵. Again, U(↵) must act on X this way if it is indeed to correspond to a

rotation.

For an infinitesimal transformation, following (4.8) we can write

U(�↵) = 1 � i

~ �↵ · J + O(�↵2) (4.44)

for some Hermitian generators J/~. Since angles are dimensionless, J, like ~, must have

dimensions of (length ⇥ momentum). Later we will see that J corresponds to the angular

momentum operator, though by definition we have that J/~ is the generator of rotations.

Using this and (4.41) in (4.42) shows that we have

i

~ [ �↵ · J , X ] = �↵ ⇥ X , (4.45)

and since this is true for any axis of rotation, we have the commutation relations

[Ji, Xj ] = i~
X

k

✏ijkXk . (4.46)

These relations are nothing more than the statement that the operator X transforms as a

vector under rotations. They are the infinitesimal version of (4.42) – they must hold if J

is indeed to generate rotations.

Just as for translations, the mutual commutation relations among the components of J

themselves follow from the fact that the U(↵)s provide a homomorphism from the group26

26Again, later we’ll see that this statement needs to be slightly refined.
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SO(3) of rotations to the space of unitary operators on H. However, the non–Abelian

nature of the rotation group means we should expect these commutators to be non–trivial

in general. Performing two infinitesimal rotations through angles �↵ and ��, for any vector

v we have

R(��)R(�↵)v = R(��) (v + �↵ ⇥ v) = (v + �↵ ⇥ v) + �� ⇥ (v + �↵ ⇥ v)

= v + �↵ ⇥ v + �� ⇥ v + �� ⇥ (�↵ ⇥ v)
(4.47)

to lowest non–trivial order in �↵ and ��. Consequently, the di↵erence between these

rotations and the two rotations performed in the opposite order is

[R(��)R(�↵) � R(�↵)R(��)]v = �� ⇥ (�↵ ⇥ v) � �↵ ⇥ (�� ⇥ v)

= (�� ⇥ �↵) ⇥ v

= R(�� ⇥ �↵)v � v

(4.48)

using standard properties of the vector triple product. The rhs again involves a rotation,

through the angle �� ⇥ �↵. Applying the homomorphism U we obtain

[U(��), U(�↵)] = U(�� ⇥ �↵) � I (4.49)

for our operators in Hilbert space. Using (4.44), this is

� 1

~2
[�� · J , �↵ · J] = � i

~ (�� ⇥ �↵) · J (4.50)

and since this must hold for arbitrary successive infinitesimal rotations, we have finally

[Ji, Jj ] = i~
X

k

✏ijkJk (4.51)

as the commutation relations among the rotation generators.

Again, there’s nothing ‘weird’ or ‘quantum’ about (4.51), beyond the fact that they

involve operators on Hilbert space. In particular, their form just reflects the fact that the

order of rotations around di↵erent axes matters, and that the di↵erence between the two

orderings is itself a rotation around the axis perpendicular to the original two. Compared

to the relations [Pi, Pj ] = 0, the non–triviality of the commutation relations (4.51) arises

purely because SO(3) is a non–Abelian group, unlike the group of translations. These non–

trivial commutation relations do not prevent us from exponentiating (4.44) to write U(↵) =

e�i↵·J/~ for a finite rotation around a fixed axis ↵, because the exponentiation always

involved the same component ↵̂ · J of the rotation generator, which certainly commutes

with itself.

The combined group of translations and rotations of Euclidean R3 is sometimes known

as E(3), or else ISO(3). For translations through a1 and a2, and rotations R1 and R2,

E(3) has the group composition law

(a2, R2) · (a1, R1) = (a2 + R2a1, R2R1) , (4.52)
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where the we note that the second rotation also acts on the first translation. Clearly,

both R3 and SO(3) are subgroups of E(3), but the fact that rotations act non-trivially on

previous translations means that E(3) is the semi-direct product E(3) ⇠= R3 oSO(3). This

group law shows that rotations and translations do not commute: translating any vector

v through a and then rotating around ↵̂ gives us R(↵)(v + a), whereas first rotating

then translating gives a + R(↵)v instead. In particular, for infinitesimal translations and

rotations we have

R(�↵)(v + �a) � (R(�↵)v + �a) = �↵ ⇥ �a (4.53)

independent of v. Applying the homomorphism U , in Hilbert space we obtain commutation

relations27

[UR(�↵), UT (�a)] = UT (�↵ ⇥ �a) � I (4.54)

or equivalently

[Ji, Pj ] = i~
X

k

✏ijkPk (4.55)

in terms of the rotation and translation generators.

More generally, any 3-component linear operator V : H ! H is said to transform as a

vector under rotations if it obeys U�1(↵)VU(↵) = R(↵)V for any ↵. (Depending on its

behaviour under parity transformations, discussed in section 4.6, such a V could either be

a vector or pseudovector operator.) Just as above, for infinitesimal rotations this implies

the commutation relations

[Ji, Vj ] = i~
X

k

✏ijkVk (4.56)

among the components of V and J. We see that X, P and J itself28 each transform as

vectors under rotations. This of course is just what we’d expect for position, momentum

and angular momentum in classical mechanics.

On the other hand, if an operator S obeys

U�1(↵) S U(↵) = S (4.57)

for any ↵, so that it is unchanged by the rotation operator, we say S is a scalar operator29.

The corresponding infinitesimal version is

[J, S] = 0 . (4.58)

Just as we can form a scalar by taking the Euclidean inner product v ·w of the two vectors

v, w 2 R3, so we can form scalar operators from the Euclidean inner product of two vector

27Here, for the sake of clarity, we have labelled the translations operator by UT and rotation operator by

UR. In particular, the operator on the rhs of (4.54) is a translation.
28This is always true of X and P, but turns out to be a three-dimensional coincidence for J: the

rotation group SO(d) of Rd has dimension d(d � 1)/2 and the generators are generically represented by

antisymmetric matrices Jij . When d = 3, a 3⇥ 3 antisymmetric matrix has 3 independent components, so

we can equivalently package the Jij as vectors through Ji = ✏ijkJjk.
29More precisely, we say that S transforms as a scalar under rotations — depending on its behaviour

under parity transformations it could be either a scalar or pseudoscalar operator.
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operators. Indeed, if U�1(↵)VU(↵) = R(↵)V and similarly for W, then

U�1(↵) (V · W) U(↵) = (U�1(↵)VU(↵)) · (U�1(↵)WU(↵))

= (R(↵)V) · (R(↵)W)

= V · W
(4.59)

by the standard rotational invariance of the dot product. As always, we can write this in

terms of commutators by considering infinitesimal rotations:
2

4Ji ,
X

j

VjWj

3

5 =
X

j

[Ji, Vj ]Wj +
X

j

Vj [Ji, Wj ]

= i~
X

jk

✏ijkVkWj + i~
X

jk

Vj ✏ijkWk

= i~
X

jk

✏ijk(�VjWk + VjWk) = 0 ,

(4.60)

where in going to the final line we relabelled dummy indices j $ k in the first term and

used the antisymmetry of ✏ijk. Note that our calculations always preserved the order of V

and W — our result holds irrespective of whether V and W commute.

An important special case of (4.58) is to take S = J2 = J·J. The fact that the rotation

generators obey the commutation relations

[Ji, Jj ] = i~
X

k

✏ijkJk and [Ji,J
2] = 0 (4.61)

means that we cannot find a complete set of simultaneous eigenstates of all of the Jis, but

we can find a complete set of simultaneous eigenstates of J2 and any one component of J.

Looking ahead to our interpretation of J as the angular momentum operator, Born’s 2nd

postulate of QM tells us that we cannot say a particle has a definite angular momentum

vector, but we can know the magnitude of the angular momentum and the amount aligned

along any given axis.

4.3.1 Translations Around a Circle

In 1B QM, you defined the orbital angular momentum operator L = X ⇥ P which also

has the commutation relations (4.56) with itself and with X and P. We’ll understand the

relation between J and L later, but it’s important to understand that in general J 6= L.

We can understand L from the present perspective as follows.

When a system is displaced through the vector a, its state is transformed by the

unitary operator U(a) = e�ia·P/~. We now imagine successively performing n translations

successively through the set of vectors {a1,a2, . . . ,an}. Each translation is represented by

a unitary operator U(ai), so the final state will be

U(an) · · · U(a2)U(a1)| i = U(b)| i (4.62)

where b = a1 + · · ·+an is the total displacement vector. Since the net result depends only

on the total translation b, the change in | i is independent of the particular path that the
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system takes. In particular, if the path is closed so that a1 + · · · + an = 0, then | i is

unchanged.

Now consider the e↵ect of translating the system around an arc of a circle centred

on the origin. We can approximate this circle by an N -sided regular polygon, with the

approximation improving as N ! 1, so we move around a circle by applying a succession of

small translations, each in a slightly di↵erent direction. Specifically, if the system initially

lies at some location x, making an angle ↵ with some axis, then when move it in the plane

normal to n to lie at an angle ↵ + �↵, we translate it through �a = �↵n ⇥ x. Thus the

associated unitary translation operator obeys

U�1(�a)XU(�a) = X + �↵ (n ⇥ X) (4.63)

and so can be written as

U(�a) = 1 � i

~ �↵ (n ⇥ X) · P + O(�↵2) = 1 � i

~ �↵n · L + O(�↵2) , (4.64)

where

L/~ = X ⇥ P/~ (4.65)

is Hermitian operator. We now see that L is the generator of circular transformations.

(4.64) contains only one operator, n · L, so it inevitably commutes with itself and we can

exponentiate to find U(acirc) = e�i↵n·L/~ for finite translations around our circle.

4.3.2 Spin

The commutation relations [Li, Xj ], [Li, Pj ] and [Li, Lj ] of the composite operator L all

follow from the more primitive commutation relations [Xi, Pj ], [Xi, Xj ] and [Pi, Pj ]. If

we’re only concerned with these operators, then Ucirc = e�i↵n·L/~ is indistinguishable from

the rotation operator U(↵) = e�i↵·J/~. However, if our system has any internal structure,

circular translations using the centre of mass position operator X and centre of mass

Figure 5: The rotation operator U(↵) swings a system around the origin and also rotates

its orientation in R3, while a circular translation merely moves the system around a circular

path, without a↵ecting its orientation. The di↵erence is a rotation of the body around its

own centre of mass, reorientating it without changing its location.
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momentum P are not the same as rotations: the di↵erence is best explained by a picture,

which you can find in figure 5.

We define the spin operator S to be the di↵erence

S = J � L (4.66)

so that J = L+S. From figure 5 we see that di↵erence between rotating an object around

some fixed origin and a translating it’s centre of mass along a circular path is a rotation

around the object’s centre of mass. generates a rotation of the body around its own centre

of mass. We thus expect (and will confirm below) that S generates rotations of a body

around its own centre of mass, reorienting it in space. This is why S is called the spin

operator.

In the case of a macroscopic body, made up of many constituent particles, it’s reason-

able to suppose that the spin operator just account for the di↵erence between translating

the body as a whole and translating each individual particle around their own arcs, with

slightly di↵erent radii according to where in the body the particle is located. That is,

S
?
=

 
X

a

Xa ⇥ Pa

!
� X ⇥ P =

X

a

xa ⇥ pa (4.67)

where Xa and Pa are position and translation operators for each individual particle and

xa and pa are their positions and momenta relative to the centre of mass30. However,

for an object consisting of many particles such a description is clearly going to be very

cumbersome. More fundamentally, we do not know what the ‘fundamental’ constituents of

our object really are. (For example, if I sit on a merry-go-round, is the ‘right’ quantum

description of my motion given in terms of my cells, or my atoms, or protons and neutrons,

or quarks and gluons, or bits of string, or . . .?) It’s thus crucial that we can consider objects

as a whole in quantum mechanics, just as we can classically. For rotations, understanding

S will allow us to do this. In addition, as we’ll see in section 5.3.1, one of the surprises of

quantum mechanics is that even fundamental particles such as electrons and photons may

have an ‘intrinsic’ spin that (as far as we know) is not related to any composite structure.

Fortunately, commutation relations involving the spin operator S are easy to obtain

from the ones we already have for J and L. Firstly, the fundamental relations

[Ji, Xj ] = i~
X

k

✏ijkXk and [Ji, Pj ] = i~
X

k

✏ijkPk (4.68)

show that

[Ji, Lj ] = i~
X

k

✏ijkLk , (4.69)

30We’ll understand how to properly describe the quantum mechanics of a system with many degrees of

freedom (e.g. many particles) in chapter 7.
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so that the angular momentum operator L also transforms as a vector under rotations.

Recalling from 1B QM that31 [Li, Lj ] = i~
P

k
✏ijkLk, we have

[Si, Sj ] = [Ji � Li, Jj � Lj ] = [Ji, Jj ] � [Ji, Lj ] � [Li, Jj ] + [Li, Lj ]

= i~
X

k

✏ijk(Jk � Lk) = i~
X

k

✏ijkSk . (4.70)

It then immediately follows that [S,S2] = 0. This algebra – the same as that obeyed by

the components of J and L – confirms that the spin operators S generate some form of

rotation. On the other hand, since [Li, Xj ] = i~
P

k
✏ijkXk and [Li, Pj ] = i~

P
k
✏ijkPk, we

have
[Si, Xj ] = [Ji, Xj ] � [Li, Xj ] = 0

[Si, Pj ] = [Ji, Pj ] � [Li, Pj ] = 0
(4.71)

These commutation relations confirm that the spin operator has nothing to do with an

object’s location in or motion through space, but is purely to do with rotating its intrinsic

orientation. Finally, since S commutes with both X and P, it also commutes with L:

[Si, Lj ] = 0 8 i, j . (4.72)

This allows us to factorize the operator U(↵) describing finite rotations as

U(↵) = e�i↵·J/~ = e�i↵·(L+S)/~ = e�i↵·L/~ e�i↵·S/~ = e�i↵·S/~ e�i↵·L/~ . (4.73)

As in figure 5, these equations confirm that we can think of a quantum rotation as consisting

of a translation of a body’s centre of mass along an arc centred on the origin together with

a simultaneous rotation of the body around it’s own centre of mass by the same amount.

The order in which we perform these two operations makes no di↵erence.

4.4 Time Translations

It’s not only transformations of space that are represented on H by unitary operators.

Consider translations in time. These again form an Abelian group, since sending t0 to

t0 + t and then to t0 + t + t0 gives the same end result as does t0 ! t0 + t0 ! t0 + t0 + t.

If we want the total probability of our particle being found somewhere in R3 at all times,

then time translation must also be represented by a unitary operator U(t) : H ! H. Since

we can translate through an arbitrarily small time, the time translation operator takes the

form

U(t) = exp

✓
� i

~Ht

◆
(4.74)

where H/~ must be Hermitian and is, by definition, the generator of time translations.

This generator must have dimensions 1/(time), so the conventional factor of ~ means that

H itself has dimensions of energy. Of course, H will turn out to be the Hamiltonian, but

for now I’d like you to think of it more abstractly just as the generator of time translations.

31Check you’re able to derive this statement from the definition of L and the fundamental commutation

relations [Xi, Pj ] = i~ �ij .
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The fact that U(t) represents the e↵ect of a time translation on H means that if a

particle is in some state | (0)i at time t0 = 0, translating forward to time t we will find it

in the state

| (t)i = U(t)| (0)i = e�iHt/~| (0)i . (4.75)

In particular, the di↵erence between | (t)i and the state we find a short time later is

| (t + �t)i � | (t)i = � i

~ �t H| (t)i + O(�t2) (4.76)

or, taking the limit �t ! 0,

i~ @
@t

| (t)i = H| (t)i . (4.77)

This, famously, is the Time Dependent Schrödinger Equation, which I’ll often abbreviate

to TDSE in what follows. It’s just the infinitesimal version of the statement that all states

in H evolve in time according to the action of a unitary operator U(t).

4.4.1 The Heisenberg Picture

In 1B QM, we were used to the idea that states evolve in time according to the TDSE.

However, just as we did for spatial transformations, we can instead work in a picture where

the states are time independent and instead the operators evolve in time. To see how this

works, suppose OS is some operator that contains no explicit time dependence. Then the

amplitude for the state OS| (t)i to agree at time t with the state |�(t)i is

h�(t)|OS| (t)i = h�(0)|U�1(t) OS U(t)| (0)i (4.78)

The right hand side here only makes explicit reference to the initial values of the states | i
and |�i. Since it holds true for any pair of states, just as above we can obtain the same

results by always working with the initial states and instead evolving the operators as

OH(t) = U�1(t) OS U(t) . (4.79)

The version of quantum mechanics where we use the TDSE to evolve the states in time,

leaving operators unaltered, is known as the Schrödinger picture, whereas the version where

the states are fixed at their initial values and instead the operators evolve in time is called

the Heisenberg picture.

In fact, all this has a precise analogue in classical mechanics. Classically, there are also

two ways of thinking about time evolution. On the one hand, we can think of a particle

moving in some way through phase space M . If we know it’s location (x(t),p(t)) 2 M for

every time t we can compute any quantity we wish, represented by some function f : M !
R, by evaluating f at the location of our particle, obtaining the value f(x(t),p(t)). (This is

the perspective we took in the Introduction.) However, Newton’s Laws are deterministic,

so, given a force, the entire trajectory is determined by the initial conditions (x0,p0).

This suggests a perspective in which the ‘state’ of our particle is simply a choice of initial

conditions. These initial conditions do not themselves evolve, rather, it is the quantities we

measure that vary in time. Thus, instead of thinking of a physical quantity f as a map from
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phase space, we treat it just as a map from time, so f : [t0, 1) ! R. You’ll examine these

classical pictures further if you’re taking the Classical Dynamics course, in the context of

Hamiltonian mechanics. (It’s really for this reformulation of classical mechanics, not the

particular H, that Hamilton is famous.)

Di↵erentiating (4.79) wrt t shows that

d

dt
OH(t) =

d

dt

�
U�1(t) OS U(t)

�
=

i

~
�
U�1(t) HOS U(t) � U�1 OSH U(t)

�

=
i

~ [H, OH(t)] ,
(4.80)

where in the last step we used the fact that [U(t), H] = 0, since U(t) depends only on

H. This is Heisenberg’s equation of motion. It’s completely equivalent to Schrödinger’s

equation (4.77), and is also just a (very important!) special case of our general argument

of how operators transform under the action of unitary groups of transformations. More

generally, if the original operator OS had some explicit time dependence of its own —

independent of any particular particle’s motion — then we would obtain a further term in

this equation, modifying it to

d

dt
OH(t) = U�1(t)

@OS

@t
U(t) +

i

~ [H, OH(t)] . (4.81)

For example, we may wish to understand the behaviour of a charged particle in the presence

of an applied electric field. If the electric field is itself changing in time, then the potential

in which the particle moves will be time–dependent even in the Schrödinger picture.

4.5 Dynamics

So far, we’ve simply defined some unitary operators U(a), U(↵) and U(t) that are re-

sponsible for translating, rotating or evolving our system through space and time. The

commutation relations of the generators P and J, and their commutation relations with X

were determined purely by the properties of the corresponding group of transformations

of R3. However, while we’ve seen that commutators such as [H,X], [H,P] and [H,J] are

important in the Heisenberg picture, telling us how these operators change in time, we

haven’t yet given any way to actually calculate what such commutators should be. Simi-

larly, although we’ve said that in the Schrödinger picture, states evolve in time according to

| (t)i = U(t)| (0)i, we haven’t given any way to work out what the action of the generator

H on a state should actually be.

To do so, we must specify the dynamics: we must provide a relation H = H(X,P)

giving H in terms of the other operators whose commutators we already understand. The

simplest (non-trivial) such relation is32

H =
1

2m
P2 (4.82)

32Note that this is the first time we’ve pinned ourselves down to a non–relativistic theory. Up to this

point, everything we’ve said holds good in relativistic quantum mechanics and, suitably interpreted, also

in quantum field theory. In the lectures we studied translations and rotations, but in the first problem

set you’ll extend this to also consider Galilean boosts and will show that the non–relativistic Hamiltonian

is compatible with the Galilean algebra. If one instead wishes to study a relativistic version of quantum

theory, one starts by finding unitary operators representing the action of the Poincaré group R3,1 oSO(3, 1)
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where m is a constant with dimensions of mass. Equation (4.82) relates how a state evolves

in time (via H) to how its location is translated through space (via P); in other words, it’s

telling us something about how particles move! In particular, with this form of Hamiltonian

the di↵erence between the expected location of a state | i at an initial time and a short

time �t later is

h |U�1(�t)XU(�t)| i � h |X| i =
i

~ �t h |[H,X]| i + O(�t2)

=
�t

m
h |P| i + O(�t2) .

(4.83)

In the limit �t ! 0 we see that the expected velocity of the particle is h |P| i/m. Equiv-

alently, since this is true for all | i 2 H, we can write

d

dt
X(t) =

P(t)

m
(4.84)

in the Heisenberg picture. Furthermore, since [H,P] = 0 for this Hamiltonian, P(t) = P(0)

and all states travel in uniform motion.

In the real world, we observe that particles do not always travel with constant velocities:

they may slow down, speed up, or change direction as they encounter various obstacles.

These obstacles are typically located at various di↵erent points in space. To allow for this,

we generalise our dynamical relation (4.82) to

H =
1

2m
P2 + V (X) . (4.85)

The first term on the right is the kinetic term and is the contribution to the Hamiltonian

due to the state’s travelling through space. The second, potential term is the contribution

due to the state’s location. This familiar form is still a very special case of the general

statement H = H(X,P) and later in the course we’ll meet examples of Hamiltonians that

don’t fit this form.

Repeating the calculation of (4.84) we still find that dX(t)/dt = P(t)/m, but now

[H,P] 6= 0 so the rate of motion through space will not always be the same. Rather,

using (4.80), the Heisenberg picture operators obey

d

dt
P(t) =

i

~ [H,P(t)] = �rV (t) , (4.86)

where rV (t) = U�1(t) (@V /@X) U(t) = �rV (X(t)). Thus the motion slows down or

speeds up according to the gradient of V (X).

Most of our common intuition about momentum comes from equation (4.86). We ‘feel’

that a tennis ball travelling with a certain speed has less momentum than a cannonball

travelling with the same speed, and less than the same tennis ball travelling faster, because

of special relativity. The relation (4.82) between H and P does not respect the commutation relations

appropriate for Poincaré symmetry, but of course the dynamical relation H2 = c2P2 + m2c4 does. The

di�culty with relativistic quantum mechanics lies not with symmetries, but with interactions. The proper

treatment of these requires Quantum Field Theory, a far deeper subject.
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we’ve known from an early age that it will cause us less damage to stand in the way of the

first tennis ball than either of the other two. This is really a statement about what our

unfortunate bodies will have to do in order to bring these projectiles to rest (or how much

e↵ort we will have to exert to launch them in the first place). In other words, our intuitive

notion of momentum is built on a feeling for the energy our body will gain as we slow the

projectile down during the impact. This energy then excites the atoms that ultimately make

up our nerves, muscles and bones, becoming dissipated through our bodies. Ultimately,

it is the dynamical relation between the Hamiltonian and other operators that justifies us

identifying the operator P/~ — by definition, the generator of translations — with our

pre-existing notion of momentum (in units of ~). Only after we specify our dynamics do

commutation relations such as [Xi, Pj ] = i~ �ij tell us, via Born’s 2nd postulate of QM, that

a particle cannot simultaneously be in a state of well-defined position and of well-defined

momentum.

We’ll often find it useful to write the kinetic term in a slightly di↵erent form. Keeping

careful track of the operator ordering, you’ll show in the problem sets that

L2 = (X ⇥ P) · (X ⇥ P) = X2
�
P2 � P 2

r

�
, (4.87)

where for X̂ = X/|X|,
Pr =

1

2

⇣
X̂ · P + P · X̂

⌘
(4.88)

is the radial momentum operator. Consequently, we can write the Hamiltonian (4.85) in

terms of the generator of circular translations and the radial momentum operator Pr as

H =
P 2
r

2m
+

1

2mX2
L2 + V (X) (4.89)

where we note that [L,X2] = 0, so the order of the operators in the second term is

irrelevant provided we keep X2 together as a composite operator. (In particular, in the

position representation, X2 acts as multiplication by x2 = r2, which is certainly una↵ected

by translation in a circle.) Most of our intuitive feeling about angular momentum — mine

comes from happy childhood hours spent on merry-go-rounds — is encapsulated in this

relation between the Hamiltonian and L2. Again, it’s the form of the Hamiltonian which is

the basis of our identification of the generator L/~ of circular transformations with angular

momentum (in units of ~).

4.5.1 Symmetries and Conservation Laws

One of the immediate uses of the Heisenberg picture is to deduce a relation between sym-

metries of the Hamiltonian and conserved quantities33. If it happens that an operator Q

commutes with the Hamiltonian, then it also commutes with e�iHt/~, so the Heisenberg

picture operator

Q(t) = U�1(t) Q U(t) = U�1(t) U(t) Q = Q , (4.90)

33Those of you taking the Classical Dynamics course will see a corresponding relation in Hamilton’s

approach to classical physics.
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coinciding with the Schrödinger operator for all t. Infinitesimally, provided Q has no

explicit time dependence, this is

d

dt
Q(t) =

i

~ [H, Q(t)] =
i

~U�1(t) [H, Q] U(t) = 0 . (4.91)

Operators that are time independent even in the Heisenberg picture are said to be con-

served. We’ve shown that conserved operators are just those that commute with the Hamil-

tonian.

Suppose we prepare a particle to be in an eigenstate of some conserved operator at

time t = 0, so Q| (0)i = q| (0)i. Then at any later time we have

Q| (t)i = Q U(t)| (0)i = U(t) Q| (0)i = q U(t)| (0)i = q| (t)i (4.92)

so our particle remains in an eigenstate of Q at all subsequent times (provided the state

evolves according to the TDSE). For this reason, it’s usually sensible to expand our states

in a basis of eigenstates of a maximal set of conserved operators, rather than a maximal

commuting set of any old operators. We label the states in this basis by their corresponding

eigenvalues, because the same labelling will remain valid at subsequent times. For example,

provided H has no explicit time dependence34 [H, H] = 0 trivially, so the Hamiltonian itself

is always conserved, and it is often useful to work in a basis of energy eigenstates.

By far the most important source of conserved quantities is symmetries of the Hamil-

tonian. These are transformations that leave the Hamiltonian invariant. We’ve seen that

a generic unitary operator U(✓) = e�i✓T representing some transformation of space on H
acts on operators as in equation (4.14). In particular, its action on the Hamiltonian is

H 7! U�1(✓)HU(✓) . (4.93)

If the Hamiltonian is invariant under this transformation – i.e., if the transformation is a

symmetry – then

U�1(✓)HU(✓) = H , (4.94)

or equivalently

[T, H] = 0 (4.95)

for an infinitesimal symmetry transformation, where T is the Hermitian generator. This is

exactly the same condition (4.91) we had for the generator T to be conserved, so symmetries

of the Hamiltonian correspond to conserved quantities35.

For example, if the Hamiltonian is translationally invariant then [P, H] = 0, so for

such Hamiltonians, momentum will be conserved. Note that it’s not necessary for the

Hamiltonian to be independent of each particle’s position xa if H is to be translationally

34Even if the Hamiltonian does contain explicit time dependence, for example because it describes the

dynamics of a charged particle in a varying electric field, [H(t), H(t)] = 0 trivially. However, [H(t0), H(t)]

may not vanish as the form of the Hamiltonian itself changes.
35If you’re taking the Classical Dynamics or Integrable Systems courses, you’ll meet the corresponding

statement in classical mechanics in the guise of Nöther’s theorem.
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invariant, so long as any potential term V (xa �xb) depends only on the relative positions.

Similarly, if the Hamiltonian is rotationally invariant then [J, H] = 0 so angular momentum

will be conserved. In this case, Jz, J2 and H form a set of mutually commuting operators,

so we can expand a general state in a basis {|n, `, m, . . . i} where the labels (n, `, m) refer to

the eigenvalues of H, J2 and Jz. We’ve left open the possibility that our states have further

conserved properties, indexed by further labels. These will often contain information about

the ‘internal’ state of our system.

4.6 Parity

Not all transformations are continuous. In physics, the most prominent example of a

discrete transformation is the parity transformation P, acting on R3 as P : x 7! �x. Since

det(P) = �1, this is di↵erent from a rotation, so may have consequences that cannot be

deduced by considering only rotations.

On Hilbert space, parity transformations will still be represented by a unitary operator,

but this operator will no longer involve a parameter that may be taken infinitesimally

small. Consequently there’s no generator associated with parity transformations. Calling

the unitary parity operator ⇧, we have

⇧�1X⇧ = PX = �X (4.96)

as its defining property. Multiplying through on the right by ⇧, we can also write this as

{⇧ ,X} = ⇧X + X⇧ = 0 . (4.97)

where the bracket {A, B} is sometimes called the anticommutator of A and B. Translating

through a and then applying the parity operator P : R3 ! R3 is the same as first applying

P, then translating through �a, so

⇧�1U(a)⇧ = U(�a) , (4.98)

so that the momentum operator also anticommutes with the parity operator: ⇧�1P⇧ =

�P. More generally, if V is any operator that tranforms as a vector under rotations, we

say V is a vector operator if also

⇧�1V⇧ = �V , (4.99)

so that {⇧, V } = 0.

If instead

⇧�1V⇧ = +V (4.100)

or equivalently [⇧,V] = 0, then V is a pseudovector operator (provided it transforms

appropriately under rotations). The most prominent example of a pseudovector operator

is the rotation generator J: since the parity tranformation P acts on R3 as �I3⇥3, rotations

obey R(↵)P = PR(↵), or P�1R(↵)P = R(↵). This gives

⇧�1U(↵)⇧ = U(↵) (4.101)
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for the parity and rotation operators in Hilbert space, or ⇧�1J⇧ = J for the rotation

generator. Likewise, the orbital angular momentum operator obeys

⇧�1L⇧ = ⇧�1(X ⇥ P)⇧ = (⇧�1X⇧) ⇥ (⇧�1P⇧) = (�)2X ⇥ P = +L (4.102)

so is a pseudovector as in classical mechanics. It follows that the spin operator S = J � L

is also a pseudovector.

Similarly, operators S that are invariant under rotations are scalar operators if in addi-

tion ⇧�1S⇧ = S so that they are unchanged under parity, and are pseudoscalar operators if

instead ⇧�1S⇧ = �S. (Notice that the signs for scalars and pseudoscalars are the opposite

way round to those for vectors and pseudovectors.) As usual, the parity of a system will be

conserved if [H, ⇧] = 0. As a simple example, if our system is governed by the dynamical

relation H = P2/2m + V (X) where the potential is an even function, then

⇧�1H⇧ =
1

2m
(⇧�1P⇧) · (⇧�1P⇧) + ⇧�1V (X)⇧

=
P2

2m
+ V (⇧�1X⇧)

=
P2

2m
+ V (X) = H ,

(4.103)

so parity is conserved for such Hamiltonians.

Parity transformations form the group G = Z2, since carrying out a non-trivial parity

transformation twice just brings us back to where we were. Thus P2 = 1R3 and applying

our homomorphism shows that

⇧2 = 1H (4.104)

for the parity operator on Hilbert space, too. Now suppose that | i is an eigenstate of ⇧

with eigenvalue ⌘. Then36

| i = ⇧2| i = ⌘⇧| i = ⌘2| i (4.105)

so the spectrum of ⇧ is just {+1, �1}.

If |vi is an eigenstate of a vector operator V, with V|vi = v|vi, then from (4.99), the

parity reversed state |v0i = ⇧|vi obeys

V|v0i = V⇧|vi = �⇧V|vi = �v⇧|vi = �v|v0i (4.106)

so is also an eigenstate of V, but with opposite sign eigenvalue. In particular, ⇧|xi is an

eigenstate of the position operator with eigenvalue �x, so

⇧|xi = c| �xi . (4.107)

for some constant c 2 C. This is not an eigenvalue equation, because the rhs involves

| �xi rather than |xi. However, we can immediately identify c with ⌘ because applying ⇧

a second time gives37

|xi = ⇧2|xi = c2|xi , (4.108)

36This argument is adequate for our course, and leads to a correct conclusion, but it hides a number of

subtleties. See e.g. Weinberg The Quantum Theory of Fields, vol. 1, section 4.7 for a fuller discussion.
37Note that it is important here that ⇧|xi = c|�xi for all values of x.
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so again c2 = 1 and c = ±1. More generally, given any state | i, the wavefunction of the

parity transformed state ⇧| i is

hx|⇧| i = ⌘�1 h�x| i = ⌘  (�x) , (4.109)

so, up to a sign, the wavefunction of the new state takes the same value at x as the original

one did at �x.

For example, suppose that for some particle, |xi obeys ⇧|xi = |�xi, with ⌘ = +1.

Recalling from 1B QM that the spherical harmonics Ym

`
(x) obey Ym

`
(�x) = (�1)` Ym

`
(x),

we see that if this particle is in the state |n, `, mi whose wavefunction hx|n, `, mi =

Rn(|x|) Ym

`
(x) (where the radial part Rn(r) of the wavefunction determines the energy

level n), applying the parity operator gives

hx|⇧|n, `, mi = h�x|n, `, mi = (�1)`hx|n, `, mi (4.110)

and consequently ⇧|n, `, mi = (�1)` |n, `, mi.

Parity transformations act in a more complicated way on macroscopic objects, or

systems with some internal structure. This is clear classically: the parity transformation of

a book initially located at x is not simply a book located at �x, but rather a mirror image

(simultaneously left–right, up–down and front–back) of the book. As with the distinction

between J and L, for a macroscopic body we might hope to account for this by defining a

separate parity operator for each constituent particle. However, it turns out that subatomic

particles such as the photon or pion have their own ‘intrinsic’ parities. Thus, whether a

given ⇧-eigenstate has ⌘ = +1 or ⌘ = �1 depends not only on details of the spatial

wavefunction, but also on the species of particle the state describes.

We’ll explore intrinsic parity further in section 7.4, but as an example of its use,

consider transitions between di↵erent energy levels of an atom. These are usually mediated

by electromagnetic interactions: during such a transition, the atom’s electrons either emit

or absorb a photon whose energy ~! is equal to the di↵erence in energy �E between

the two levels involved in the transition. As we’ll study in more detail later, when the

corresponding wavelength is much larger than the typical size of the atom, the transition

rate �(i ! f) is given by

�(i ! f) =
4(�E)3

c3~4
|hf |D|ii|2 , (4.111)

where |ii and |fi are the initial and final states of the atom, and D =
P

eaXa is the

operator corresponding to the atom’s electric dipole moment. (The sum runs over all the

electrons in the atom.) Reversing the parity of space a↵ects all the electrons equally, so

the parity operator obeys ⇧�1Xa⇧ = �Xa for each Xa. Thus ⇧�1D⇧ = �D.

Now suppose that the initial and final states of the atom are eigenstates of ⇧, with

eigenvalues ⌘i and ⌘f , respectively. Then38

⌘i ⌘f hf |D|ii = hf |⇧�1D⇧|ii = �hf |D|ii (4.112)

38Note that since the parity operator ⇧ is unitary its quantum numbers ⌘ behave multiplicatively, whilst

those of a Hermitian generator of a continuous symmetry (such as P) behave additively.
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Figure 6: Most atomic transitions are due to the absorption or emission of a photon from

a single electron in the atom. The photon’s angular frequency ! = �E/~.

so the amplitude for the transition will vanish unless the initial and final atomic states have

opposite parity, ⌘i ⌘f = �1. In the most common case, just a single electron is involved

in the transition and in this case equation (4.110) shows that ⌘i ⌘f = (�1)`i+`f , where `i,f
are the total orbital angular momentum quantum numbers of the initial and final states

of this electron. Thus, in any radiative atomic transition involving just a single electron,

the orbital angular momentum quantum number ` must change by an odd number. If our

initial and final states kept track of the photon as well as the atom, we’d be able to say

overall parity is conserved in such transitions if we assign an intrinsic parity �1 to the

photon that is emitted or absorbed in the transition. (The intrinsic parity of the photon

is related to the fact that the electromagnetic vector potential A, whose quantum version

provides the description of the photon, indeed transforms as a vector, not a pseudovector.)

In fact, [H, ⇧] = 0 holds in general for particles travelling in the presence of any type of

electromagnetic interaction.

Having [H, ⇧] be zero means that if at time t = 0 you set up a system to be a

mirror image of another system, then their subsequent evolution will be identical in the

sense that if you observe them at a later time, they will still be mirror images of one

another. Hence, when [H, ⇧] = 0 it is impossible to tell whether a system is being observed

directly or through a mirror. One of the major surprises of twentieth–century physics was

an experiment by Wu et al. in 1957, which showed that in fact the Hamiltonian of our

Universe has [H, ⇧] 6= 0 — you can see things in a mirror that are impossible in our World!
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