Tying things together: Knots in Maths, Physios andBiology

David Skinner, Trinity Harris - Westminster 9/9/14

Fis UNIVERSITYOF CAMBRIDGE

Department of Applied Mathematics and Theoretical Physics (DAMTP)

People around the world have been fascinated by knots for well over a thousand years

They're interesting for the same reason they're useful: knots are difficult to untangle.

For a mathematician, a knot is a continuous loop that sits inside 3d space in a perhaps complicated way

An obvious question is to decide whether two different looking pictures in fact represent the same knot

Modern knot theory really got going around I867 when Lord Kelvin suggested that chemical elements could be interpreted as 'vortices in the ether'

- Stability of matter knots are difficult to untangle
- Variety
there are lots of different knots
- Emission Spectra
vibrations of the knot

Peter Guthrie Tait decided

 he'd try to classify different knot types

Peter Guthrie Tait decided he'd try to classify different knot types

How should the list be organised?

Tait organised knots in terms of their crossing index c[K]: the smallest number of crossings of any plane projection

$$
c[\text { unknot }]=0
$$

c[trefoi] $=3$

The crossing index is an example of a knot invariant

- If two knots have different crossing indices, they can't be smoothly deformed into eachother
- Different knots can have the same crossing index

Not only does the crossing index fail to tell all knots apart, it can also be very difficult to compute.

For example, we can combine two knots K_{1} and K_{2} to make a bigger one, called $K_{1} \# K_{2}$

Not only does the crossing index fail to tell all knots apart, it can also be very difficult to compute.

For example, we can combine two knots K_{1} and K_{2} to make a bigger one, called $K_{1} \# K_{2}$

No one knows whether $c\left[K_{1} \# K_{2}\right]=c\left[K_{1}\right]+c\left[K_{2}\right]$ in general!

A more sophisticated 'list' is provided by labelling each knot by a polynomial instead of just one number

$$
1-2 x+9 x^{4}
$$

e.g.

$$
\frac{7}{x^{3}}+\frac{2}{x}-4 x+x^{2}+8 x^{5}
$$

Different polynomials are supposed to correspond to different knots.

We need a rule to decide which polynomial to attach to which knot

I) Pick a starting point

2) Choose a skein relation

L_{+}
L_{-}
L_{0}
John Conway chose $C_{L_{+}}-C_{L_{-}}=x C_{L_{0}}$ to define the Alexander-Conway Polynomial
Vaughan Jones chose

$$
\frac{1}{x} J_{L_{+}}-x J_{L_{-}}=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right) J_{L_{0}}
$$

and defined the Jones Polynomial

To see how this works, let's look at an example:

To see how this works, let's look at an example:

$C_{\text {trefoil }}$
$=$

C_{A}

$x \times C_{B}$

To see how this works, let's look at an example:

$C_{\text {trefoil }}$

1

$x \times C_{B}$

To see how this works, let's look at an example:

$C_{\text {trefoil }}$

To see how this works, let's look at an example:

$C_{\text {trefoil }}$

C_{B}

$$
=
$$

C_{D}

$x \times C_{B}$

$x \times C_{E}$

To see how this works, let's look at an example:

$C_{\text {trefoil }}$

C_{B}

$$
=
$$

C_{D}

$x \times C_{B}$

$x \times 1$

To see how this works, let's look at an example:

$C_{\text {trefoil }}$

C_{B}

$=$

C_{D}

$x \times C_{B}$

$x \times 1$

To see how this works, let's look at an example:

$C_{\text {trefoil }}$

C_{B}

$=$

$=$
C_{D}

$+$
$x \times C_{B}$

$x \times 1$

To see how this works, let's look at an example:

So the Conway polynomial for the trefoil $C_{\text {trefoil }}=1+x^{2}$

If you want to have a go at defining your own knot polynomial, there's just one thing you need to check:

Type I

Type II

Type III

The Reidemeister moves are ways to change your knot picture - you have to check your polynomial doesn't change when you do a Reidemeister move (it's not easy!)

The Alexander-Conway Polynomial behaves very nicely when knots are combined
$C_{K_{1} \# K_{2}}(x)=C_{K_{1}}(x) \cdot C_{K_{2}}(x)$
(so too does the Jones Polynomial)

The Alexander-Conway Polynomial behaves very nicely when knots are combined
$C_{K_{1} \# K_{2}}(x)=C_{K_{1}}(x) \cdot C_{K_{2}}(x)$
(so too does the Jones Polynomial)

In fact, just like the positive integers, knots
obey a beautiful 'prime factorization theorem':
Any knot can be written as a combination (under \#) of prime knots, in a way that's unique up to ordering.

However, even these knot polynomials still can't distinguish all knots

The Alexander-Conway polynomial of each of these knots is I, so it can't even tell they're knotted at all!

The most powerful knot invariants come from a surprising direction - Quantum Field Theory

The most powerful knot invariants come from a surprising direction - Quantum Field Theory

In classical physics, Newton taught us to use $F=m a$ to work out how a particle travels from A to B

In quantum physics, we instead use the Feynman path integral

$$
\langle A \mid B\rangle=\int_{\text {paths }} \mathcal{D} x \mathrm{e}^{\mathrm{i} \mathrm{~S}}
$$

Classically, once we know the forces acting, a particle's path is uniquely determined

Classically, once we know the forces acting, a particle's path is uniquely determined

Classically, once we know the forces acting, a particle's path is uniquely determined

In quantum theory, there's always a chance for it to take any path, no matter how crazy

Exactly what the probability is for any given process depends on the forces acting

By changing what you think the force may be, you change the predicted outcome of experiments

Physicists at CERN use this to determine the structure of subnuclear forces

Usually, the force between two charges decreases as the charges move apart

Coulomb's law $\mathrm{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathrm{r}}$ states that the force
e.g. between two electrical charges falls as the inverse square of the distance between them

Usually, the force between two charges decreases as the charges move apart

Coulomb's law $\mathrm{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}$ states that the force e.g. between two electrical charges falls as the inverse square of the distance between them

But there are exotic theories in which distance doesn't matter - only whether the particle travels in a knot!

The simplest version of this theory is actually a cousin of electomagnetism, and is important in the Quantum Hall Effect

The simplest version of this theory is actually a cousin of electomagnetism, and is important in the Quantum Hall Effect

It also computes classical link invariants such as
Gauss linking

The next simplest version is a relative of the weak nuclear force responsible for much of radioactivity

The next simplest version is a relative of the weak nuclear force responsible for much of radioactivity

It computes the Jones Polynomial

$$
J_{K}=\int \mathrm{D} A \mathrm{e}^{-S_{\mathrm{CS}}[A]} \operatorname{tr}_{R} \operatorname{Hol}_{K}[A]
$$

The next simplest version is a relative of the weak nuclear force responsible for much of radioactivity

It computes the Jones Polynomial

$$
J_{K}=\int \mathrm{D} A \mathrm{e}^{-S_{\mathrm{CS}}[A]} \operatorname{tr}_{R} \operatorname{Hol}_{K}[A]
$$

There are more complicated versions still, which compute knot invariants such as the HOMFLYPT Polynomials, Quantum Groups, Khovanov Homology...

The most powerful of these - Khovanov homology - is finally believed to distinguish all knots

Recently, knots have also begun to play a role in chemistry

Chemists can now design new complex molecules that are knotted.

Recently, knots have also begun to play a role in chemistry

Chemists can now design new complex molecules that are knotted.

Could the topological properties of the knot affect the chemical properties of the molecule?

The trefoil knot is chiral. The Jones polynomials of the two chiralities are different - they are different knots

The chirality of chemical isomers is extremely important

The chirality of chemical isomers is extremely important

$$
\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}
$$

Nature herself provides us with a rich source of knotted complex molecules

The human genome is about Im long, yet is curled up inside a nucleus of diameter about a micrometer

Nature herself provides us with a rich source of knotted complex molecules

The human genome is about Im long, yet is curled up inside a nucleus of diameter about a micrometer

Knots and tangles often form, particularly during replication

Nature herself provides us with a rich source of knotted complex molecules

The human genome is about Im long, yet is curled up inside a nucleus of diameter about a micrometer

Knots and tangles often form, particularly during replication

The interplay between knot theory \& molecular biology is becoming an increasingly active field of research

Most bacterial genomic DNA is topologically a circle

After replication, the daughter DNA molecules are typically linked

Most bacterial genomic DNA is topologically a circle

After replication, the daughter DNA molecules are typically linked

A certain type of enzyme - a topoisomerase knows about the DNA topology! Its job is to set the daughters free

Many modern antibiotics work by inhibiting the action of these topoisomerases. Without them, the bacterium aborts

I said at the beginning there'd be no exam on this talk.

I said at the beginning there'd be no exam on this talk. I lied.

I said at the beginning there'd be no exam on this talk. I lied.

I said at the beginning there'd be no exam on this talk. I lied.

You have the rest of your lives to do it... Good luck!

