THE

 OF SCATTERING AMPLITUDES

A scattering process is a description of what happens when stuff bumps into other stuff

See what comes out

> time

Choose what to send in

Rutherford discovered the

 atomic nucleus by scattering α-particles off thin gold foil
"It was quite the most incredible event that has ever happened in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you."

Most of what we know about the Standard Model - our best theory of particle physics - has been gleaned from scattering experiments

Fermions Matter \square Quarks Leptons

Bosons
Force Carriers
Gauge bosons
Higgs boson

Particles of the Standard Model

Eberhard Zeidler
Quantum Field Theory I Basics in Mathematics and Physics

SSpringer

Relativistic
Quantum Physics
Fitem Atransed Quantum
Mechanize to litioductory Wechniat to Introductary
Quantam Finda Thery

Tommy Ohlsson

You draw all diagrams with the same external

 lines; Feynman then tells you the amplitude

We teach these rules to our Part III students

- the reason they work was explained by Freeman
Dyson in the late 1940s

Result of a Feynman diagram calculation for 2 particles producing a third in a QFT (YM):

$$
\frac{\langle i j\rangle^{4} \delta^{4}\left(\sum p_{i}\right)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$$
\frac{\langle i j\rangle^{4} \delta^{4}\left(\sum p_{i}\right)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Why is the answer so simple?

TWISTOR THEORY

Twistors were developed in the 1970s by Penrose, intended as a new framework for physics He wished to promote causal relationships between events above the events themselves

Thanks to Atiyah, Hitchin, Ward \& many others they quickly found application in mathematics, but physics was slow to catch on...

Space-time

Twistor space

Point in space-time
Separation is light-like
$\leftrightarrow \quad$ Sphere in twistor space \leftrightarrow Two spheres intersect

Physical objects are encoded in global properties of objects in twistor space

Physics is not described by point-like objects on twistor space: no "particles"

Replacing many Feynman diagrams with one single object is common in string theory, but at a high price:

10 dimensions

Infinitely many new types of particle

In late 2003, Witten realized that a string theory in twistor space was just what was needed

Only 3+1 dimensions
Only particles we've seen

