Twistor strings for $\mathcal{N}=8$ supergravity

Twistor space is $\mathbb{C P}^{3}$, described by co-ords $Z^{a} \sim r Z^{a}$

$\mathbb{C P}^{1}$ in twistor space
Two lines intersect
$\stackrel{\leftrightarrow}{\leftrightarrow}$
Point in space-time
Separation is null

$$
\mathrm{X}^{a b}=Z_{1}^{[a} Z_{2}^{b]} \quad \mathrm{Y}^{c d}=Z_{3}^{[c} Z_{4}^{d]} \quad \epsilon(1,2,3,4) \propto(x-y)^{2}
$$

To define a metric, not just a conformal structure, we must also choose an infinity twistor $I^{a b}=I^{[a b]}$

For flat space-time the infinity twistor represents a line. In terms of the coords

$$
\begin{aligned}
Z^{a} & =\left(\mu^{\dot{\alpha}}, \lambda_{\alpha}\right), \\
I^{a b} & =\left(\begin{array}{cc}
\epsilon^{\dot{\alpha} \dot{\beta}} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and is the line $\lambda_{\alpha}=0$
I breaks conformal invariance and sets a mass scale

$$
(x-y)^{2}=\frac{\epsilon(1,2,3,4)}{\langle 12\rangle\langle 34\rangle} \quad\langle i j\rangle:=\epsilon_{a b c d} I^{a b} Z_{(i)}^{c} Z_{(j)}^{d}
$$

To describe (self-dual) gravity, we deform the \mathbb{C}-structure

$$
\bar{\partial} \longrightarrow \bar{\partial}+V \quad V \in H^{0,1}\left(\mathbb{P} \mathbb{T}, T_{\mathbb{P T}}\right)
$$

Arbitrary deformations give s.d. conformal gravity. To yield a vacuum Einstein metric, V must be Hamiltonian

$$
V=\{h,\}=I^{a b} \frac{\partial h}{\partial Z^{a}} \frac{\partial}{\partial Z^{b}}
$$

w.r.t. the Poisson bracket defined by the infinity twistor
$h \in H^{0,1}(\mathbb{P} \mathbb{T}, \mathcal{O}(2))$ is the twistor space wavefunction of a positive helicity graviton. Extends to $\mathcal{N}=8$ multiplet

$$
h(Z, \chi)=h(Z)+\chi^{A} \psi_{A}(Z)+\cdots+(\chi)^{8} \tilde{h}(Z)
$$

The infinity twistor is also important in governing the structure of scattering amplitudes

When written on twistor space, the n-particle, g-loop amplitude with $n_{ \pm}$external gravitons of helicity ± 2 is a monomial with

$$
\underset{\frac{\pi}{\tau}}{n_{+}+g-1} \text { powers of } I^{a b} \leftrightarrow[,]
$$

- g-loop, n-pt Feynman diagram $\propto \kappa^{n+2 g-2}$. In twistor space, each κ is accompanied by an infinity twistor
- parity exchanges [,] with \langle,
- conformal breaking is made explicit

All $\mathbf{M H V}$ tree amplitudes in $\mathcal{N}=8$ sugra are given by

$$
\mathcal{M}_{n}^{\mathrm{MHV}}=\delta^{4 \mid 16}\left(\sum_{i=1}^{n} p_{i}\right) \frac{\|\mathrm{H}\|_{r s t}^{i j k}}{\langle i j\rangle\langle j k\rangle\langle k i\rangle\langle r s\rangle\langle s t\rangle\langle t r\rangle}
$$

on momentum space, where H is the symmetric matrix

$$
\mathrm{H}_{i j}=\frac{[i j]}{\langle i j\rangle} \quad \mathrm{H}_{i i}=-\sum_{j \neq i} \mathrm{H}_{i j} \frac{\langle p j\rangle\langle q j\rangle}{\langle p i\rangle\langle q i\rangle}
$$

[Hodges]
Permutation symmetric without explicit sum!

- determinant suggests correlator of fermion bilinears
$\operatorname{rk}(\mathrm{H})=(n-3)$ and $\|\mathrm{H}\|_{r s t}^{i j k}$ is an $(n-3)$ minor
- provides required number $\left(n_{+}-1\right)$ of [,] brackets
-suggests fixing of some residual fermionic symmetry

The worldsheet theory

Like the Berkovits - Witten twistor string, the model is based on holomorphic maps to twistor space, here with $\mathcal{N}=8$ supersymmetry

$$
S=\int_{\Sigma} Y_{I}(\bar{\partial}+\bar{A}) Z^{I}+\cdots
$$

Additional fields needed to:

- introduce dependence on infinity twistor
- provide worldsheet version of Hodges' matrix
- cancel anomalies ($\mathbb{C P}^{3 \mid 8}$ is not sCY)

Extend Σ to a 1|2-dimensional supermanifold $\mathrm{X} \rightarrow \Sigma$, described locally by coords $\left(x, \theta^{a}\right)$

Vectors $\mathcal{V}^{a}(x, \theta) \frac{\partial}{\partial \theta^{a}}$
in fermionic directions obey $\mathfrak{s l}(1 \mid 2)$ algebra

- four bosonic \& four fermionic generators
- maximal bosonic subalgebra $\mathfrak{g l}(2)_{R} \cong \mathfrak{g l}(1) \oplus \mathfrak{s l}(2)$
twist by $\mathfrak{g l}(1)$ scaling of target
θ^{a} have conformal weight $-1 / 2($ as in RNS $) \&$ charge +1

The matter \& ghost fields are

$$
\begin{aligned}
& \mathcal{Z}^{I}(x, \theta)=Z^{I}(x)+\theta^{a} \rho_{a}^{I}(x)+\theta^{2} Y^{I}(x) \\
& C^{a}(x, \theta)=\gamma^{a}(x)+\theta^{b} N_{b}^{a}(x)+\theta^{2} \nu^{a}(x) \\
& B_{a}(x, \theta)=\mu^{a}(x)+\theta^{b} M_{a b}(x)+\theta^{2} \beta_{a}(x)
\end{aligned}
$$

In the gauge $\bar{A}_{\mathfrak{s l}(1 \mid 2)}=0$, the worldsheet action is

$$
S=\int_{\mathrm{X}} \mathrm{~d}^{1 \mid 2} x\langle\mathcal{Z}, \bar{\partial} \mathcal{Z}\rangle+B_{a} \bar{\partial} C^{a}
$$

while the (classically) nilpotent BRST operator is

$$
Q=\oint \mathrm{d}^{1 \mid 2} x\left\langle\mathcal{Z}, C^{a} \partial_{a} \mathcal{Z}\right\rangle-\frac{1}{2} B_{a}[C, C]^{a}
$$

- BRST operator depends on the infinity twistor \langle, breaking conformal invariance

Gauge anomalies cancel iff twistor space has $\mathcal{N}=8$ supersymmetry

$$
\begin{aligned}
& \text { GL(1) anomaly: } \\
& \sum_{i}(-1)^{F_{i}} q_{i}^{2}=(4-\mathcal{Y Z})+\underset{\beta \gamma}{2}+2_{\mu \nu}^{2} \\
& \text { SL(2) anomaly: } \\
& \sum_{i} \frac{(-1)^{F_{i}}}{\left|\operatorname{Aut\Gamma } \Gamma_{i}\right|} \operatorname{tr}_{R_{i}}(t \cdot t)=\frac{3}{4}(\mathcal{N}-8)
\end{aligned}
$$

- involves both ghosts and matter; cancellation not solely due to supersymmetry of target space

Positively charged fields have zero modes:

$$
\begin{array}{ll}
\mathcal{Z}^{I}: d+1-g & \text { selection rule relating } \\
& \text { MHV level to degree of curve } \\
& n_{-}=d+1-g
\end{array}
$$

$$
\gamma^{a}: d+2-2 g
$$

zero modes of bosonic ghost fix residual fermionic symmetry

$$
\# \gamma_{\mathrm{zm}}=n-\#[,]
$$

$\mu_{a}: d$
zero modes of bosonic antighost fermionic moduli (handle by PCOs)

$$
\# \mu_{\mathrm{zm}}=\#\langle,\rangle
$$

Path integral measure over all z.m. has no net charge

The total Virasoro central charge is

$$
c=\underset{Y Z}{2(4-\mathcal{N})}+\underset{\overline{\rho \rho} \rho}{(4-\mathcal{N})}+\underset{\beta \gamma}{22}-8-2=3(8-\mathcal{N})
$$

so also vanishes with $\mathcal{N}=8$ twistor target space (as do mixed Virasoro / gauge anomalies)

The worldsheet theory is thus some $c=0 \mathrm{CFT}$

- holomorphic, but not a TQFT. $T \neq\{Q, \cdot\}$
- include $b c$ ghosts and some other "internal" CFT with $c=26$. Not important at tree level, but presumably crucial for higher genus.

Matter vertex operators are similar to RNS string:

$$
c \delta^{2}(\gamma) h(Z) \quad \text { or } \quad U \equiv \int_{\Sigma} \delta^{2}(\gamma) h(Z)
$$

for 'fixed' vertex operators. Integrated operators are
$V \equiv \int \mathrm{~d}^{2} \theta h(\mathcal{Z})=\int_{\Sigma}\left[\frac{\partial h}{\partial Z}, Y\right]-\rho^{I} \frac{\partial}{\partial Z^{I}}\left[\bar{\rho}, \frac{\partial h}{\partial Z}\right]$
describing deformations of the worldsheet action

- h is the twistor wavefunction of an $\mathcal{N}=8$ graviton

Picture changing operators (associated to $\mu \mathrm{zm}$) are

$$
\Upsilon \equiv \prod_{a=1,2}\left[Q, \Theta\left(\mu_{a}\right)\right]=\delta^{2}(\mu)\langle\rho, Z\rangle \bar{\rho}_{I} Z^{I}+\cdots
$$

All tree-level amplitudes in $\mathcal{N}=8$ supergravity come from the $g=0$ twistor string correlator

[,] dependence lives here

$$
\begin{array}{r}
\left\langle c U_{1} c U_{2} c U_{3} \prod_{i=4}^{d+2} \int U_{i} \prod_{j=d+3}^{n} \int V_{j} \prod_{k=}^{d}\right. \\
\langle,\rangle \text { dependence from here }
\end{array}
$$

- 'fixed' vertex op
o integrated vertex op

Correlator of PCOs is independent of insertion points

$$
\left\langle\prod_{k=1}^{d} \Upsilon\left(x_{k}\right)\right\rangle=\mathrm{R}\left(\lambda_{\alpha}\right) \quad \begin{array}{ll}
\text { the resultant of the two } \lambda_{\alpha} \\
\text { components of } Z: \Sigma \underset{\text { [Cachazo] }}{\rightarrow}
\end{array}
$$

$\lambda_{\alpha}\left(x_{*}\right)=0$
for some $x_{*} \in \Sigma$
$\lambda_{\alpha}=0$ is the line I at infinity
The amplitude thus lives on holomorphic curves in $\mathbb{C P}^{3 \mid 8}-I$, the 'inside' of space-time
[Casali,DS; Cachazo,He,Yuan]

The remaining correlator of matter vertex operators

$\left\langle\prod_{k=1}^{d+2} \bar{\delta}^{\delta^{2}}(\gamma) h_{k} \prod_{\ell=\alpha+3}^{n}\left(\left[Y_{Y}, \frac{\partial h_{\ell}}{\partial Z}\right]+\rho \frac{\partial}{\partial Z}\left[\bar{\rho}, \frac{\partial h_{\ell}}{\partial Z}\right]\right)\right\rangle=\frac{\|\Phi\|_{1}^{r_{1} \cdots r_{d+2}}}{\left\|\omega_{j}\left(x_{r_{k}}\right)\right\| \| c_{l+2}} \|$
provides a worldsheet generalization of Hodges' matrix, but now valid for all \mathbf{N}^{k} MHV amplitudes

- $\Phi_{i j}=\frac{1}{x_{i j}}\left[\frac{\partial}{\partial Z_{i}}, \frac{\partial}{\partial Z_{j}}\right] \quad \Phi_{i i}=-\sum_{j \neq i} \Phi_{i j} \prod_{a=0}^{d} \frac{y_{a}-x_{j}}{y_{a}-x_{i}}$
$\bar{\rho} \rho$ contractions
YZ contractions
- $\left\{\omega_{i}(x)\right\}$ is a basis of the space of γ zero modes
- fixed vertex operators correspond to rows \& columns absent from $\|\Phi\|_{c_{1} \cdots c_{d+2}}^{r_{1} \cdots r_{d+2}}$

What do these determinants actually mean?

Rather than computing

$$
\left\langle\prod_{k=1}^{d+2} \delta^{2}(\gamma) h_{k} \prod_{\ell=d+3}^{n}\left(\left[Y, \frac{\partial h_{\ell}}{\partial Z}\right]+\rho \frac{\partial}{\partial Z}\left[\bar{\rho}, \frac{\partial h_{\ell}}{\partial Z}\right]\right)\right\rangle
$$

using the original free action, we can
instead compute

$$
\left\langle\prod_{k=1}^{d+2} \delta^{2}(\gamma) h_{k}(Z)\right\rangle
$$

using the nonlinear action

$$
S^{\prime}=\int_{\Sigma} Y_{I}\left(\bar{\partial} Z^{I}+I^{I J} \frac{\partial h}{\partial Z^{J}}\right)+\text { fermions }
$$

obtained by exponentiating an integrated vertex operator

Path integral over Y imposes $\bar{\partial} Z^{I}+\left\{h, Z^{I}\right\}=0$

- perform field redefinition to $Z^{\prime}(x)$, defined implicitly by

$$
\bar{\partial} Z^{\prime I}(x)=\bar{\partial} Z^{I}(x)+\left\{h, Z^{I}(x)\right\}
$$

- Jacobian provided by fermion path integral (c.f. Nicolai map)

Expanding $h\left(Z\left(Z^{\prime}\right)\right)$ in fixed vertex ops "grows a tree"

perturbative description of nonlinear graviton background [Adamo,Mason; Casali,DS] - Hodges determinant equivalent to sum over trees [Bern,Dixon,Perelstein,Rozkowsky; Nguyen,Spradlin,Volovich,Wen; Feng,He]

- form familiar from chiral bosonization

Combining all the ingredients, the $g=0$ twistor string is just the statement that
(all tree amplitudes in $\mathcal{N}=8$ supergravity are supported on degree d holomorphic maps
$\mathcal{M}_{n, d}=\int \frac{\prod_{a=0}^{d} \mathrm{~d}^{4 \mid 8} Z_{a}}{\operatorname{vol}(\mathrm{GL}(2))} \frac{\|\Phi\|_{c_{1} \cdots c_{d+2}}^{r_{1} \cdots r_{d+2}}}{\left\|\omega_{j}\left(x_{r_{k}}\right)\right\|\left\|\omega_{l}\left(x_{c_{m}}\right)\right\|} \mathrm{R}\left(\lambda_{\alpha}\right) \prod_{i=1}^{n} h_{i}\left(x_{i}\right) \mathrm{d} x_{i}$
to curved twistor space with infinity removed

- precisely agrees with a representation of the classical gravitational S-matrix discovered last year[Cachazo,DS]

Conclusions

I have presented an holomorphic twistor string that computes the classical S-matrix of maximal supergravity

- anomaly free when $\mathcal{N}=8$
- spectrum describes $\mathcal{N}=8$ graviton supermultiplet
- integrated vertex operators give maps to nonlinear graviton

There are many open questions

- proper coupling to worldsheet gravity? other states?
- behaviour at higher genus?
- relation to $\mathcal{N}=2$ superstring? ${ }^{\text {Berkovits,Ooguri,Siegel,Vafa] }}$
- relation to "gravity $=$ gauge \times gauge" $?^{[B e r n, C a r r a s c o, J o h a n s s o n ; ~} \begin{gathered}\text { c.f. Cachazo, Geyer] }\end{gathered}$
- MHV diagrams from target effective field theory?
- other backgrounds (e.g. boundary correlators in AdS_{4})?
-...

Thank you

