Examples Sheet I

1. Sirius A has an apparent visual magnitude $m_{\rm V}=-1.5$ and a spectral type A0V. Its distance is 2.7 pc. Calculate its luminosity and radius in solar units.

Sirius B is a binary companion to Sirius A. It has the same spectral type and $m_{\rm V}=8.5$. Calculate its luminosity and radius.

Measurements of the orbits of A and B give a binary period of 50 years, mass ratio $M_A/M_B=3$ and a semi major-axis of 8 seconds of arc.

Calculate the masses and mean densities of both components. Which star is the main-sequence star and what is the other?

[For an A0V spectrum you may assume $T_{\rm eff}=10{,}000\,{\rm K}$ and Bolometric Correction, $m_{\rm bol}-m_{\rm V}=-0.4$. An absolute bolometric magnitude $M_{\rm bol}$ of zero corresponds to a luminosity of $3.0\times10^{35}\,{\rm erg\,s^{-1}}$. For a binary orbit you may use the fact that the semimajor axis a, total mass M and period P are related by Kepler's law,

$$\left(\frac{a}{\text{au}}\right)^3 = \frac{M}{M_{\odot}} \left(\frac{P}{\text{years}}\right)^2.$$

2. In any equilibrium configuration prove that

$$\frac{d}{dr}\left(P + \frac{Gm^2}{8\pi r^4}\right) < 0,$$

where $m(r) = \int_0^r 4\pi r^2 \rho dr$. Deduce a lower limit for the central pressure P_c in terms of the stellar mass and radius. Evaluate the limit for the Sun.

3. Show that the gravitational energy of a spherically symmetric star is

$$\Omega = -4\pi \int_0^R \rho \frac{Gm}{r} r^2 dr.$$

Hence show that a polytrope of index n has

$$\Omega = -\frac{3}{5-n} \frac{GM^2}{R}.$$

The recombination energy of stellar matter is I per unit mass. Show that if the internal structure of a star corresponds to an $n = \frac{3}{2}$ polytrope total disruption of the star is energetically feasible if

 $R > \frac{3}{7} \frac{GM}{I}.$

Given that the ionization energy of a hydrogen atom is $13.6\,\mathrm{eV}$ estimate the maximum radius for a star of $1\,M_\odot$ and explain the existence of red giants.

4. By using the virial theorem, or otherwise, show that the period Π of spherically symmetric pulsations of a star satisfying $I = 4\pi \int_0^R r^4 \rho dr = kMR^2$ and $\Omega = -\eta GM^2/R$, where k and η are constants, is given by

$$\Pi = \left[\frac{3\pi k}{(3\gamma - 4)\eta G\bar{\rho}} \right]^{\frac{1}{2}},$$

where $\bar{\rho}$ is the mean density of the star.

Comment on the relation of Π to the free-fall time and the acoustic travel time from surface to centre.

5. If ρ decreases outwards, show that $m < \frac{4}{3}\pi r^3 \rho_c$.

Prove that $P_{\rm c} < \frac{1}{2}G \left(\frac{4}{3}\pi\right)^{\frac{1}{3}} \rho_{\rm c}^{\frac{4}{3}} M^{\frac{2}{3}}$.

Deduce that if $\beta = P_{\text{gas}}/P$, then

$$1 - \beta_{\rm c} \le 1 - \beta^*,$$

where beta* satisfies Eddington's quartic,

$$M = \left(\frac{6}{\pi}\right)^{\frac{1}{2}} \left[\left(\frac{R}{\mu_{\rm c}}\right)^4 \frac{3}{a} \left(\frac{1-\beta^*}{\beta^{*4}}\right) \right]^{\frac{1}{2}} G^{-\frac{3}{2}}.$$

Evaluate M for $1 - \beta^* = 0.2, 0.5, 0.8$ and comment on what you find.