
Part Ib Variational Principles: A very short version1

1 Extremising Functions (Hessian and Lagrange Multipliers)

For a suitably differentiable function f : Rn → R, the point a ∈ Rn is stationary if ∇f(a) = 0. The Hessian matrix
is given by Hij = ∂2f

∂xi∂xj
. The Hessian evaluated at x = a can be used to determine the nature of the stationary

point:

• all eigenvalues positive: (local) minimum
• all eigenvalues negative: (local) maximum
• some positive, some negative: saddle
• some eigenvalue zero: may need higher derivatives

In R2, can determine this purely from the signs of the determinant and trace.

Use Lagrange multipliers to extremise functions subject to constraints, e.g. extremise f(x, y) subject to g(x, y) =
0, then consider h(x, y, λ) = f(x, y) − λ g(x, y) and extremise h with respect to x, y and λ. Can generalise this
for multiple constraints: use more multiplers λi. Can also use Lagrange multipliers with integrals (and then use
Euler-Lagrange on the combined function).

2 Extremising Integrals (Euler-Lagrange)

Seek to extremise a functional F [y] =
∫ b

a
f(x, y, y′)dx, where y(a) and y(b) are given. Perturb y(x)→ y(x) + εη(x)

with η(a) = η(b) = 0. Consider expansion in ε and write F [y + εη] = f [y] + ε δF + ε2 δ2F + O(ε3). Start with the
first variation δF , integrating the η′ term by parts to reach the form

∫
[. . .]η dx:

δF =

∫ b

a

∂f

∂y
η +

∂f

∂y′
η′dx =

∫ b

a

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx

For y to make F stationary, δF must be zero for all possible η(x), hence the square bracket must be zero, yielding
the Euler-Lagrange equation:

d

dx

(
∂f

∂y′

)
− ∂f

∂y
= 0

This can be extended in various ways for more general f :

• If more yi: there is an E-L equation for each i: d
dx

(
∂f
∂y′

i

)
− ∂f

∂yi
= 0

• If more xi: then first term becomes a sum (
∑

i
∂

∂xi

∂f
∂yxi

)

• If more derivates (e.g. f(x, y, y′, y′′), then additional terms: . . .− d2

dx2

(
∂f
∂y′′

)
+ d

dx

(
∂f
∂y′

)
− ∂f

∂y = 0

There are two first integrals of Euler-Lagrange for special f :

• If ∂f
∂y = 0: ∂f

∂y′ = const (this one is immediate)
• If ∂f

∂x = 0: f − y′ ∂f∂y′ = const: show this by considering df
dx

To (possibly) determine the nature of a stationary y(x), consider the second variation (coefficient of ε2):

1This is drafted by Prof. J. R. Gog, and with thanks to Dr J. Williams for input. It is not the entire syllabus, but just an aid for revision. Please
report errors to jrg20@cam.ac.uk. This draft dates from May 2024.
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δ2F =
1

2

∫ b

a

Qη2 + Pη′2dx where Q(x) =
∂2f

∂y2
− d

dx

∂2f

∂y∂y′
, P (x) =

∂2f

∂y′2

where P (x) and Q(x) are evaluated for the stationary y(x). If this is positive for all suitable non-zero η(x), then
y(x) is a local minimum (similarly negative for maximum, and mixed for saddle). Have various partial results:

• (Necessary condition; Legendre condition) if y(x) is a local minimum then P (x) ≥ 0 for all x

• (Sufficient condition) P (x) > 0 and Q(x) > 0 for all x: is sufficient for y(x) to be a local minimum. Can relax
this a little for P and Q to have some zeros, so long as integral for δ2F is always positive for any suitable
non-zero η(x).

• (Associated eigenvalue problem) define L as Lη = −(Pη′)′ +Qη, and hence δ2F = 1
2

∫
η[Lη]dx. The signs

of the eigenvalues of Lη = λη (with η = 0 at the ends) can be used to analogously to the Hessian (all positive
for a minimum).

• (Jacobi condition) If there is a u(x) on [a, b] satisfying Lu = 0 and u(x) 6= 0 for any x, then y(x) is a minimiser.
This comes from completing the square in the integrand, in essence:∫

Pη′2 +Qη2dx =

∫
P

(
η′ − u′

u
η

)2

+
Lu
u
dx.

3 Convexity and Legendre transforms

A set S is convex if (1− t)x+ ty ∈ S for all x,y ∈ S and for 0 ≤ t ≤ 1.

A function f is convex if its domain is a convex set and f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y). Equivalently

• (i) f(y) ≥ f(x) + (y − x).∇f(x) for all x,y ∈ S
• (ii) (y − x).(∇f(y)−∇f(x)) ≥ 0 for all x,y ∈ S
• (iii) The Hessian has all λ ≥ 0 throughout the domain

The Legendre transform f∗ is given by f∗(p) = supx [p.x− f(x)]. The function f∗ is always convex, and f∗∗ = f
if f is convex.

4 Formalisms of Dynamics (Lagrangian, Hamiltonian, and Noether)

Given the kinetic energy T (q, q̇, t) and the potential energy V (q, q̇, t), the Lagrangian is L(q, q̇, t) = T − V . The
dynamics are given by minimising the action

∫
Ldt.

A special case of Noether’s theorem gives that if X(t, s) is a symmetry of x for some f , then ∂f
∂ẋi

dXi

ds

∣∣∣
s=0

is
constant (with summation convention).

The Hamiltonian is given by taking the Legendre transform of the Lagrangian with respect to q̇ (generalised
velocity) to introduce p, the generalised momentum. Assuming convexity of L with respect to q̇, the Hamiltonian
can be expressed as H(q,p, t) = p.q̇−L(q, q̇, t) with q̇ such that p = dL

dq̇ . The consequence of minimising action
of is Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
,

∂H

∂t
= −∂L

∂t

If the system does not depend explicitly on time, H is constant.
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