1 Let
\[F(z) = \int_{-\infty}^{\infty} \frac{e^{uz}}{1 + e^u} du . \]

For what region of the \(z \)-plane does \(F(z) \) define an analytic function?

Show by closing the contour (use a rectangle) in the upper half plane that
\[F(z) = \pi \csc \pi z . \]

Explain how this result provides the analytic continuation of \(F(z) \).

2 Let \(\omega_{m,n} = m\omega_1 + n\omega_2 \), where \((m, n)\) are integers not both zero, and let
\[P(z) = \frac{1}{z^2} + \sum_{m,n} \left[\frac{1}{(z - \omega_{m,n})^2} - \frac{1}{\omega_{m,n}^2} \right] \]
be the Weierstrass elliptic function with periods \((\omega_1, \omega_2)\) such that \(\omega_1/\omega_2 \) is not real. Show that, in a neighbourhood of \(z = 0 \),
\[P(z) = \frac{1}{z^2} + \frac{1}{20}g_2z^2 + \frac{1}{28}g_3z^4 + O(z^6) \]
where
\[g_2 = 60\sum_{m,n}(\omega_{m,n})^{-4}, \quad g_3 = 140\sum_{m,n}(\omega_{m,n})^{-6}. \]

Deduce that \(P \) satisfies a 1st order nonlinear ODE
\[(P')^2 = 4P^3 - g_2P - g_3. \]

3 Show that
\[4P(2z) - \left(\frac{P''(z)}{P'(z)} \right)^2 + 8P(z) = 0. \]

4 The function \(\sin^{-1}z \) is defined, for \(0 \leq \arg z < 2\pi \), by
\[\sin^{-1}z = \int_{0}^{z} \frac{dt}{\sqrt{1-t^2}} , \]
where the integrand has a branch cut along the real axis from \(-1\) to \(+1\) and takes the value \(+1\) at the origin on the upper side of the cut. The path of integration is a straight line for \(0 \leq \arg(z) \leq \pi \) and is curved in a positive sense round the branch cut for \(\pi < \arg z < 2\pi \).

Express \(\sin^{-1}(e^{i\pi}z) \) \((0 < \arg z < \pi)\) in terms of \(\sin^{-1}z \) and deduce that \(\sin(\phi - \pi) = -\sin \phi \).

Hint: \(\sin^{-1}(e^{i\pi}z) = -\pi + \sin^{-1}z \), as can be derived by calculating the integral half way round the cut and remembering that the integrand is an odd function.
Find two independent solutions of the Airy equation \(w'' - zw = 0 \) in the form
\[
w(z) = \int_{\gamma} e^{zt} f(t) \, dt,
\]
where \(\gamma \) is to be specified in each case. Show that there is a solution for which \(\gamma \) can be chosen to consist of two straight line segments in the left half \(t \)-plane (\(\text{Re} \, t \leq 0 \)).

For this solution show that, if \(w'(0) = -iA \frac{3}{6} \Gamma(1/3) \), where \(A \) is a constant, then \(\frac{w'(0)}{A} = 1 \frac{3}{6} \Gamma(2/3) \).

By writing \(w(z) \) in the form of an integral representation with the Laplace kernel show that the confluent hypergeometric equation \(zw'' + (c - z)w' - aw = 0 \) has solutions of the form
\[
w(z) = \int_{\gamma} t^{a-1}(1-t)^{c-a-1} e^{t \gamma} \, dt,
\]
provided the path \(\gamma \) is chosen such that \(\left[t^{a-1}(1-t)^{c-a-1} e^{t \gamma} \right]_\gamma = 0 \).

In the case Re \(z > 0 \), find paths which provide two independent solutions in each of the following cases (where \(m \) is a positive integer):
(i) \(a = -m \), \(c = 0 \);
(ii) \(\text{Re} \, a < 0 \), \(c = 0 \), \(a \) is not an integer;
(iii) \(a = 0 \), \(c = m \);
(iv) \(\text{Re} \, c > \text{Re} \, a > 0 \), \(c \) and \(c - a \) are not integers.

Use the Laplace transform to solve the ordinary differential equation
\[
\frac{d^2 y}{dt^2} - k^2 y = f(t), \quad k > 0, \quad y(0) = y_0, \quad y'(0) = y'_0.
\]

Let \(f(t) = e^{-k_0 t} \), \(k_0 \neq k \), \(k_0 > 0 \), so that the Laplace transform of \(f(t) \) is
\[
\hat{f}(s) = \frac{1}{s + k_0}.
\]

Show that
\[
y(t) = y_0 \cosh kt + \frac{y'_0}{k} \sinh kt + \frac{e^{-k_0 t}}{k_0^2 - k^2} \cosh kt - \frac{e^{-k_0 t}}{k_0^2 - k^2} \sinh kt + \frac{k_0}{k} \frac{k_0}{k_0^2 - k^2} \sinh kt.
\]

Now suppose that \(f(t) \) is an arbitrary continuous function that possesses a Laplace transform. Use the convolution theorem for Laplace transforms, or otherwise, to show that
\[
y(t) = y_0 \cosh kt + \frac{y'_0}{k} \sinh kt + \int_0^t f(t') \sinh k(t - t') \frac{k}{k_0} dt'.
\]

Put \(f(t) = e^{-k_0 t} \) and re-obtain your answer to the first part of this question. Suppose now that \(k_0 = k \). What is \(y(t) \)? Could you have found this solution by taking the limit in (1) as \(k_0 \to k \)?
The Schrödinger equation is
\[i \frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} = 0. \]

Suppose that \(u(x, 0) = f(x) \).
Fourier transform this equation with respect to \(x \) to find
\[u(x, t) = e^{-i\pi/4} \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{\frac{i(x - x')^2}{4t}} f(x') dx'. \]
(You may it useful to recall that \(\int_{-\infty}^{\infty} e^{iu^2} du = e^{i\pi/4} \sqrt{\pi} \).

Now use Laplace transform methods to find the same solution to this problem.