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Example Sheet 1 Part II: Integrable systems
David Stuart Michaelmas 2023

1.1. Let gt be the flow map associated with the smooth vector field V , assumed to exist
for all time, so that x(t) = gtx0 is the unique solution to the ODE ẋ = V (x) with
x(0) = x0. Show that:

g0 = I, gt+s = gtgs, g−t = (gt)−1.

1.2. Let ψs
1 and ψs

2 be commuting 1-parameter groups of transformations generated by
the smooth vector fields V1 and V2 respectively. Show that ψs = ψs

1 ◦ ψs
2 also defines a

1-parameter group of transformations and show that it is generated by V = V1 + V2.
Conversely, show that if a 1-parameter group of transformations ψs is generated by

V = V1 + V2 where [V1, V2] = 0, then ψs = ψs
1 ◦ ψs

2 where the ψs
1 and ψs

2 are generated
by V1 and V2 as before.

1.3. Write both of the following 1-parameter groups of transformations as a composition
of commutative 1-parameter transformations:

ψs
1(x1, x2, x3) = (x1 + s, x2 + 2s, x3 + 3s), ψs

2(x1, x2, x3) = (esx1, e
2sx2, e

3sx3)

Hence write down the vector fields which generate these transformations,and check your
answers are correct by showing the relevant ODEs are satisfied.

1.4. Establish the Leibniz rule (derivation property) and the Jacobi identity of Poisson
brackets:

{f, gh} = {f, g}h+ {f, h} g, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

Deduce that if f, g : M → R are two first integrals of the Hamiltonian system (M,H),
then so is h = {f, g}.

1.5. Consider as in the discussion of canonical transformations the linear maps U : R2n →
R
2n such that UTJU = J , where J is as in the Hamilton equations. Show that these

form a group, and also that J is itself symplectic and that U is symplectic iff UT is
symplectic. (For the first part you may find it convenient to consider the symplectic
form ω(X,Y ) = XTJY .)

1.6. Let x = (q,p) and y = (Q,P ). Using the chain rule, show that a smooth coordinate
transformation x 7→ y = y(x) whose derivative1 Dy(x) is symplectic preserves the form
of Hamilton’s equations ẋ = J∇H(x) for some transformed Hamiltonian, which you
should give. Give an example of a linear transformation for which Dy is not symplectic
but which preserves the form of Hamilton’s equations, and give the transformed Hamil-
tonian. (Hint: scale.) By expressing Dy(x) in terms of q,p,Q,P , show that x 7→ y(x)
has symplectic derivative if and only if:

{Qi, Qj}q,p = {Pi, Pj}q,p = 0, {Qi, Pj}q,p = −{Pj , Qi}q,p = δij

Please send any corrections to dmas2@cam.ac.uk

Questions marked (∗) are optional and should not be attempted at the expense of unstarred questions
1Here Dy denotes the Jacobian matrix with entries (Dy)ij = ∂yi/∂xj .
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1.7. (i) Consider the Hamiltonian system on phase space R4 defined byH1(q1, q2, p1, p2) =
1
2(p

2
1+ω

2
1q

2
1+p

2
2+ω

2
2q

2
2) , with ω1, ω2 positive real numbers. Find two first integrals which

are in involution and action-angle variables. Writing the system in terms of these vari-
ables, show that the system is integrable. Find a relation between ω1 and ω2 which
ensures that all solutions are periodic in t, show this relation holds if ω1 = ω2 and find
an additional first integral in this case.

(ii) Consider the Hamiltonian for motion of a particle of unit mass in a radially
symmetric harmonic potential on the plane

H2(φ, r, pφ, pr) =
p2φ
2r2

+
p2r
2

+
1

2
ω2r2

in polar coordinates. Working in polar coordinates, and using the integral
∫ a

b

1

x

√

(a− x)(x− b)dx = π
(a+ b

2
−
√
ab
)

, 0 < b < a <∞ ,

find action-angle variables for H2 and show that all solutions are periodic in t.
Comment on the relation with part (i) of the question.

1.8. Consider the four dimensional phase space with coordinates (q,p) = (φ, r, pφ, pr)
and take as Hamiltonian:

H(φ, r, pφ, pr) =
p2φ
2r2

+
p2r
2

− α

r

where α is a positive constant. Use the fact that ∂φH = 0 to show the existence of
two first integrals in involution and deduce that the system is integrable in the sense of
the Arnol’d-Liouville theorem. Show that on the level set Mc = {H = c1, pφ = c2} the
coordinate pr can be written in the form:

p2r = 2c1 +
2α

r
− c22
r2

≡ −2c1
r2

(r1 − r)(r − r2),

where you should find r1, r2 explicitly. The coordinates (φ.pφ) = (φ, Iφ) already look like
an “action-angle” pair. Construct the remaining action-angle coordinates by considering

Ir =
1

2π

∮

Γr

p · dq,

where Γr is the cycle on Mc on which φ = const. Conclude that

H(φ, r, pφ, pr) = H̃(Iφ, Ir) = − α2

2(|Iφ|+ Ir)2
.

1.9. Let L(t) and A(t) be n × n matrices depending differentiably on t ∈ R, and such
that

dL

dt
= [L,A]. (1)

Show, without considering the eigenvalues/vectors of L, that tr(Lp), p ∈ N, does not
depend on t.

Show that if in (1) the matrix A is skew-symmetric (AT = −A) and L is symmetric
then both sides of the equation are symmetric.
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1.10. Write down the Hamiltonian equations for the Toda Hamiltonian for N particles
moving in one dimension, H = 1

2

∑N
j=1 p

2
j +

∑N−1
j=1 exp(qj − qj+1) and show that with

the definitions aj =
1
2 exp[(qj − qj+1)/2] and bj = −1

2pj they are equivalent to

ȧj = aj(bj+1 − bj) , ḃj = 2(a2j − a2j−1) . (2)

(Use the convention that q0 = −∞, eq0 = 0, qN+1 = +∞, e−qN+1 = 0.)

1.11. Recall the Toda problem with N = 2 can be written as the Lax pair L̇ = [B,L]
with

L =

(

b1 a1
a1 b2

)

, B =

(

0 a1
−a1 0

)

.

Express the eigenvalues of L in terms of the total momentum p1 + p2 and the energy H,
check they are in involution. Obtain the general solution to the system.

1.12. Extend the Lax pair formulation of the Toda problem to general N , by considering
the tri-diagonal2 N ×N matrices whose diagonal elements are Ljj = bj and Bjj = 0 for
j = 1, . . . N , and whose near diagonal elements are Lj,j+1 = Lj+1,j = aj and Bj,j+1 =
−Bj+1,j = aj for j = 1, . . . N − 1. Show that the equations (2) are equivalent to
L̇ = [B,L]. For the case N = 3 deduce that F1 = λ1+λ2+λ3, F2 = λ1λ2+λ2λ3+λ1λ3
and F3 = λ1λ2λ3 are all 1st integrals (where λj are the eigenvalues of L, which you may
assume to be real and distinct). Calculate F1, F2, F3 in terms of a1, a2, b1b2, b3 and hence
show that F1, F2, F3 are in involution. * Prove the eigenvalues of L are real and distinct.

1.13 (*). Let gt be the flow associated with the Hamiltonian vector field XH = J∇H.
If x(0) = y, use Taylor’s theorem to show that:

gty = y + tXH(y + o(t). (⋆)

Let D(t) = gtD(0) be a region in M evolving via the Hamiltonian flow and let Vol(t)
denote the volume of the region. By making the change of variables x(t) = gty, where
y ∈ D(0), show that:

Vol(t) ≡
∫

D(t)
d2mx =

∫

D(0)
det

(

∂xi
∂yj

)

d2my.

Using (⋆) and det(I + ǫA + o(ǫ)) = 1 + ǫtrA + o(ǫ) for any matrix A, deduce that the
derivative of Vol(t) vanishes at t = 0. What is the value of the derivative at an arbitrary
t = t0? Deduce that the Hamiltonian flow preserves volume. This is known as Liouville’s
theorem and is an important result in statistical mechanics and ergodic theory.

2A tri-diagonal matrix is one whose only nonzero elements are either on the diagonal or nearest

neighbour to the diagonal.


