1. A classical, non-perfect gas of N atoms has Hamiltonian

$$H = \sum_r \frac{1}{2m} |p_r|^2 + \sum_{r<s} U(R_{rs})$$

where $R_{rs} = |x_r - x_s|$. Show that the partition function is $Z = Z_0 K$ where Z_0 is the partition function for a perfect gas and

$$K = \frac{1}{V^N} \int \exp \left[-\frac{1}{T} \sum_{r<s} U(R_{rs}) \right] \prod_r d^3 x_r.$$

Let $\lambda_{rs} = 1 - \exp[-U(R_{rs})/T]$ and work to first order in the quantities λ_{rs}. Show that $K \approx 1 - \frac{N^2}{V} B(T)$ where $B(T) = \frac{1}{2} \int [1 - e^{-U(y)/T}] d^3 y$, $y = |y|$. Deduce that $P \approx \frac{N^2}{V} [1 + \frac{N}{V} B(T)]$ (so $B(T)$ is the second virial coefficient). Assuming that U is everywhere positive or everywhere negative, comment on the relative signs of U and B.

2. For a non-perfect gas as in Q.1, suppose the atoms repel each other according to $U(y) = \alpha/y^n$ where $n > 3$ and $\alpha > 0$. Find $B(T)$. Evaluate the special case $n = 6$. (For general n, the numerical factor in the integral reduces to a gamma function, but it simplifies for $n = 6$.)

3. * Exercise to show that the canonical equilibrium distribution function in classical phase space depends only on energy, E.

Let phase space have coordinates (q_i, p_i), $1 \leq i \leq 3N$. Consider ρ, the probability density in phase space, as the density of a “gas” or “ensemble” of points in phase space, each moving according to Hamilton’s equations, with Hamiltonian $H(q_i, p_i)$. Let v be the velocity of the “gas”, with components (\dot{q}_i, \dot{p}_i). Show that

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho v)$$

where ∇ is the divergence operator in $6N$ dimensions. Use Hamilton’s equations to deduce that

$$\frac{\partial \rho}{\partial t} = -\sum_i \left(\frac{\partial \rho}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial p_i} \frac{\partial H}{\partial q_i} \right)$$

and show that this vanishes if ρ is a function of H. Conversely, show that if ρ is time-independent, and Hamilton’s equations are satisfied, then ρ is constant along the trajectories of points in phase space, and deduce that if the energy is effectively the only conserved quantity then ρ is a function of H, and therefore a function of the conserved energy E.
4. Compute the equation of state, including the second virial coefficient, for a gas of non-interacting hard discs of radius \(\frac{r_0}{2} \) in two dimensions. [For hard discs, the potential is infinite if the discs overlap, and zero otherwise.]

5. A classical gas of atoms in three dimensions is constrained by a wall to move in the \(x \geq 0 \) region of space. A potential

\[
V(x) = \frac{1}{2} \alpha x^2
\]

attracts the atoms to the wall. The atoms are free to move in an area \(A \) in the \(y \) and \(z \) directions. If the gas is at uniform temperature \(T \), show that the number density of atoms varies as

\[
\rho(x) = 2N_0 \sqrt{\frac{\alpha}{2\pi T}} e^{-\alpha x^2/2T}
\]

where \(N_0 \) is the total number of atoms per unit area. By considering the balance of forces on a slab of gas between \(x \) and \(x + \Delta x \), show that locally the gas continues to obey the ideal gas law. Hence determine the pressure that the gas exerts on the wall.

6. A particle moving in one dimension has Hamiltonian

\[
H = \frac{p^2}{2m} + \lambda q^4
\]

Show that the heat capacity for a gas of \(N \) such particles is \(C = \frac{3}{4} N \). Explain why the heat capacity is the same regardless of whether the particles are distinguishable or indistinguishable.

7. Consider a set of quantum harmonic oscillators with a range of angular frequencies \(\omega_j \) at temperature \(T \), and discard the zero point energy, so the energy levels of each oscillator are \(\varepsilon_n = n\hbar \omega_j \) (Planck oscillators). Show that this system is thermodynamically equivalent to a bosonic particle system in contact with a heat and particle reservoir, in which there are 1-particle energy levels \(\hbar \omega_j \) that can be occupied by any number of particles \(n \). What is the temperature and chemical potential of the reservoir? [Assume the thermodynamic equivalence applies to each oscillator.]

8. Treat the rotational degrees of freedom of a gas of \(N \) diatomic molecules by quantum theory as follows. Assume that the rotational state of a molecule is determined by two quantum numbers \(J, M \), which are integers satisfying \(|M| \leq J \); and that the energy is \(\varepsilon_{J,M} = \frac{\hbar^2}{2I} (J + 1) \), where \(I \) is the moment of inertia. Find the partition function

\[
Z_{\text{rot}} = \left(\sum_{J,M} \exp(-\varepsilon_{J,M}/T) \right)^N
\]

by approximating the sum over \(J \) as an integral. Find the average value of the rotational energy.

9. For \(n \) a positive integer, let

\[
I_n = \int_0^\infty \frac{x^n}{e^x - 1} \, dx.
\]
By expanding \((e^x-1)^{-1}\) as \(e^{-x} + e^{-2x} + e^{-3x} + \cdots\), show that \(I_n = n! \zeta(n+1)\), where
\[
\zeta(n) = \sum_{r=1}^{\infty} r^{-n} \]
is the Riemann zeta function. Recall the value \(\zeta(4) = \frac{\pi^4}{90}\) (see e.g. Riemann Zeta Function of 4 - ProofWiki), and hence obtain the value of \(I_3\).

10. Consider a plane surface bounding a region in which there is black-body radiation with energy density \(e(\omega)d\omega\) in frequency range \((\omega, \omega + d\omega)\). Show that the energy per unit time incident upon unit area of the surface is \(\frac{1}{3}ce(\omega)d\omega\).

[Hint: remember that the speed of a photon is \(c\). Consider photons incident at an angle \(\theta\) to the normal to the surface, and integrate over solid angle.]

11. Consider blackbody radiation at temperature \(T\). Show that the average number of photons grows as \(T^3\). What is the mean photon energy? What is the most likely energy of a photon?

12. A black body at temperature \(T\) absorbs all the radiation that falls on it and emits radiation at the rate \(E = \sigma T^4\) per unit area, where \(\sigma\) is Stefan’s constant. A black, perfectly conducting sphere orbits a star of radius \(7 \times 10^5\) km at a distance of \(1.5 \times 10^8\) km. The star radiates like a black body at temperature 6000 K. Can you make a gin and tonic on this sphere?