
Mathematical Tripos Part IA 2007
F. Quevedo
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0. Motivation

The study of Differential Equations (DE’s) is arguably the area of Mathematics which
has more applications to the real world. There are plenty of examples of their use in
Physics, but also in Chemistry, Biology, Economics, etc. Usually differential equations are
relations among quantities that change over time and/or space and therefore are relevant
to the study of the evolving universe, the weather, stock market, etc. Their study has also
lead to important discoveries in pure Mathematics.

N.B. This is very much a methods course. Emphasis is on understanding the main
concepts and applying them to the solution of differential equations rather than on the
formal aspects of the theory.

1. Basic Calculus

1.1 Differentiation and Integration

Derivatives

Define the derivative of f(x) with respect to x by:

df

dx
= lim

h→0

f(x + h) − f(x)

h

Pictorially df/dx is the slope of the tangent to the graph of f(x) at the point x.
N.B. left and right-hand limits must be equal if f is differentiable (e.g. f(x) = |x| is not
differentiable at x = 0).

Notation

df

dx
≡ d

dx
f ≡ f ′(x),

d

dx

(

df

dx

)

≡ d2f

dx2
≡ f ′′(x), etc.

o and O symbols: Consider a function H(x) (usually H is the difference between two other
functions H = F1(x)− F2(x) and measures the order of magnitude of the difference when
x approaches a particular point x → x0):

H(x) = o (g(x)) as x → x0 if limx→x0

H(x)
g(x) = 0

H(x) = O (g(x)) as x → x0 if limx→x0

H(x)
g(x) is finite.
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Derivatives Rules
Chain rule: If f(x) = F [g(x)] then df

dx
= dF

dg
dg
dx

Product rule: If f(x) = u(x) v(x) then f ′ = df
dx = u′v + uv′.

Quotient rule: If f(x) = u(x)
v(x) then f ′ = u′v−uv′

v2 .

Leibnitz’s rule: If f(x) = u(x) v(x) then

dnf

dxn
= f (n)(x) =

n
∑

r=0

nCr u(n−r) v(r)

where nCr = (n
r ) = n!

(n−r)! r! .

L’Hopital’s rule : Let f(x) and g(x) be differentiable functions at x = x0 and
limx→x0

f(x) = limx→x0
g(x) = 0 then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

provided g′(x0) 6= 0. If both f ′(x0) = g′(x0) = 0 then the rule can be applied again.

Taylor series

From the definitions of the derivative and the symbol o(x) we can write: f(x + h) =
f(x) + hf ′(x) + o(h). We can extend this expression to:

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + · · · + hn

n!
f (n)(x) + En

where En = o(hn) as h → 0. In fact En = O(hn+1) as h → 0 provided f (n+1) exists.
This is Taylor’s theorem. It can be expressed in an alternative form by substituting
x → x0, h → x − x0 in the previous expression:

f(x) = f(x0)+(x−x0)f
′(x0)+ · · ·+ (x − x0)

n

n!
f (n)(x0)+En =

n
∑

r=0

f (r)(x0)

r!
(x−x0)

r +En

This is Taylor series of f(x) about x = x0. It gives a local approximation to the function
f(x) in the neighbourhood of x = x0. If all derivatives exist, the series becomes: f(x) =
∑∞

n=0
f (n)(x0)

n!
(x−x0)

n. Many known functions (sinx, ex, etc.) can be expanded in this way.

N.B. warning: not all functions have a well defined Taylor expansion e.g. f(x) = e−1/x2

does not have a Taylor expansion about x = 0 since the function and all its derivatives
vanish at x = 0 .

Integration

An (definite) integral is a sum of the form:

∫ b

a

f(x)dx = lim
∆x→0

N−1
∑

n=0

f(xn) ∆x
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where ∆x = b−a
N and xn = a + n∆x. Pictorially it represents the area under the curve

f(x) between the points x = a and x = b.

Fundamental Theorem of Calculus

Let F (x) =
∫ x

a
f(t)dt. Then dF

dx
= f(x).

To prove it use the definition of derivative dF/dx and
∫ x+h

x
f(t)dt = f(x)h + O(h2)

when h is small. Also, from the chain rule: d
dx

∫ g(x)

a
f(t)dt = f (g(x)) g′(x).

Notation:
∫

f(x)dx ≡
∫ x

f(t)dt. This is an indefinite integral. N.B. the non-
appearance of a lower limit in the integral reflects the fact that an indefinite integral
is defined up to an arbitrary constant.

Integration Techniques:
Integration is an art and needs practice. Examples of techniques are:

Integration by substitution : If integrand is a function of a function
∫

f(u(x))u′dx it
is helpful to recognise the form of the chain rule to change variables from x to u.
Integration by parts: Using the product rule (uv)′ = u′v + uv′, it is often convenient
to use

∫

uv′dx = uv −
∫

vu′dx if
∫

vu′dx is easier to do than
∫

uv′dx. See examples.

Derivative and integral as operators
Both derivation and integration can be seen as the action of a linear operator that

takes one function f(x) into a different function g(x), that is d
dx

: f(x) → g(x) =

f ′(x) and
∫ x

: f(x) → g(x) =
∫ x

f(t)dt. Both operators are linear, that means that
L [αf1(x) + βf2(x)] = αL[f1(x)] + βL[f2(x)]. Where L is either derivation d

dx or integra-

tion
∫ x

and α, β are constants.

1.2 Functions of Several Variables: Partial Differentiation

Consider a function of two variables f(x, y). We are interested to find how this function
changes when we move in the x or the y directions. The partial derivative of f(x, y) w.r.t.
x, keeping y constant is defined as:

(

∂f

∂x

)

y

= lim
δx→0

f(x + δx, y)− f(x, y)

δx

Also
(

∂f
∂y

)

x
= limδy→0

f(x,y+δy)−f(x,y)
δy . This generalises to a function of many variables

f(x1, x2, · · · , xn). Computing partial derivatives of a given function is straightforward (just
differentiate w.r.t. the corresponding variable treating the others as constants). Higher

order derivatives come in several combinations: ∂2f
∂x2 , ∂2f

∂y2 , ∂2f
∂x∂y , ∂2f

∂y∂x . It can be shown in

general that: ∂2f
∂x∂y

= ∂2f
∂y∂x

.

Notation We usually indicate which variables are being held constant but if no indi-
cation then assume everything is constant apart from the one variable w.r.t. which we

are differentiating. e.g. for f(x, y, z):
(

∂f
∂x

)

=
(

∂f
∂x

)

y,z
6=

(

∂f
∂x

)

y
. Alternative notation

fx = ∂f
∂x , fxy = ∂2f

∂x∂y .
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Chain rule
We define the total differential df of a function f(x, y) as follows: Consider the vari-

ation of f from two neighbouring points: δf = f(x + δx, y + δy) − f(x, y). In the limit
when both δx, δy → 0 this gives:

df =
∂f

∂x
dx +

∂f

∂y
dy.

If both x and y define a path parametrised by t: x = x(t), y = y(t), then f(x(t), y(t)) is a
function of t and

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

This is the chain rule for a function of several variables. Often the parametrisation may
be just x = t, y = y(t), that is simply y = y(x). In this case the chain rule reduces to :
df
dx

= ∂f
∂x

+ ∂f
∂y

dy
dx

.

Change of Variables
If it is needed to change variables, e.g. from Cartesian to polar coordinates x =

x(r, θ), y = y(r, θ) and f(x, y) = f (x(r, θ), y(r, θ)), then:

(

∂f

∂r

)

θ

=

(

∂f

∂x

)

y

(

∂x

∂r

)

θ

+

(

∂f

∂y

)

x

(

∂y

∂r

)

θ

(

∂f

∂θ

)

r

=

(

∂f

∂x

)

y

(

∂x

∂θ

)

r

+

(

∂f

∂y

)

x

(

∂y

∂θ

)

r

Implicit Differentiation
Consider F (x, y, z) = constant. This defines a surface in 3-D (e.g. a sphere x2 +

y2 + z2 = 1, a cone x2 + y2 = z2, etc.). It implicitly defines z = z(x, y) or y = y(x, z) or
x = x(y, z). Even if it is not possible to explicitly solve for z as a function of x, y from F =
constant, we can use the chain rule to find

(

∂z
∂x

)

y
as follows:

(

∂F
∂x

)

y
= ∂F

∂x + ∂F
∂z

(

∂z
∂x

)

y
= 0.

from which we can solve for
(

∂z
∂x

)

y
.

Differentiation of an Integral w.r.t. a parameter
Consider the family of functions f(x, c) (parametrised by different values of c). Con-

sider the integral I(b, c) =
∫ b

0
f(x, c)dx. From the fundamental theorem of calculus we

have
(

∂I
∂b

)

c
= f(b, c). Also, from direct differentiation

(

∂I
∂c

)

b
=

∫ b

0

(

∂f
∂c

)

x
dx. Therefore, if

b = b(x), c = c(x), then

dI

dx
=

∂I

∂b

db

dx
+

∂I

∂c

dc

dx
= f(b, c)

db

dx
+

dc

dx

∫ b

0

(

∂f

∂c

)

y

dy.

In particular, for I(x) =
∫ x

0
f(x, y)dy, dI

dx = f(x, x) +
∫ x

0

(

∂f
∂x

)

y
dy.
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2. First Order Ordinary Differential Equations (ODE’s)

Definitions
A Differential Equation (DE) is an equation that contains derivatives of one or more
dependent variables w.r.t. one or more independent variables.
An Ordinary differential equation (ODE) contains only ordinary derivatives.
A Partial differential equation (PDE) contains partial derivatives.
The order of a DE is the highest order derivative in the equation.
A DE is linear if the dependent variable (and its derivatives) appears only linearly.
A DE is a DE with constant coefficients if the independent variable does not appear
explicitly.
A linear DE is homogeneous if y = 0 is a solution with y the dependent variable.

2.1 First Order Linear Ordinary Differential Equations

2.1.1 Homogeneous equations with constant coefficients
The most general first order, linear, homogeneous ODE with constant coefficients can

be written as:
y′ + αy = 0

with α = constant. Recall:
d

dx

(

eλx
)

= λ
(

eλx
)

this equation can be read as saying that eλx is an eigen-function of the differential operator
L = d

dx with eigen-value λ. Similar to standard finite dimensional eigen-vectors that are
transformed in a simple way by a linear operator. L keeps the functional form of the
exponential function unchanged and only changes the magnitude.

Remarks
* The exponential function y = eλx is a solution of the ODE above if λ + α = 0

(characteristic equation).
* Since the ODE is linear and homogeneous, any multiple of a solution is a solution.

Then y = Ae−αx is a solution with A an arbitrary constant.
* y = Ae−αx is the most general solution, as it can be found by direct integration of

∫

dy
y = −

∫

αdx. So there is only one independent solution e−αx and all other solutions
can be obtained by multplication with A.

* The previous statement generalises to an nth order linear ODE that has n independent
solutions.

* The constant A can be determined by applying boundary conditions, usually giving
the value of y at x = 0. If x = t = time this boundary condition is called an initial

condition.
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Series solution
A useful method to solve DE’s is by series. If we assume the solution has a series

expansion

y =

∞
∑

n=0

anxn, y′ =

∞
∑

n=1

nanxn,

we can plug this ansatz in the ODE y′ + αy = 0 and determine the coefficients an by
equating the coefficients of each power of x to zero. The ODE above is solved if the

coefficients satisfy an+1 = − α
n+1 an which when applied iteratively leads to an = (−α)n

n! a0

and therefore to y = a0

∑∞
0

(−α)n

n!
xn = a0e

−αx. Reproducing the most general solution we
had already found. This method will be useful in more complicated ODE’s.

Discrete Equation
We can approximate the ODE y′ + αy = 0 to a difference or discrete equation by just

approximating y′ ∼ yn+1−yn

h
for a small h. The equation then becomes

yn+1 = (1 − αh) yn

which for negative α is like the equation for compound interest. To solve this equation, we
can apply this recurrence relation repeatedly (as it was done for an in the series solution):

yn = (1 − αh)yn−1 = (1 − αh)2yn−2 = · · · = y0(1 − αh)n

Taking the limit n → ∞, (h → x/n) gives y(x) = y0 limn→∞(1 − αx
n

)n = y0e
−αx repro-

ducing the continuous result.

2.1.2 Inhomogeneous equations with constant coefficients
The inhomogeneous or forced equation with constant coefficients is y′ + αy = f(x).

Let us consider two illustrative cases.
(i) Constant Forcing. That is f(x) = β = constant. A technique to solve it is to spot a

particular steady (equilibrium) solution y = yp = constant. Since y′
p = 0 the solution

is easily found to be yp = β/α. To find the most general solution write y = yp + yh

and substitute into the equation. Using the fact that yp satisfies the inhomogeneous
equation implies that yh has to satisfy the homogeneous equation y′

h + αyh = 0, for
which we already have the general solution yh = Ae−αx. Therefore the most general
solution of the inhomogeneous equation is the sum of the particular solution yp and
yh: y = β/α + Ae−αx. Notice that y depends on one arbitrary constant A.

(ii) Eigenvalue forcing. Example: In a radioactive rock, isotope A decays into isotope B
at a rate proportional to the number a of remaining nuclei A and B decays to C at a
rate proportional to the number b of remaining nuclei of B. The DE’s are then:

da

dt
= −kaa

db

dt
= kaa − kbb

the solution of the first equation is a = a0e
−kat which we can plug in the second

equation to leave db
dt + kbb = kaa0e

−kat. Note that the forcing is an eigenfunction of
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the differential operator of the LHS. So try a particular integral bp = ce−kat. Plugging
into the equation we find c = kaa0

kb−ka
for kb 6= ka. To find the general solution write

b = bp + bh where bh satisfies the homogeneous equation. This leads to the solution
b = kaa0

kb−ka
e−kat + De−kbT . Assuming the initial condition b = 0 at t = 0 fixes

D = −1. Then we can easily find the ratio b(t)/a(t) which allows a rock to be dated
from determining the relative proportion of certain istopes.

2.1.3 The General Linear First Order ODE
The general linear first order ODE (inhomogeneous, non-constant coefficients) can be

written as:
y′ + p(x)y = f(x)

To solve it multiply both sides by a function (to be determined) µ(x) and determine µ(x)
such that the LHS is given by the product rule (µy)′ = µy′ + µ′y. this implies that µ

satisfies µ′ = µp which implies we can choose µ = e
∫

pdx. Plugging this into the equation
leads to the general solution:

y(x) =
1

µ(x)

[
∫ x

µ(t)f(t)dt + c

]

.

with the integrating factor (IF) µ(x) = e
∫

pdx. N.B. It is better to remember the method

than the solution.

2.2 Non-linear, First Order ODE’s

In general the nonlinear first order ODE is of the form:

Q(x, y)y′ + P (x, y) = 0

This equation does not always have an analytic solution, so we will concentrate on classes
of equations that can be solved analytically.

2.2.1 Exact Equations
The equation Q(x, y)y′ + P (x, y) = 0 is an exact equation iff Q(x, y)dy + P (x, y)dx is

an exact differential df = ∂f
∂xdx + ∂f

∂y dy of a function f(x, y). comparing bith expressions
this means

∂f

∂x
= P,

∂f

∂y
= Q.

In which case the equation reduces to df = 0 and the solution is f = constant. From
∂f
∂x

= P, ∂f
∂y

= Q we can see that ∂2f
∂y∂x

= ∂P
∂y

and ∂2f
∂x∂y

= ∂Q
∂x

. This implies ∂P
∂y

= ∂Q
∂x

. N.B.

reverse implication: If ∂P
∂y = ∂Q

∂x throughout a simply connected domain D then Pdx+Qdy
is an exact differential of a single valued function in D. If the equation is exact then the
solution can be found by integrating ∂P

∂y
= ∂Q

∂x
.

2.2.2 Separable Equations
The equation Q(x, y)y′ + P (x, y) = 0 is separable if it can be manipulated into the

form q(y)dy = p(x)dx in which case the solution can be found by integration.
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2.2.3 Graphical Methods
We may find information about the solutions of an ODE without actually solving it.

Graphical methods are very useful in this sense. Consider the equation

dy

dt
≡ ẏ = f(y, t)

* Flow vectors Can evaluate f(y, t) at particular values of y and t and draw a small
arrow (flow vector) at that point with the slope determined by the value of f(y, t) = ẏ
at that point. Then the curves joining the different arrows are solutions of the ODE.

* Isoclines. These are curves for which f(y, t) = constant. Help to draw the flow vectors
and then construct the solutions. N.B. isoclines are usually not solutions of the ODE.

* Fixed points. These are points where ẏ = 0 for all t that means they are solutions of
f(y, t) = 0 for all t.

* Stability A fixed point is stable if solutions converge toward it and unstable if the
solutions diverge away from it.
Perturbation Analysis To determine stability suppose that y = a is a fixed point

of ẏ = f(y, t), that is f(a, t) = 0. To determine if y = a is stable or not, write y = a + ǫ(t)
ans substitute into the equation. Then ǫ̇ = f(a + ǫ, t) = f(a, t) + ǫ∂f

∂y (a, t) + O(ǫ2). Then

ǫ̇ ∼
[

∂f
∂y

]

ǫ which is a linear equation for ǫ. It can be integrated. If ǫ → 0 when t → ∞
then the fixed point y = a is stable, if ǫ increases with t then y = a is unstable.

Autonomous Systems If ẏ = f(y) only (independent of t), then near a fixed point

y = a where f(a) = 0, we write y = a + ǫ(t) which leads to ǫ̇ =
[

df
dy (a)

]

ǫ = kǫ with

k = f ′(a) constant. The solution is then ǫ = ǫ0e
kt. So the fixed point is stable if f ′(a) < 0

and unstable if f ′(a) > 0. If f ′(a) = 0 the leading O(ǫ2) terms must be considered.
Logistic Equation. A population dynamics model is described by the following

(logistic) equation:

ẏ = (α − β)y − γy2 = ry
(

1 − y

Y

)

= f(y)

Where α, β are the birth and death rates and γ measures the death rate due to fighting.
Here r = α − β and Y = r/γ. Notice that there is one fixed point y = Y which is stable.
When population is small ẏ ∼ ry and population grows exponentially. Eventually a stable
equilibrium point is reached at y = Y .

Discrete Logistic Equation. Approximating y′ ∼ (yn+1 − yn)/h and redefining
yn and the constants r, Y , the differential logistic equation becomes the discrete logistic
equation or logistic map :

xn+1 = λxn (1 − xn)

This is a particular case of a general class of discrete equations xn+1 = f(xn). The fixed
points correspond to xn+1 = xn that is they are the solutions of f(X) = X . Stability is
determined by writing xn = X + ǫn. Then X + ǫn+1 = f(X) + ǫnf ′(X) + O(ǫ2n). Then
ǫn+1 ∼ f ′(X)ǫn. Fixed point X is stable if | ǫn+1

ǫn
| < 1 which implies |f ′(X)| < 1. For the

logistic map there are two fixed points X = 0 and X = 1− 1/λ. Since f ′(X) = λ(1− 2X)
we can see that X = 0 is stable for λ < 1 and X = 1 − 1/λ is stable for 1 < λ < 3.
For 4 > λ > 3 there is an extremely rich pattern in which the solutions oscillates between
different points (solutions of xn+2 = xn, etc.) then leading to chaos.

8



Mathematical Tripos Part IA 2007
F. Quevedo

DIFFERENTIAL EQUATIONS
Summary Chapter 3

3. Higher Order Linear ODE’s

The general nth order linear ODE can be written as:

Ly ≡
n

∑

k=0

ak(x)y(k) = f(x).

N.B. We will mostly concentrate on the case n = 2 for simplicity and the amount of ap-
plications since most equations of mathematical physics are of second order. The operator

L =
∑n

k=0 ak(x) dk

dxk is linear. That is L(αy1 + βy2) = αLy1 + βLy2. This immediately
implies that for f = 0, if y1, y2 are two solutions of the above ODE then y = Ay1 + By2

is also a solution. For f 6= 0 it implies that if yp is a solution then y = yp + yh is also
a solution, where yh is any solution of the homogeneous equation (f = 0). This suggests
a method to find the general solution: first find the general solution of the homogeneous
equation (the complementary function yh) and then find one particular solution yp of the
inhomogeneous equation. The general solution will be the sum of both y = yh + yp.

3.1 Constant Coefficients
we will start with the simplest case of a second order DE with constant coefficients

ay′′ + by′ + cy = f

Recall that eλx is an eigenfunction of the operator d
dx and hence it is an eigenfunction

of d2

dx2 , etc. Then the complementary function can be written as yh = eλx. Plugging
this into the DE gives rise to the characteristic equation for λ: aλ2 + bλ + c = 0. There
are two solutions of the characteristic equation λ1, λ2 giving two complementary functions
y1 = eλ1x, y2 = eλ2x. If λ1, λ2 are distinct then y1, y2 are linearly independent and complete

(they form a basis in the space of solutions of the homogeneous equation). The general
complementary function is then yh = Aeλ1x + Beλ2x. With A, B two arbitrary constants.
To determine A, B need to provide two boundary conditions (or initial conditions if the
independent variable is time), say yh(x0) and y′

h(x0).
Examples

Nature of solutions depend on the roots of the characteristic equation.
1. Two different real roots. e.g. y′′ − 5y′ + 6y = 0. Roots λ = 2, 3. Solution yh =

Ae2x + Be3x.
2. Two imaginary roots. e.g. ÿ + ω2

0y = 0. Roots λ = ±iω0. Solution y = A cos(ω0t) +
B sin(ω0t). This is the simple harmonic oscillator with natural frequency ω0.

3. Degenerate roots. e.g. y′′ − 4y′ = 4y = 0. Roots λ = 2, 2. Then can only write one
degenerate linearly independent solution yh = Ae2x. Need to find the second solution.
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Second complementary function
(i) De-tuning. Perturb the previous equation slightly, e.g. y′′ − 4y′ + (4 − ǫ2)y = 0 for

ǫ << 1. Roots λ = 2± ǫ. Taking appropriately the limit ǫ → 0 gives yh = e2x[α+βx].
(ii) A product solution. Take y2(x) = v(x)y1(x). For the equation above we know y1 = e2x

plugging y2 in this equation gives a simple equation for v(x): v′′ = 0, implying
v = Ax + B and then yh = Ce2x + Dxe2x.
This is a demonstration of a more general rule that if y1(x) is a degenerate com-

plementary function then y2(x) = xy1(x) is an independent complementary function, for
linear ODE’s with constant coefficients.
Particular Solutions

To find particular solutions yp of the inhomogeneous equation with forcing f 6= 0, a
simple method (undetermined coefficients) is to guess the form of yp to be of the same
functional form as f (e.g. f = emx then take yp = Aemx plug into the DE and determine
the value of A.). Remember equation is linear so we can superpose solutions and consider
each forcing separately (e.g. for f = 2x + e4x take yp = ax + b + ce4x.).

Resonance
Consider ÿ + ω2

0y = sin(ω0t). We know that yh = A sin(ω0t) + B cos(ω0t) then the
standard guess yp = C sin(ω0t)+D cos(ω0t) satisfies the homogeneous equation and cannot
work. A detuning can also be done here by writing f = sin ωt with ω = ω0 − ǫ and again
ǫ << 1. A solution of the type yp = C sin ωt can work now since ω 6= ω0. For ǫ << 1 this
gives yp = − 2

(ω+ω0)ǫ

[

cos(ω0 − ǫ
2)t sin( ǫt

2 )
]

For ǫ << 1 this gives rise to beating which is an

oscillation of frequency close to ω0 with an amplitude modulated by an envelope given by
the sin ǫt/2 of large frequency O(1/ǫ). In the limit ǫ → 0, we get yp = −(t/2ω0) cos(ω0t).
This illustrates the phenomenon of resonance since the amplitude increases linearly with
t. In general if the forcing is a constant linear combination of complementary functions
then the particular solution is proportional to t times the standard guess.

3.2 Difference Equations

Consider a higher order difference equation e.g.

ayn+2 + byn+1 + cyn = fn

We can solve it in a similar way to differential equations by exploiting linearity and
eigenfunctions. The difference operator D[yn] = yn+1 has eigen-function yn = kn since
D[kn] = kn+1 = k · kn. To solve the difference equation above first find complementary
functions satisfying the homogeneous equation (fn = 0). Try yn = kn which leads to the
characteristic equation ak2 + bk + c = 0 with roots k1, k2. The complementary function

is y
(h)
n = Akn

1 + Bkn
2 for k1 6= k2. If k1 = k2 the second solution is of the form nkn

1 .

For particular solutions again look for y
(p)
n similar to fn (for fn = kn, k 6= k1, k2 try

y
(p)
n = Ckn, if k = k1 try y

(p)
n = Cnkn

1 , etc.). See example for Fibonacci sequence.

3.3 General nth order Linear DE

Restrict mostly to second order, e.g.:

y′′ + p(x)y′ + q(x)y = f(x)

10



3.3.1 Phase Space and the Wronskian
A differential equation of nth order determines the nth derivative y(n)(x) and hence

all higher derivatives in terms of Y (x), y′(x) · · ·y(n−1)(x). Can think in terms of a solution
vector: Y(x) = (y, y′, · · · , y(n−1)) defining a point in a n-dimensional phase space. Two
solutions of the second order ODE y1, y2 are independent if their corresponding vectors
Y1 and Y2 are linearly independent. That means that the Wronskian:

W (x) = det

(

y1 y2

y′
1 y′

2

)

6= 0

Warning: the opposite is not always true, i.e. W = 0 does not imply linear dependence.
Abel’s Theorem For the homogeneous equation y′′+p(x)y′+q(x)y = 0, if p and q are

continuous then either W ≡ 0 or W 6= 0 for any value of x. Actually W = W0 exp(−
∫

pdx).
To prove this consider W ′ and use the fact that y1, y2 satisfy the ODE which leads to

W ′ = −pW and solve for W .
Find a second solution. If we know one solution of the second order ODE and

knowing the Wronskian from W = W0 exp(−
∫

pdx) we can find the second solution y2.

For this just notice that W = y2
1

d(y2/y1)
dx and integrate to give y2 = y1

∫

(W/y2
1) dx. See

examples, especially the Cauchy-Euler equation (homogeneous in x): ax2y′′+bxy′+cy = 0
with solutions y = xk.

3.3.2 Variation of Parameters
This is a second method to find particular solutions of ODE’s (the first we mentioned

before was the undetermined coefficients guess for yp). Let y1(x), y2(x) be linearly in-
dependent complementary functions of the ODE y′′ + p(x)y′ + q(x)y = f(x). Since the
corresponding solution vectors Y1,Y2 form a basis of the solution space, we can write a
particular solution as:

Yp = u(x)Y1(x) + v(x)Y2(x)

Plugging this into the ODE leads to y′
1u

′+y′
2v

′ = f(x). Also from knowing that the second
entry of Yp is the derivative of the first entry we get y1u

′ + y2v
′ = 0. Therefore

(

y1 y2

y′
1 y′

2

) (

u′

v′

)

=

(

0
f

)

From which we can solve for u′ and v′ as u′ = − y2

W f and v′ = y1

W f . This method is more
systematic than the undetermined coefficients and applies to the case of non-constant
coefficients. However it is often difficult to integrate u′, v′ to find u, v. See examples.

3.3.3 Important Physical Systems
Let us consider three classes of physical systems that can be described by second order

ODE’s.
A. Transients and damping

In many physical systems there is a restoring force and a damping (e.g. car suspension
system). Newton’s second law applied to a system like this is Mẍ = F − kx − lẋ where
M is the mass of the object, F is the applied force −kx is the restoring force as in a
spring (Hooke’s law) and −lẋ is a damping term (the shock absorber in the car). Another

11



system that leads to the same equation is an RLC electric circuit in which the dependent
variable is Q instead of x. By a suitable change of variables t = τ

√

M/k this equation

becomes ẍ + 2κẋ + x = f(τ) where κ = l/(2
√

kM). Then there is a single parameter κ
determining the properties of the system. Consider first the free natural response f = 0.
The characteristic equation gives λ1,2 = −κ±

√
κ2 − 1. So we have three regimes according

to κ being smaller, greater or equal to 1.
(i) For κ < 1 the solution of the homogeneous equation is x = e−κτ (A sin

√
1 − κ2τ +

B cos
√

1 − κ2τ). This is a damped oscillator with decay time (time that takes the am-
plitude to decrease by 1/e of the original value) O(1/κ) and period T = 2π/

√
1 − κ2.

Notice that the damping (κ 6= 0) increases the period. As κ → 1 the oscillation period
T → ∞.

(ii) For κ = 1 (critically damped) the solution is xh = (A +Bτ)e−τ with the amplitude x
increasing at early times before reaching a maximum value at a critical value τ = τc

and start decaying exponentially with decay time O(1).

(iii) For κ > 1 (over-damped) the solution is x = Ae−(κ+
√

κ2−1)τ + Be−(κ−
√

κ2−1)τ . Pos-
sible to get a large initial increase in the amplitude followed by a slow decay (decay
time O(1/(κ −

√
κ2 − 1)).

For the forced system (f 6= 0) the complementary function determines the short
time transient response while the particular solution determines the long-time, asymptotic

response. e.g. for f(τ) = sin τ the total solution x → − cos τ/2κ as τ → ∞.
B. Impulses and Point Forces

Consider a ball bouncing on the ground. For a very short amount of time t ∈ (T−ǫ, T+
ǫ) for a time T and ǫ << 1, there is a force F (t) exerted by the ground on the ball. Since
this force acts for a time of O(ǫ) much less than the typical time of the system (between
say dropping and getting back the ball), it is convenient mathematically to imagine the
force acting instantaneously at t = T , i.e. consider ǫ → 0.

Newtons second law applied to this system is mẍ = F (t)−mg where m is the mass of
the ball and g the gravitational acceleration. Integrating this equation between T − ǫ and

T + ǫ gives
[

mdx
dt

]T+ǫ

T−ǫ
= I + 2mgǫ → I, as ǫ → 0, where the impulse I =

∫ T+ǫ

T−ǫ
F (t)dt

is the area under the force curve and is the only property of F (t) that influences the
macroscopic behaviour of the system. This leads us to consider mathematically a family of
functions D(t; ǫ) such that limǫ→0 D(t; ǫ) = 0 for all t 6= 0 and limǫ→0

∫ ∞
−∞ D(t; ǫ)dt = 1. a

typical example is D(t; ǫ) = 1
ǫ
√

π
e−t2/ǫ2 . Note that as ǫ → 0, D(0; ǫ) → ∞ so limǫ→0 D(t; ǫ)

is not properly defined. Nevertheless we define the Dirac delta function by:

δ(x) = lim
ǫ→0

D(x; ǫ)

with the understanding that we can only use its integral properties. e.g.
∫ ∞

−∞
f(x)δ(x)dx = lim

ǫ→0

∫ ∞

−∞
f(x)D(x; ǫ)dx = f(0) lim

ǫ→0

∫ ∞

−∞
D(x; ǫ)dx = f(0)

provided f(x) is continuous at x = 0. This gives a convenient way of representing and
making calculations involving impulsive or point forces. In the bouncing ball example
Newton’s equation can be written as mẍ = −mg + Iδ(t − T ). See examples.
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C. Switching on and/or off
Define the Heaviside step function by H(x) =

∫ x

−∞ δ(u)du which gives H = 0 for x < 0

and H = 1 for x > 0. Then dH
dx = δ(x). We can independently verify this by:

∫ ∞

−∞
H ′fdx =

[

Hf
]∞

−∞
−

∫ ∞

−∞
Hf ′dx = f(∞)−

∫ ∞

0

f ′dx = f(∞)− [f(∞)− f(0)] = f(0)

Illustrating that H ′(x) behaves like δ(x). But remember these functions and relationships
can only be used within integrals. The function H(x) is useful for switching problems such
as the electric circuit example.

3.4 Series Solutions

Consider the differential equation

p(x)y′′ + q(x)y′ + r(x)y = 0

The point x = x0 is an ordinary point of this DE if q/p and r/p have a Taylor expansion
about x = x0 (in particular if these ratios are not singular at x = x0). Otherwise x = x0

is a singular point. If x = x0 is a singular point but q(x − x0)/p and r(x − x0)
2/p have

Taylor expansions about x = x0 then x0 is a regular singular point (rsp).
If x0 is an ordinary point then the DE above has two linearly independent solutions

of the form:

y =
∞
∑

n=0

an(x − x0)
n

which converges in some neighbourhood of x0. If x0 is a regular singular point then the
DE has at least one solution of the form (Froebenius series):

y =
∞
∑

n=0

an(x − x0)
n+σ, a0 6= 0

for some σ to be determined. This is known as Fuch’s theorem. To find an explicit solution
means to find all coefficients an and σ. This is done by plugging the series in the DE.

Examples
We consider three examples that illustrate the main distinctive cases.

1. Legendre’s equation is (1−x2)y′′−2xy′+l(l+1)y = 0. it is easy to see that x = 0 is an
ordinary point an that x = ±1 are regular singular points. We can look for solutions
about the x = 0 point for which we expect two independent solutions. Plugging the
series in the DE we find:

∑∞
n=0 n(n − 1)anxn−2 − ∑∞

n=0(n − 1)(n + 2)anxn = 0. By
changing n → n− 2 in the second sum we get the same powers of x in both sums and
then can set each coefficient of xn to zero. This gives the recurrence relation: n(n −
1)an = (n − 3)nan−2. For n = 0 this gives 0 · a0 = 0 (since a−1 = a−2 = 0) implying
a0 is arbitrary. Similarly for n = 1 we have 0 · a1 = 0 implying a1 is also arbitrary.

For n > 1 we have an = (n−3)
n−1

an−2 and so the solution is y = a0(1 − x2 − · · ·) + a1x.
N.B. a0 and a1 provide the two independent constants needed.

13



2. Expansion about a regular singular point. consider the DE: 4xy′+2(1−x2)y′−xy = 0.
The point x = 0 is a rsp. Then the solution should be of the form y =

∑

anxn+σ.
Plugging this into the equation gives (n + σ)(n + σ − 2)an − (2n + 2σ − 3)an−2 = 0
for n = 0 we have the indicial equation: σ(2σ − 1) = 0 with two roots σ = 0, 1/2. For
each value of σ we find that now a1 = 0 and a2k = 4k−3

4k(4k−1)a2k−2 for σ = 0 and a2k =
4k−2

4k(4k+1)
a2k−2 for σ = 1/2. The solution is y = a0(1+x2/12+ · · ·)+a′

0(1+x2/10+ · · ·)
where now the two arbitrary a0’s provide the two independent constants needed.

3. Expansion about a rsp with roots of indicial equation differing by an integer. Consider
x2y′′−xy = 0. In this case x = 0 is a rsp but the indicial equation gives σ = 0, 1. For
σ = 1 we find a0 arbitrary and an = an−1/(n(n + 1)). For σ = 0 we find 0 · a0 = 0
but 0 · a1 = a0. So either get a contradiction or have a0 = 0, a1 arbitrary, with
an = an−1/(n(n − 1)) reproducing the same solution as the σ = 1 case. To find a
second solution, use the Wronskian or use the ansatz y2 = y1 lnx +

∑

n bnxn+σ. See
question 4 of example sheet 4 for a justification of this ansatz.

3.5 Systems of Linear Equations

Consider two dependent variables y1(t), y2(t) with the coupled DE’s: ẏ1 = ay1 +by2 +
f1(t), and ẏ2 = cy1 + dy2 + f2(t). This system of equations can be written in a matrix
form

Ẏ = MY + F, where Y =

(

y1

y2

)

, M =

(

a b
c d

)

, F =

(

f1

f2

)

differentiating the first of these equations and using both equations to eliminate y2, ẏ2 we
can see that this system is equivalent to one second order DE of the type ÿ1+Aẏ1+By1 = F .
Conversely, a second order ODE of this type ÿ +Aẏ +By = F can be reduced to a system
of two first order ODE’s by setting: y1 ≡ y, y2 ≡ ẏ then ẏ1 = y2 and ẏ2 = F −Ay2−By1 is
a system of two coupled first order ODE’s. In general any nth order ODE can be written
as a system of n first order ODE’s.

Solving a System of n First Order ODE’s

Consider the matrix equation Ẏ − MY = F. The complementary function can be
written as Yh = veλt where v is a constant vector. Plugging this into the equation gives
Mv = λv. This means that v is an eigen-vector of M with eigen-value λ. λ is then
determined by the characteristic equation det(M−λI) = 0. For a system of two equations
this immediately gives the solution of the homogeneous equation as (for λ1 6= λ2 ):

Yh = Av1eλ1t + B v2eλ2t

(N.B. For λ1 = λ2 = λ and one single independent eigen-vector v the second complemen-
tary function can be found of the form vteλt +ueλt where (the generalised eigen-vector) u
satisfies (M − λI)u = v). For a particular integral of the inhomogeneous equation try as
usual Yp of the same form as F(t), unless F(t) is similar to the complementary function.
In that case we have to proceed in a way similar to the resonance examples before but
taking into account the direction of F. For instance if F = eλ1t(av1 + bv2) the ansatz
should be Yp = eλ1t(Ctv1 + Dv2). See examples.
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Mathematical Tripos Part IA 2007
F. Quevedo

DIFFERENTIAL EQUATIONS
Summary Chapter 4

4. Partial Differential Equations (PDE’s)

This chapter retakes the study of multivariable functions, first exploring the existence
of stationary points and then giving the elements of partial differential equations.

4.1 Directional Derivatives, the Gradient and Stationary Points

Let us consider a function of two variables f(x, y) and study its change under the
displacement ds = (dx, dy). We know from section 1.2 that:

df =
∂f

∂x
dx +

∂f

∂y
dy = (dx, dy) · (∂f

∂x
,
∂f

∂y
) ≡ ds · ∇f

Where ∇f = (∂f
∂x , ∂f

∂y ) is the gradient of f , (∇f ≡ grad f) written in cartesian coordinates.

If we write ds = ds ŝ where |ŝ| = 1 then df
ds = ŝ · ∇f . This is the directional derivative of

f in the direction of ŝ.
N.B. The operator ∇ = ( ∂

∂x , ∂
∂y ) takes a (scalar) function f into a vector ∇f . It

can also act on vectors v = (vx, vy) as ∇ · v ≡ div v = ∂vx

∂x +
∂vy

∂y which is a scalar
function, constructed in way similar to the standard scalar product of vectors, known as
the divergence of v. It may also act as ∇ × v ≡ curl v which (in three dimensions) is a

vector with components (∇×v)x = ∂vz

∂y − ∂vy

∂z , constructed in a way similar to the standard
cross product.

In general, the gradient can be defined by the expression df
ds = ŝ · ∇f = |∇f | cos θ

where θ is the angle between ∇f and ŝ. From this simple expression we can extract three
important properties of the gradient:
(i) ∇f has magnitude equal to the maximum rate of change of f(x, y) with distance in

the (x, y) plane (cos θ = 1).
(ii) ∇f determines the direction in which f increases most rapidly (θ = 0).
(iii) If ds is a displacement along a contour of f then df

ds = 0. This implies ŝ · ∇f = 0 and
then ∇f is the direction orthogonal to the contour.
Stationary points
There is always one direction in which df

ds = 0 namely parallel to the contours of f .

But local maxima or minima have df
ds = 0 for all directions. This implies ŝ · ∇f = 0

for all ŝ and then ∇f = 0. In Cartesian coordinates this is ∂f
∂x = 0, ∂f

∂y = 0. Points
for which ∇f = 0 are called stationary points. They can be maxima, minima or saddle

points (minima in some directions and maxima in others). To determine the nature of a
stationary point we need to have an explicit expression for the Taylor series expansion for
a multivariable function.
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Taylor series for multivariable functions

Let us consider the displacement x = x0 + δs. In two dimensions: (x, y) = (x0, y0) +
(δx, δy). The Taylor series expansion of f(x, y) about the point (x0, y0) can be written as:

f(x, y) = a0 + a1 δx + b1 δy + a2 δx2 + b2 δy2 + c2δxδy + · · ·
Similar to what we did in section 1.2, we can determine the parameters a0, a1, b1, · · · by
evaluating f and its partial derivatives at the point (x0, y0). This implies:

f(x) = f(x0) + δs · ∇f(x0) +
1

2
δsT · H(x0) · δs + · · ·

Where, in two dimensions:

H =

(

fxx fxy

fyx fyy

)

is the Hessian matrix, with clear generalisation for higher dimensions. N.B. detH ≡ |H| is
called the Hessian. Also TrH ≡ ∇2f is the Laplacian of f . In 2-dimensions and Cartesian
coordinates ∇2f = fxx + fyy, with a clear generalisation to higher dimensions.

Classification of Stationary Points

If x = x0 is a stationary point ∇f(x0) = 0 and so: f(x) ∼ f(x0) + 1
2δsT · H · δs. At

a minimum δsT · H · δs > 0 for all δs, we say that H is positive definite. At a maximum
δsT · H · δs < 0 for all δs, we say that H is negative definite. At a saddle point H is
indefinite. Since H is symmetric, it can be diagonalised, so (in a suitable basis of principal
axis (x1, x2)):

δsT · H · δs = (x1, x2)

(

λ1 0
0 λ2

) (

x1

x2

)

= λ1x
2
1 + λ2x

2
2

With a clear generalisation to higher dimensions. This implies that H is positive definite
(minimum) if all the eigenvalues are positive and negative definite (maximum) if all the
eigenvalues are negative. Otherwise it is undetermined (saddle).

Criterion for Definiteness

The signature of H is the pattern of signs of the sub determinants

H1 = fxx, H2 = det

(

fxx fxy

fyx fyy

)

, · · ·
.

H is positive definite (minimum) ⇐⇒ signature of Hi’s is +, +, · · · , +.
H is negative definite (maximum) ⇐⇒ signature of Hi’s is −, +,− · · · , (−)n.
H is indefinite (saddle) otherwise. See example.

Contours of f(x, y)

From f(x) ∼ f(x0) + 1
2
δsT · H · δs we can see that for contours of f (f = constant)

then δsT ·H ·δs ∼ constant. This implies that in the diagonal basis (x1, x2), λ1x
2
1 +λ2x

2
2 ∼

constant. For maxima or minima λ1, λ2 have the same sign and this equation defines
ellipsis. For a saddle λ1, λ2 have opposite sign and then λ1x

2
1 + λ2x

2
2 ∼ constant define

hyperbolae. Therefore close to minima and maxima the contours are eilliptical and close
to saddle points they are hyperbolae, including the crossing contours corresponding to the
straight lines x2 = ±

√

|λ1/λ2|x1.
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4.2 Elements of Partial Differential Equations

Let us start discussing the basic ideas to solve partial differential equations by con-
sidering simple examples.

Simple Examples

The general first order linear PDE for a function of two variables y(x, t) is: A(x, t) ∂y
∂x +

B(x, t)∂y
∂t

+ C(x, t)y = D(x, t)

1. If A = 0 or B = 0 then this is similar to an ODE and can be solved with the
techniques we have learnt for ODE’s, e.g. yx = αx can be integrated immediately to
give y = α2/2 + β(t). The main difference with an ODE is that instead of finding the
solution up to an arbitrary constant this solution depends on an arbitrary function
β(t).

2. A less trivial example is the first order wave equation: ∂y
∂t = c ∂y

∂x Recall from section

1.2 that along a path x(t): dy
dt = ∂y

∂t + ∂y
∂x

dx
dt This implies that dy

dt = 0 (y = constant)

along paths dx
dt = −c for which x + ct = x0 (constant). Since x + ct = x0 implies

y = constant then the solution is y = f(x + ct). The contour lines x + ct = x0 are
the characteristic lines of the PDE. Again the general solution is given in terms of an
arbitrary function f now as a function of x+ct. This function can be fixed by imposing
initial condition, e.g. y(x, 0) = x2 − 3, this implies that f(x) = x2 − 3 and then the
solution for all t is f = (x+ct)2−3. Another way to find the solution is to perform the
change of variables u = x+ct, v = x−ct which implies yx = yu+yv, yt = c(yu−yv) and
then the differential equation becomes yv = 0 that has a solution y = f(u) = f(x+ct).
In this way identifying the characteristic lines helps to determine the proper change
of variables.

3. We can also consider an inhomogeneous equation like ∂y
∂t

+ 5 ∂y
∂x

= e−t. Since it is
linear it shares the same property as linear ODE’s for which the general solution is
the general solution of the homogeneous equation yh plus a particular solution yp.
From the previous example we can solve for yh: yh = f(x− 5t). A particular solution
can be found as yp = yp(t) which when substituted in the equation gives yp = −e−t,

then y = f(x − 5t) − e−t. Imposing the initial condition y(x, 0) = e−x2

implies

f(x) − 1 = e−x2

and so the solution is y(x, t) = e−(x−5t)2 − e−t + 1.

4. Second order wave equation: ∂2y
∂t2 = c2 ∂2y

∂x2 . This can be written as ( ∂
∂t + c ∂

∂x )( ∂
∂t −

c ∂
∂x

)y = 0. Since these two operators commute and each would give a first order wave
equation, we can immediately write the two solutions for this equation y1 = f(x +
ct), y2 = g(x−ct). From linearity we find the general solution y = f(x+ct)+g(x−ct).
A more explicit way to arrive at the solutions is by the same change of variables we
used for the first order wave equation u = x + ct, v = x − ct from which we have
yxx = yuu + 2yuv + yvv; ytt = c2(yuu − 2yuv + yvv). Plugging this into the equation
gives yuv = 0 which has the general solution y = f(u) + g(v) = f(x + ct) + g(x − ct).
With the initial condition y = 1/(1 + x2), yt = 0 at t = 0 and y → 0 as x → ±∞
we find 2f = 2g = 1/(1 + x2) and 2y = 1/(1 + (x + ct)2) + 1/(1 + (x − ct)2). Which
correspond to two wave packets, one moving to the left and the other to the right in
the x direction.
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5. Diffusion Equation: ∂T
∂t

= k ∂2T
∂x2 . Here T is temperature and k a constant known

as diffusivity. Suppose that T (x, 0) = 0, T (0, t) = H(t) with H the Heaviside step
function. Then we can find a solution of the form T (x, t) = Θ(η) with η = x/(2

√
kt).

substituting this in the equation gives Θ′′ + 2ηΘ′ = 0 with solution Θ′ = Ae−η2

and
then Θ = A′erfη + B where erf(η) ≡ (2/

√
π)

∫ η

0
e−z2

dz is the error function. Since

erf(η) → 1 as η → ∞ we find T = 1 − erf(x/
√

4kt).

4.3 Some General Aspects about PDE’s
Importance of Boundary Conditions
The existence and uniqueness of solutions depend very much on the boundary condi-

tions. For instance a first order linear PDE for y(x, t) will have a well defined solution in
a region if proper boundary (initial) conditions are given along a curve in the x − t plane
as long as the curve is not a characteristic (contour) line. A proper study of boundary
conditions is beyond the scope of these lectures and will be covered in future courses.

The Laplacian and Important PDE’s in Physics
Our physical world has at least three spatial dimensions x, y, z and time t. Physical

quantities vary at different points of space and time and are therefore functions f(x, y, z, t)
satisfying PDE’s. Most of the important equations in physics are second order PDE’s
involving the Laplacian ∇2φ. The importance of the Laplacian may be inferred by taking
the Taylor expansion of the previous section and compute the average of the function f(x)
in a small cube of side 2a centred at x0. The average of f is 〈f〉 ≡ (1/(2a)3)

∫ a

−a
fdxdydz.

Since
∫ a

−a
xdx = 0, it is easy to see that this gives 〈f〉 = f(x0) + (a2/6)∇2f . Therefore

∇2f ∼ (6/a2)(〈f〉−f(x0)) implying that the Laplacian measures the difference between the
average value of the function and its value at a point. Laplace equation ∇2f = 0 satisfied by
electric and gravitational potentials (potential theory), fluid flow and stationary heat flow.
It says that the potential equals its average value at a point so it cannot increase or decrease
in all directions. Poisson’s equation ∇2f = ρ. Satisfied by electric and gravitational
potentials in presence of charge or matter density ρ. It tells that the difference between
the potential and its average in a neighbourhood is proportional to the charge or mass
density. The Wave equation c2∇2f = f̈ applies when the acceleration f̈ is proportional
to the difference between the position and its average value (Hooke’s law). The Diffusion

equation ∇2f = kḟ states that the rate of change of the temperature is proportional to the
difference between the temperature and its average value (Newton’s law of cooling), etc.

Connection to ODE’s We may wonder how relevant after all was to study ODE’s if
the most relevant equations are PDE’s. However there is a technique known as separation

of variables in which the solution for a PDE is assumed to have the form f(x, y, z, t) =
X(x)Y (y)Z(z)T (t) when plugged back into the PDE this reduces to an ODE for each of
the functions X, Y, Z, T . For instance for c2fxx − ftt = 0 the ansatz f(x, t) = X(x)T (t)
leads to c2X ′′/X = T̈ /T since LHS is a function of only x and the RHS is only a function
of t then both have to be constant, leading to two ODE’s which can be solved immediately
(simple harmonic motion in each case). This technique is surprisingly powerful. Applying
it to the PDE’s above in Cartesian, spherical or cylindrical coordinates leads to some of
the famous ODE’s we have seen (like the Legendre’s, Bessel’s and Laguerre’s equations,
etc.). This is a subject that will be further studied in much detail in the Methods course.
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