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Chapter 1

Physical Motivation for

Supersymmetry and Extra

Dimensions

Let us start with a simple question in high energy physics: What do we know so far about the universe

we live in?

1.1 Basic Theory: QFT

Microscopically we have Quantum Mechanics and Special Relativity as our two basic theories.

The consistent framework to make these two theories consistent with each other is Quantum Field

Theory (QFT). In this theory the fundamental entities are quantum fields. Their excitations correspond

to the physically observable elementary particles which are the basic constituents of matter as well as the

mediators of all the known interactions. Therefore, fields have particle - like character. Particles can be

classified in two general classes: bosons (spin s = n ∈ Z) and fermions (s = n+ 1
2 n ∈ Z). Bosons and

fermions have very different physical behaviour. The main difference is that fermions can be shown to

satisfy the Pauli ”exclusion principle” , which states that two identical fermions cannot occupy the same

quantum state, and therefore explaining the vast diversity of atoms. All elementary matter particles:

the leptons (including electrons and neutrinos) and quarks (that make protons, neutrons and all other

hadrons) are fermions. Bosons on the other hand are not constrained by the Pauli principle. They include

the photon (particle of light and mediator of electromagnetic interaction), and the mediators of all the

other interactions. As we will see, supersymmetry is a symmetry that unifies bosons and fermions despite

all their differences.
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8 CHAPTER 1. PHYSICAL MOTIVATION FOR SUPERSYMMETRY AND EXTRA DIMENSIONS

1.2 Basic Principle: Symmetry

If Quantum Field Theory is the basic framework to study elementary process, the basic tool to learn

about these processes is the concept of symmetry. A symmetry is a transformation that can be made to a

physical system leaving the physical observables unchanged. Throughout the history of science symmetry

has played a very important role to better understand nature.

1.2.1 Classes of Symmetries

For elementary particles, we can define two general classes of symmetries:

• Spacetime symmetries. These symmetries correspond to transformations on a field theory acting

explicitly on the spacetime coordinates.

xµ → x′µ (xν) , µ, ν = 0, 1, 2, 3 (1.1)

Examples are rotations, translations and, more generally, Lorentz and Poincaré transformations

defining Special Relativity as well as General Coordinate Transformations that define General Rel-

ativity.

• Internal symmetries. These are symmetries that correspond to transformations to the different

fields on a field theory.

Φa(x)→Ma
b Φb(x) (1.2)

Where the indices a, b label the corresponding field. If Ma
b is constant then the symmetry is a

global symmetry. If they depend on the spacetime coordinates: Ma
b (x) then the symmetry is called

a global symmetry.

1.2.2 Importance of Symmetries

Symmetry is important for various reasons:

• Labelling and classifying particles. Symmetries label and classify particles according to the differ-

ent conserved quantum numbers identified by the spacetime and internal symmetries (mass, spin,

charge, colour, etc.). In this regard symmetries actually ”define” an elementary particle according

to the behaviour of the corresponding field with respect to the different symmetries.

• Symmetries determine the interactions among particles by means of the gauge principle, e.g. con-

sider the Lagrangian

L = ∂µφ∂
µφ∗ − V (φ, φ∗) ,
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which is invariant under rotation in the complex plane

φ 7−→ exp(iα)φ ,

as long as α is a constant (global symmetry). If α = α(x), the kinetic term is no longer invariant:

∂µφ 7−→ exp(iα)
(
∂µφ+ i(∂µα)φ

)

However, the covariant derivative Dµ, defined as

Dµφ := ∂µφ+ iAµφ ,

transforms like φ itself, if the gauge - potential Aµ transforms to Aµ − ∂µα:

Dµ 7−→ exp(iα)
(
∂µφ+ i(∂µα)φ + i(Aµ − ∂µα)φ

)
= exp(iα)Dµφ ,

so rewrite the Lagrangian to ensure gauge - invariance:

L = DµφD
µφ∗ − V (φ, φ∗)

The scalar field φ couples to the gauge - field Aµ via AµφA
µφ, similarly, the Dirac - Lagrangian

L = ΨγµDµΨ

has an interaction - term ΨAµΨ. This interaction provides the three point vertex that describes

interactions of electrons and photons and illustrate how photons mediate the electromagnetic in-

teractions.

• Symmetries can hide or be ”spontaneously broken”. Consider the potential V (φ, φ∗) in the scalar

field Lagrangian above. If V (φ, φ∗) = V (|φ|2), then it is symmetric for φ 7→ exp(iα)φ. If the

potential is of the type

V = a|φ|2 + b|φ|4, a, b ≥ 0 (1.3)

the minimum is at < φ >= 0 (here 〈φ〉 ≡ 〈0|φ|0〉 denotes the ‘vacuum expectation value (vev)

of the field φ). The vacuum state is then also symmetric under the symmetry since the origin is

invariant. However if the potential is of the form

V =
(
a− b|φ|2

)2
a, b ≥ 0 (1.4)

the symmetry of V is lost in the ground state 〈φ〉 6= 0. The existence of hidden symmetries is

important for at least two reasons. First, this is a natural way to introduce an energy scale in the

system. In particular, we will see that for the standard model MEW ∼ 103 GeV, defines the basic

scale of mass for the particles of the standard model, the electroweak gauge bosons and the matter

fields obtain their mass from this effect. Second, the existence of hidden symmetries implies that the

fundamental symmetries of nature may be huge despite the fact that we observe a limited amount

of symmetry. This is because the only manifest symmetries we can observe are the symmetries of

the vacuum we live in and not those of the full underlying theory.
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1.3 Basic Example: The Standard Model

The concrete example is the particular QFT known as the Standard Model which describes all known

particles and interactions in four-dimensional spacetime.

• Matter particles. Quarks and leptons. They come in three identical families differing only by their

mass. Only the first family participate in making the atoms and all composite matter we observe.

Quarks and leptons are fermions of spin 1/2~ and therefore satisfy Pauli’s exclusion principle.

Leptons include the electron e−, muon µ and τ as well as the three neutrinos. Quarks come in

three colours and are the building blcoks of strongly interacting particles such as the proton and

neutron in the atoms.

• Interaction particles. The three non-gravitational interactions (strong, weak and electromagnetic)

are described by a gauge theory based on an internal symmetry:

GSM = SU(3)c
︸ ︷︷ ︸

strong

⊗SU(2)L ⊗ U(1)
︸ ︷︷ ︸

electroweak

Here SU(3)c refers to quantum chromodynamics part of the standard model describing the strong

interactions, the subindex c refers to colour. Also SU(2)L ⊗ U(1) refers to the electroweak part

of the standard model, describing the electromagnetic and weak interactions. The subindex L

in SU(2)L refers to the fact that the standard model does not preserve parity and differentiates

between left-handed and right-handed particles. In the standard model only left-handed particles

transform non-trivially under SU(2)L. The gauge particles have all spin s = 1~ and mediate each of

the three forces: photons (γ) for U(1) electromagnetism, gluons for SU(3)c of strong interactions,

and the massive W± and Z for the weak interactions.

• The Higgs particle. This is the spin s = 0 particle that has a potential of the Mexican hat shape

and is responsible for the breaking of the Standard Model gauge symmetry This is the way in which

symmetry is spontaneously broken, in the Standard Model:

SU(2)L ⊗ U(1)
〈φ〉≈103GeV−→ UEM (1)

For the gauge particles this is the Higgs effect, that explains how the W± and Z particles get a

mass and therefore the weak interactions are short range. This is also the source of masse for all

quarks and leptons.

• Gravity particle?. The standard model only describe gravity at the classical level since, contrary

to gauge theories which are consistent quantum mechanical theories, there is not known QFT that

describes gravity in a consistent manner. The behaviour of gravity at the classical level would

correspond toa particle, the graviton of spin s = 2~.
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1.4 Problems of the Standard Model

The Standard Model is one of the cornerstones of all science and one of the great triumphs of the XX

century. It has been carefully experimentally verified in many ways, especially during the past 20 years,

but there are many questions it cannot answer:

• Quantum Gravity. The standard model describes three of the four fundamental interactions at the

quantum level and therefore microscopically. However, gravity is only treated classically and any

quantum discussion of gravity has to be considered as an effective field theory valid at scales smaller

than the Planck scale (Mpl =
√

Gh
c3 ≈ 1019GeV). At this scale quantum effects of gravity have to

be included and then Einstein theory has the problem of being non-renormalizable and therefore it

cannot provide proper answers to observables beyond this scale.

• Why GSM = SU(3)⊗SU(2)⊗U(1)? Why there are four interactions and three families of fermions?

Why 3 + 1 spacetime - dimensions? Why there are some 20 parameters (masses and couplings

between particles) in the standard model for which their values are only determined to fit experiment

without any theoretical understanding of these values?

• Confinement. Why quarks can only exist confined in hadrons such as protons and neutrons? The

fact that the strong interactions are asymptotically free (meaning that the value of the coupling

increases with decreasing energy) indicates that this is due to the fact that at the relatively low

energies we can explore the strong interactions are so strong that do not allow quarks to separate.

This is an issue about our ignorance to treat strong coupling field theories which are not well

understood because standard (Feynman diagrams) perturbation theory cannot be used.

• The ”hierarchy problem”. Why there are totally different energy scales

MEW ≈ 102GeV , Mpl =

√

Gh

c3
≈ 1019GeV =⇒ MEW

Mpl
≈ 10−15

This problem has two parts. First why these fundamental scales are so different which may not

look that serious. The second part refers to a naturalness issue. A fine tuning of many orders

of magnitude has to be performed order by order in perturbation theory in order to avoid the

electroweak scale MEW to take the value of the ”cut-off” scale which can be taken to be Mpl.

• The strong CP problem. There is a coupling in the standard model of the form θFµν F̃µν where

θ is a parameter, Fµν refers to the field strength of quantum chromodynamics (QCD) and ˜Fµν =

ǫµνρσF
ρσ . This term breaks the symmetry CP (charge conjugation followed by parity). The

problem refers to the fact that the parameter θ is unnaturally small θ < 10−8. A parameter can be

made naturally small by the t’Hooft naturalness criterion in which a parameter is naturally small

if setting it to zero implies there is a symmetry protecting its value. For this problem, there is a

concrete proposal due to Peccei and Quinn in which, adding a new particle, the axion, with coupling

aFµν F̃µν , then the corresponding Lagrangian will be symmetric under a → a+ c which is the PQ

symmetry. This solves the strong CP problem because non-perturbative QCD effects introduce a

potential for a with minimum at a = 0 which would correspond to θ = 0.
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• The ”cosmological constant problem”. Observations about the accelerated expansion of the universe

indicate that the cosmological constant interpreted as the energy of the vacuum is near zero, Λ ≈
10−120M4

pl

MΛ

MEW
≈ 10−15

This is probably the biggest puzzle in theoretical physics. The problem, similar to the hierarchy

problem, is the issue of naturalness. There are many contributions within the standard model to

the value of the vacuum energy and they all have to cancel to 60-120 orders of magnitude in order to

keep the cosmological constant small after quantum corrections for vacuum fluctuations are taken

into account.

All of this indicates that the standard model is not the fundamental theory of the universe and we need

to find extension that could solve some or all of the problems mentioned above in order to generalize the

standard model. The standard model is expected to be only an effective theory describing the fundamental

theory at low energies.

In order to go beyond the standard model we can follow several avenues.

• Experiments. This is the traditional way of making progress in science. We need experiments to

explore energies above the currently attainable scales and discover new particles and underlying

principles that generalize the standard model. This avenue is presently important due to the

imminent starting of the LHC collider experiemt at CERN, Geneva in the summer of 2007. This

experiment will explore physics at the 103 GeV scale and may discover the last remaining particle

of the standard model, known as the Higgs particle, as well as new physics beyond the standard

model. Notice that to explore energies closer to the Planck scale Mpl ∼ 1018 GeV is out of the

reach for many years to come.

• Add new particles/interactions. This is an ad hoc technique is not well guided but it is possible to

follow if by doing this we are addressing some of the questions mentioned before.

• More general symmetries. We understand by now the power of symmetries in the foundation of the

standard model, it is then natural to use this as a guide and try to generalize it by adding more

symmetries. These can be of the two types mentioned before: more general internal symmetries

leads to consider Grand Unified Theories (GUTs) in which the symmetries of the standard model

are themselves the result of the breaking of yet a larger symmetry group.

GGUT
M≈1017GeV−→ GSM

M≈102GeV−→ SU(3)⊗ U(1) ,

This proposal is very elegant because it unifies, in one single symmetry, the three gauge interactions

of the standard model. It leaves unanswered most of the open questions above, except for the fact

that it reduces the number of independent parameters due to the fact that there is only one gauge

coupling at large energies. This is expected to ”run” at low-energies and give rise to the three

different couplings of the standard model (one corresponding to each group factor). Unfortunately,

with our present precision understanding of the gauge couplings and spectrum of the standard
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model, the running of the three gauge couplings does not unify at a single coupling at higher

energies but they cross each other at different energies.

More general spacetime symmetries open-up many more interesting avenues. These can be of two

types. First we can add more dimensions to spacetime, therefore the Poincaré - symmetries of the

standard model and more generally the general coordinate transformations of general relativity, get

substantially enhanced. This is the well known Kaluza - Klein theory in which our observation of

a four-dimensional universe is only due to the fact that we have limitations about ”seeing” other

dimensions of spacetime that may be hidden to our experiments.

In recet years this has been extended to the ”brane - world” scenario in which our four-dimensional

universe is only a brane or surface inside a larger dimensional universe. These ideas approach very

few of the problems of the standard model. They may lead to a different perspective of the hierarchy

problem and also about the possibility to unify internal and spacetime symmetries.

The second option is supersymmetry. Supersymmetry is a spacetime symmetry, despite the fact

that it is seen as a transformation that exchanges bosons and fermions. Supersymmetry solves the

naturalness issue (the most important part) of the hierarchy problem due to cancellations between

the contributions of bosons and fermions to the electroweak scale, defined by the Higgs mass.

Combined with the GUT idea, it solves the unification of the three gauge couplings at one single

point at larger energies. Supersymmetry also provides the best example for dark matter candidates.

It also provides well defined QFTs in which issues of strong coupling can be better studied than in

the non-supersymmetric models.

• Beyond QFT. Supersymmetry and extra dimensions do not address the most fundamental problem

mentioned above, that is the problem of quantising gravity. For this the best hope is string theory

which goes beyond our basic framework of QFT. It so happens that for its consistency string theory

requires supersymmetry and extra dimensions also. This gives a further motivation to study these

two areas which are the subject of this course.
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Chapter 2

Supersymmetry Algebra and

Representations

2.1 Poincaré Symmetry and Spinors

The Poincaré group corresponds to the basic symmetries of special relativity, it acts on spacetime coor-

dinates xµ as follows:

xµ 7−→ x′µ = Λµ ν
︸︷︷︸

Lorentz

xν + aµ
︸︷︷︸

translation

Lorentz transformations leave the metric tensor ηµν = diag(1 , −1 , −1 , −1) invariant:

ΛT ηΛ = η

They can be separated between those that are connected to the identity and this that are not (like parity

for which Λ = diag(1 , −1 , −1 , −1). We will mostly discuss those Λ connected to identity, i.e. the

proper orthochronous group SO(3, 1)↑. Generators for the Poincaré group are the Mµν , P σ with algebra

[

Pµ , P ν
]

= 0
[

Mµν , P σ
]

= i(Pµηνσ − P νηµσ)
[

Mµν , Mρσ
]

= i(Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ)

A four-dimensional matrix representation for the Mµν is

(Mρσ)µ ν = i(ηµνδρ ν − ηρµδσ ν)

2.1.1 Properties of Lorentz - Group

• Locally, we have a correspondence

SO(3, 1) ∼= SU(2)⊕ SU(2) ,

15
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the generators Ji of rotations and Ki of Lorentz - boosts can be expressed as

Ji =
1

2
ǫijkMjk , Ki = M0i ,

and their linear combinations (which are not hermitian)

Ai =
1

2
(Ji + iKi) , Bi =

1

2
(Ji − iKi)

satisfy SU(2) commutation - relations

[

Ai , Aj

]

= iǫijkAk ,
[

Bi , Bj

]

= iǫijkBk ,
[

Ai , Bj

]

= 0 .

Under parity P (x0 7→ x0 and ~x 7→ −~x) we have

Ji 7−→ Ji , Ki 7−→ −Ki =⇒ Ai ←→ Bi .

We can interpret ~J = ~A+ ~B as the physical spin.

• On the other hand, there is a homeomorphism (not an isomorphism)

SO(3, 1) ∼= SL(2,C) :

Take a 4 - vector X and a corresponding 2× 2 - matrix x̃,

X = xµe
µ = (x0 , x1 , x2 , x3) , x̃ = xµσ

µ =




x0 + x3 x1 − ix2

x1 + ix2 x0 − x3



 ,

where σµ is the 4 - vector of Pauli - matrices

σµ =










1 0

0 1



 ,




0 1

1 0



 ,




0 −i
i 0



 ,




1 0

0 −1










.

Transformations X 7→ ΛX under SO(3, 1) leaves the square

|X |2 = x2
0 − x2

1 − x2
2 − x2

3

invariant, whereas the action of SL(2,C) mapping x̃ 7→ Nx̃N † with N ∈ SL(2,C) preserves the

determinant

det x̃ = x2
0 − x2

1 − x2
2 − x2

3 .

The map between SL(2,C) is 2 - 1, since N = ±1 both correspond to Λ = 1, but SL(2,C) has the

advantage to be simply connected, so SL(2,C) is the universal covering group.

2.1.2 Representations and Invariant Tensors of SL(2,C)

The basic representations of SL(2,C) are:

• The fundamental representation

ψ′
α = Nα

βψβ , α, β = 1, 2

The elements of this representation ψα are called left-handed Weyl spinors.
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• The conjugate representation

χ̄′
α̇ = N∗

α̇
β̇χ̄β̇ , α̇, β̇ = 1, 2

Here χ̄β̇ are called right-handed Weyl spinors.

• The contravariant representations

ψ′α = ψβ(N−1)β
α , χ̄′α̇ = χ̄β̇(N∗−1)β̇

α̇

The fundamental and conjugate representations are the basic representations of SL(2,C) and the Lorentz

group, giving then the importance to spinors as the basic objects of special relativity, a fact that could

be missed by not realising the connection of the Lorentz group and SL(2,C). We will see next that the

contravariant representations are however not independent.

To see this we will consider now the different ways to raise and lower indices.

• The metric tensor ηµν = (ηµν)
−1 is invariant under SO(3, 1).

• The analogy within SL(2,C) is

ǫαβ =




0 1

−1 0



 = −ǫαβ ,

since

ǫ′αβ = ǫρσNρ
αNσ

β = ǫαβ · detN .

That is why ǫ is used to raise and lower indices

ψα = ǫαβψβ , χ̄α̇ = ǫα̇β̇χ̄β̇ ,

so contravariant representations are not independent.

• To handle mixed SO(3, 1)- and SL(2,C) - indices, recall that the transformed components xµ should

look the same, whether we transform the vector X via SO(3, 1) or the matrix x̃ = xµσ
µ

(xµσ
µ)αα̇ 7−→ Nα

β(xνσ
ν)βγ̇N

∗
α̇
γ̇ = Λµ

νxνσ
µ ,

so the right transformation rule is

(σµ)αα̇ = Nα
β(σν)βγ̇(Λ

−1)µ νN
∗
α̇
γ̇ .

Similar relations hold for

(σ̄µ)α̇α := ǫαβǫα̇β̇(σµ)ββ̇ = (1 , −~σ) .

2.1.3 Generators of SL(2,C)

Define tensors σµν , σ̄µν

(σµν)α
β =

i

4
(σµσ̄ν − σν σ̄µ)α β

(σ̄µν)α̇
β̇ =

i

4
(σ̄µσν − σ̄νσµ)α̇ β̇
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which satisfy the Lorentz - algebra. Spinors transform like

ψα 7−→ exp

(

− i
2
ωµνσ

µν

)

α

βψβ (left - handed)

χ̄α̇ 7−→ exp

(

− i
2
ωµν σ̄

µν

)α̇

β̇χ̄
β̇ (right - handed)

Now consider the spins with respect to the SU(2)s spanned by the Ai and Bi:

ψα : (A , B) =

(
1

2
, 0

)

=⇒ Ji =
1

2
σi , Ki = − i

2
σi

χ̄α̇ : (A , B) =

(

0 ,
1

2

)

=⇒ Ji =
1

2
σi , Ki = +

i

2
σi

Here are some useful identities concerning the σµ and σµν ,

σµσ̄ν + σν σ̄µ = 2ηµν1
Tr
{

σµσ̄ν
}

= 2ηµν

(σµ)αα̇(σ̄µ)β̇β = 2δα
βδα̇

β̇

σµν =
1

2i
ǫµνρσσρσ

σ̄µν = − 1

2i
ǫµνρσ σ̄ρσ ,

the last of which are known as self - duality and anti - self - duality. These are important because naively

σµν being antisymmetric seems to have 4 × 3/2 components, but the self-duality conditions reduces

this by half. A reference - book illustrating many of the calculations for two - component spinors is

”Supersymmetry” (Müller, Kristen, Wiedermann).

2.1.4 Products of Weyl - Spinors

Define the product of two Weyl - spinors as

χψ := χαψα = −χαψα

χ̄ψ̄ := χ̄α̇ψ̄
α̇ = −χ̄α̇ψ̄α̇ ,

particularly,

ψ2 = ψψ = ψαψα = ǫαβψβψα = ψ2ψ1 − ψ1ψ2 .

Choose the ψα to be anticommuting Grassmann - numbers: ψ1ψ2 = −ψ2ψ1, so

ψαψβ =
1

2
ǫαβ(ψψ) , χψ = ψχ , (χψ)(χψ) = −1

2
(ψψ)(χχ) .

From the definitions

ψ†
α := ψ̄α̇ , ψ̄α̇ := ψ∗

β(σ
0)βα̇

it follows that

ψσµνχ = −(χσµνψ)

(χψ)† = χ̄ψ̄

(ψσµχ̄)† = χσµψ̄ .
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In general we can generate all higher dimensional representations of the Lorentz group by products of

the fundamental representation (1/2, 0) and its conjugate (0, 1/2). For instance:

ψαχ̄α̇ =
1

2
(ψσµχ̄) σµαα̇.

In terms of the spins (A,B) this corresponds to the decomposition (1/2, 0) ⊗ (0, 1/2) = (1/2, 1/2).

Similarly:

ψαχβ =
1

2
ǫαβ (ψχ) +

1

2

(
σµνǫT

)

αβ
(ψσµνχ)

Which corresponds to (1/2, 0) ⊗ (1/2, 0) = (0, 0) ⊕ (1, 0). Notice that the counting of independent

components of σµν from its self-duality property, precisely provides the right number of components for

the (1, 0) representation.

2.1.5 Dirac - Spinors

To connect the ideas of Weyl spinors with the more standard Dirac theory, define

γµ :=




0 σµ

σ̄µ 0



 ,

then these γµ satisfy the Clifford - algebra

{

γµ , γν
}

= 2ηµν1 .
The matrix γ5, defined as

γ5 := iγ0γ1γ2γ3 =




−1 0

0 1  ,

can have eigenvalues ±1 (chirality). The generators of the Lorentz - group are

Σµν =
i

4
γµν =




σµν 0

0 σ̄µν



 .

Define Dirac - spinors to be

ΨD :=




ψα

χ̄α̇





such that the action of γ5 is

γ5ΨD =




−1 0

0 1  ψα

χ̄α̇



 =




−ψα
χ̄α̇



 .

We can define the following projection operators PL, PR,

PL :=
1

2
(1− γ5) , PR :=

1

2
(1+ γ5) ,

eliminate the part of one chirality, i.e.

PLΨD =




ψα

0



 , PRΨD =




0

χ̄α̇



 .
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Finally, define the Dirac - conjugate ΨD and charge - conjugate spinor ΨD
C by

ΨD := (χα , ψ̄α̇) = Ψ†
Dγ

0

ΨD
C := CΨ

T

D =




χα

ψ̄α̇



 ,

where C denotes the charge - conjugation - matrix

C :=




ǫαβ 0

0 ǫα̇β̇



 .

Majorana - spinors ΨM have property ψα = χα, so

ΨM =




ψα

ψ̄α̇



 = ΨM
C .

Decompose general Dirac - spinors (and their charge - conjugates) as

ΨD = ΨM1 + iΨM2 , ΨD
C = ΨM1 − iΨM2 .

Note from this discussion that there can be no spinors in 4 dimensions which are both Majorana and

Weyl.

2.2 Supersymmetry - Algebra

2.2.1 History of Supersymmetry

• In the 1960’s, from the study of strong interactions, many hadrons have been discovered and were

successfully organized in multiplets of SU(3)flavour In what was known as the ”eightfold way” of

Gell-Mann and Neeman. Questions arouse about bigger multiplets including particles of different

spins.

• No - go - theorem (Coleman - Mandula 1967): most general symmetry of the S - matrix is Poincaré

⊗ internal, that cannot mix different spins

• Golfand + Licktman (1971): extended the Poincaré algebra to include spinor generators Qα, where

α = 1, 2.

• Ramond + Neveu - Schwarz + Gervais + Sakita (1971): supersymmetry in 2 dimensions (from

string theory).

• Volkov + Akulov (1973): neutrinos as Goldstone - particles (m = 0)
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• Wess + Zumino (1974): supersymmetric field - theories in 4 dimensions. They opened the way

to many other contributions to the field. This is generally seen as the actual starting point on

systematic study of supersymmetry.

• Haag + Lopuszanski + Sohnius (1975): Generalized Coleman - Mandula - theorem including spinor

- generators QAα (α = 1, 2 and A = 1, ..., N) corresponding to spins (A , B) =
(

1
2 , 0

)
and Q̄Aα̇ with

(A , B) =
(
0 , 1

2

)
in addition to Pµ and Mµν ; but no further generators transforming in higher

dimensional representations of the Lorentz group such as
(
1 , 1

2

)
, etc.

2.2.2 Graded Algebra

In order to have a supersymmetric extension of the Poincaré algebra, we need to introduce the concept

of ”graded algebras”. Let Oa be a operators of a Lie - algebra, then

OaOb − (−1)ηaηbObOa = iCe abOe ,

where gradings ηa take values

ηa =







0 : Oa bosonic generator

1 : Oa fermionic generator
.

For supersymmetry, generators are the Poincaré - generators Pµ, Mµν and the spinor - generators QAα ,

Q̄Aα̇ , where A = 1, ..., N . In case N = 1 we speak of a simple SUSY, in case N > 1 of an extended SUSY.

In this chapter, we will only discuss N = 1.

We know the commutation - relations [Pµ, P ν ], [Pµ,Mρσ] and [Mµν ,Mρσ] from Poincaré - algebra, so

we need to find

(a)
[

Qα , M
µν
]

, (b)
[

Qα , P
µ
]

,

(c)
{

Qα , Qβ

}

, (d)
{

Qα , Q̄β̇

}

,

also (for internal symmetry - generators Ti)

(e)
[

Qα , Ti

]

.

• (a)
[

Qα , M
µν
]

Since Qα is a spinor, it transforms under the exponential of the SL(2,C) - generators σµν :

Q′
α = exp

(

− i
2
ωµνσ

µν

)

α

βQβ ≈
(1− i

2
ωµνσ

µν

)

α

βQβ ,

but Qα is also an operator transforming under Lorentz - transformations U = exp
(
− i

2ωµνM
µν
)

to

Q′
α = U †QαU ≈

(1+
i

2
ωµνM

µν

)

Qα

(1− i

2
ωµνM

µν

)

.
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Compare these two expressions for Q′
α up to first order in ωµν ,

Qα −
i

2
ωµν (σµν)α

βQβ = Qα −
i

2
ωµν(QαM

µν −MµνQα) +O(ω2)

=⇒
[

Qα , M
µν
]

= (σµν)α
βQβ

• (b)
[

Qα , P
µ
]

c · (σµ)αα̇Q̄α̇ is the only way of writing a sensible term with free indices µ, α which is linear in

Q. To fix the constant c, consider [Q̄α̇, Pµ] = c∗ · (σ̄)α̇βQβ (take adjoints using (Qα)† = Q̄α̇ and

(σµQ̄)†α = (Qσµ)α̇). The Jacobi - identity for Pµ, P ν and Qα

0 =

[

Pµ ,
[

P ν , Qα

]
]

+

[

P ν ,
[

Qα , P
µ
]
]

+

[

Qα ,
[

Pµ , P ν
]

︸ ︷︷ ︸

0

]

= −c(σν)αα̇
[

Pµ , Q̄α̇
]

+ c(σµ)αα̇

[

P ν , Q̄α̇
]

= |c|2(σν)αα̇(s̄i
µ
)α̇βQβ − |c|2(σµ)αα̇(σ̄ν)α̇βQβ

= |c|2 (σν σ̄µ − σµσ̄ν)α β
︸ ︷︷ ︸

6=0

Qβ

can only hold for general Qβ , if c = 0, so

[

Qα , P
µ
]

=
[

Q̄α̇ , Pµ
]

= 0

• (c)
{

Qα , Qβ

}

Due to index - structure, that commutator should look like

{

Qα , Q
β
}

= k · (σµν)α βMµν .

Since the left hand side commutes with Pµ and the right hand side doesn’t, the only consistent

choice is k = 0, i.e.
{

Qα , Qβ

}

= 0

• (d)
{

Qα , Q̄β̇

}

This time, index - structure implies an ansatz

{

Qα , Q̄β̇

}

= t(σµ)αβ̇Pµ .

There is no way of fixing t, so, by convention, set t = 2:

{

Qα , Q̄β̇

}

= 2(σµ)αβ̇Pµ

Notice that two symmetry - transformations QαQ̄β̇ have the effect of a translation. Let |B〉 be a bosonic

state and |F 〉 a fermionic one, then

Qα|F 〉 = |B〉 , Q̄β̇|B〉 = |F 〉 =⇒ QQ̄ : |B〉 7−→ |B〉 (translated) .
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• (e)
[

Qα , Ti

]

Usually, this commutator vanishes, exceptions are U(1) - automorphisms of the supersymmetry

algebra known as R-symmetry.

Qα 7−→ exp(iλ)Qα , Q̄α̇ 7−→ exp(−iλ)Q̄α̇ .

Let R be a U(1) - generator, then

[

Qα , R
]

= Qα ,
[

Q̄α̇ , R
]

= −Q̄α̇ .

2.2.3 Representations of the Poincaré - Group

Recall the rotation - group {Ji} satisfying

[

Ji , Jj

]

= iǫijkJk .

The Casimir operator

J2 =

3∑

i=1

J2
i

commutes with all the Ji labels irreducible representations by eigenvalues j(j + 1) of J2. Within these

representations, diagonalize J3 to eigenvalues j3 = −j,−j + 1, ..., j − 1, j. States are labelled like |j, j3〉.

Also recall the two Casimirs in Poincaré - group, one of which involves the Pauli - Ljubanski - vector Wµ,

Wµ =
1

2
ǫµνρσP

νMρσ

given by

C1 = PµPµ , C2 = WµWµ .

The Ci commute with all generators. Multiplets are labelled |m,ω〉, eigenvalues m2 of C1 and eigenvalues

of C2. States within those irreducible representations carry the eigenvalue pµ of the generator Pµ as a

label. Notice that at this level the Pauli-Ljubanski vector only provides a short way to express the second

Casimir. Even though Wµ has standard commutation relations with the generators of the Poincaré group

Mµν , Pµ statitng that it transfrom as a vector under Lorentz transformations and commutes with Pµ

(invariant under translations), the commutator [Wµ,Wν ] ∼ ǫµνρσWρ¶σ states that te Wµ’s by themselves

are not generators of any algebra.

To find more labels, take Pµ as given and look for all elements of the Lorentz - group that commute with

Pµ. This defines little groups:
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• Massive particles, pµ = (m , 0 , 0 , 0
︸ ︷︷ ︸

invariant under rot.

), have rotations as their little group. Due to the

antisymmetric ǫµνρσ in the Wµ, it follows

W0 = 0 , Wi = −mJi .

Every particle with nonzero mass is an irreducible representation of Poincaré - group with labels

|m, j; pµ, j3〉.

• Massless particles’ momentum has the form pµ = (E , 0 , 0 , E) which implies

W0 = EJ3 , W1 = E(−J1 +K2) , W2 = E(J2 −K1) , W3 = EJ3

=⇒
[

W1 , W2

]

= 0 ,
[

W3 , W1

]

= iW2 ,
[

W3 , W2

]

= −iW1 .

Commutation - relations are those for Euclidean group in two dimensions. For finite - dimensional

representations, SO(2) is a subgroup and W1, W2 have to be zero. In that case, Wµ = λPµ

and states are labelled |0, 0; pµ, λ〉 =: |pµ, λ〉, where λ is called helicity. Under CPT, those states

transform to |pµ,−λ〉. The relation

exp(2πiλ)|pµ, λ〉 = ±|pµ, λ〉

requires λ to be integer or half - integer λ = 0, 1
2 , 1, ..., e.g. λ = 0 (Higgs), λ = 1

2 (quarks, leptons),

λ = 1 (γ, W±, Z0, g) and λ = 2 (graviton).

2.2.4 N = 1 Supersymmetry Representations

For Supersymmetry with N = 1, C1 = PµPµ is still a good casimir, C2 = WµWµ, however, is not. So

one can have particles of different spin within one multiplet. To get a new casimir C̃2 (corresponding to

superspin), define

Bµ := Wµ −
1

4
Q̄α̇(σµ)α̇βQβ , Cµν := BµPν −BνPµ

C̃2 := CµνC
µν .

Proposition 1

In any supersymmetric multiplet, the number nB of bosons equals the number nF of fermions,

nB = nF .
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Proof 1

Consider the fermion - number - operator (−1)F = (−)F , defined via

(−)F |B〉 = |B〉 , (−)F |F 〉 = −|F 〉 .

The new operator (−)F anticommutes with Qα since

(−)FQα|F 〉 = (−)F |B〉 = |B〉 = Qα|F 〉 = −Qα(−)F |F 〉 =⇒
{

(−)F , Qα

}

= 0 .

Next, consider the trace

Tr

{

(−)F
{

Qα , Q̄β̇

}
}

= Tr
{

(−)FQα
︸ ︷︷ ︸

anticommute

Q̄β̇ + (−)F Q̄β̇Qα
︸ ︷︷ ︸

cyclic perm.

}

= Tr
{

−Qα(−)F Q̄β̇ +Qα(−)F Q̄β̇

}

= 0 .

On the other hand, it can be evaluated using {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ,

Tr

{

(−)F
{

Qα , Q̄β̇

}
}

= Tr

{

(−)F 2(σµ)αβ̇Pµ

}

= 2(σµ)αβ̇pµTr
{

(−)F
}

,

where Pµ is replaced by its eigenvalues pµ for the specific state. The conclusion is

0 = Tr
{

(−)F
}

=
∑

bosons

〈B|(−)F |B〉+
∑

fermions

〈F |(−)F |F 〉 =
∑

bosons

〈B|B〉−
∑

fermions

〈F |F 〉 = nB−nF .

2.2.5 Massless Supermultiplet

States of massless particles have Pµ - eigenvalues pµ = (E , 0 , 0 , E). The casimirs C1 = PµPµ and

C̃2 = CµνC
µν are zero. Consider the algebra

{

Qα , Q̄β̇

}

= 2(σµ)αβ̇P
µ = 2E(σ0 + σ3)αβ̇ = 4E




1 0

0 0





αβ̇

,

which implies that Q2 is zero in the representation:

{

Q2 , Q̄2̇

}

= 0 =⇒ 〈pµ, λ|Q̄2̇Q2|p̃µ, λ̃〉 = 0 =⇒ Q2 = 0

The Q1 satisfy {Q1, Q̄1̇} = 4E, so defining creation- and annihilation - operators a and a† via

a :=
Q1

2
√
E
, a† :=

Q̄1̇

2
√
E
,

get the anticommutation - relations

{

a , a†
}

= 1 ,
{

a , a
}

=
{

a† , a†
}

= 0 .
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Also, since [a, J3] = 1
2 (σ3)11a = 1

2a,

J3
(
a|pµ, λ〉

)
=

(

aJ3 −
[

a , J3
]
)

|pµ, λ〉 =

(

aJ3 − 1

2
a

)

|pµ, λ〉 =

(

λ− 1

2

)

a|pµ, λ〉 .

a|pµ, λ〉 has helicity λ− 1
2 , and by similar reasoning, find that the helicity of a†|pµ, λ〉 is λ+ 1

2 . To build the

representation, start with a vacuum - state of mimimum helicity λ, let’s call it |Ω〉. Obviously a|Ω〉 = 0

(otherwise |Ω〉 would not have lowest helicity) and a†a†|Ω〉 = 0|Ω〉 = 0, so the whole multiplet consists of

|Ω〉 = |pµ, λ〉 , a†|Ω〉 = |pµ, λ+
1

2
〉 .

Add the CPT - conjugate to get

|pµ,±λ〉 , |pµ,±
(

λ+
1

2

)

〉 .

There are, for example, chiral multiplets with λ = 0, 1
2 , vector- or gauge - multiplets (λ = 1

2 , 1 - gauge

and gaugino)

λ = 0 scalar λ = 1
2 fermion

squark quark

slepton lepton

Higgs Higgsino

,

λ = 1
2 fermion λ = 1 boson

photino photon

gluino gluon

W ino , Zino W , Z

,

as well as the graviton with its partner

λ = 3
2 fermion λ = 2 boson

gravitino graviton

2.2.6 Massive Supermultiplet

In case of m 6= 0, there are Pµ - eigenvalues pµ = (m , 0 , 0 , 0) and Casimirs

C1 = PµPµ = m2 , C̃2 = CµνC
µν = 2m4Y iYi ,

where Yi denotes superspin

Yi = Ji −
1

4m
Q̄σ̄iQ =

Bi
m

,
[

Yi , Yj

]

= iǫijkYk .

Eigenvalues to Y 2 = Y iYi are y(y + 1), so label irreducible representations by |m, y〉. Again, the anti-

commutation - relation for Q and Q̄ is the key to get the states:

{

Qα , Q̄β̇

}

= 2(σµ)αβ̇Pµ = 2m(σ0)αβ̇ = 2m




1 0

0 1





αβ̇

Since both Q’s have nonzero anticommutators with their Q̄ - partner, define two sets of ladder - operators

a1,2 :=
Q1,2√
2m

, a†1,2 :=
Q̄1̇,2̇√
2m

,
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with anticommutation - relations

{

ap , a
†
q

}

= δpq ,
{

ap , aq

}

=
{

a†p , a
†
q

}

= 0 .

Let |Ω〉 be the vacuum state, annihilated by a1,2. Conseqently,

Yi|Ω〉 = Ji|Ω〉 −
1

4m
Q̄σi
√

2ma|Ω〉
︸︷︷︸

0

= Ji|Ω〉 ,

i.e. for |Ω〉 the spin number j and superspin - number y are the same. So for given m, y:

|Ω〉 = |m, j = y; pµ, j3〉

Obtain the rest of the multiplet using

a1|j3〉 = |j3 −
1

2
〉 , a†1|j3〉 = |j3 +

1

2
〉

a2|j3〉 = |j3 +
1

2
〉 , a†2|j3〉 = |j3 −

1

2
〉 ,

where a†p acting on |Ω〉 behave like coupling of two spins j and 1
2 . This will yield a linear combination of two

possible total spins j+ 1
2 and j− 1

2 with Clebsch - Gordan - coefficients ki (recall j⊗1/2 = |j−1/2|⊕+1/2|):

a†1|Ω〉 = k1|m, j = y +
1

2
; pµ, j3 +

1

2
〉+ k2|m, j = y − 1

2
; pµ, j3 +

1

2
〉

a†2|Ω〉 = k3|m, j = y +
1

2
; pµ, j3 −

1

2
〉+ k4|m, j = y − 1

2
; pµ, j3 −

1

2
〉 .

The remaining states

a†2a
†
1|Ω〉 = −a†1a†2|Ω〉 ∝ |Ω〉

represent spin j - objects. In total, we have

2 · |m, j = y; pµ, j3〉
︸ ︷︷ ︸

(4y+2) states

, 1 · |m, j = y +
1

2
; pµ, j3〉

︸ ︷︷ ︸

(2y+3) states

, 1 · |m, j = y − 1

2
; pµ, j3〉

︸ ︷︷ ︸

(2y+1) states

,

in a |m, y〉 - multiplet, which is of course an equal number of bosonic and fermionic states. Notice that

in labelling the states we have the value of m and y fixed throughout the multplet and the values of j

change state by state, as it should since in a supersymmetric multplet there are states of different spin.

The case y = 0 needs to be treated separately:

|Ω〉 = |m, j = 0; pµ, j3 = 0〉

a†1,2|Ω〉 = |m, j =
1

2
; pµ, j3 = ±1

2
〉

a†1a
†
2|Ω〉 = |m, j = 0; pµ, j3 = 0〉 =: |Ω′〉

Parity interchanges (A , B) ↔ (B , A), i.e. (1
2 , 0)↔ (0 , 1

2 ). Since {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, need the

following transformation - rules for Qα and Q̄α̇ under parity P (with phase factor ηP such that |ηP | = 1):

PQαP
−1 = ηP (σ0)αβ̇Q̄

β̇ = ηP (σ0)αβ̇ǫ
β̇γ̇Q̄γ̇

PQ̄α̇QP
−1 = η∗P (σ̄0)α̇βQ

β = η∗P (σ̄0)α̇βǫ
βγQγ
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That ensures Pµ 7→ (P 0 , −~P ) and has the interesting effect P 2QP−2 = −Q. Moreover, consider the

two j = 0 - states |Ω〉 and |Ω′〉: The first is annihilated by ai, the second one by a†i . Due to Q ↔ Q̄,

partiy interchanges ai and a†i and therefore |Ω〉 ↔ |Ω′〉. To get vacuum - states with a definied parity,

we need linear combinations

|±〉 := |Ω〉 ± |Ω′〉 , P |±〉 = ±1 · |±〉 .

Those states are called scalar (|+〉) and pseudoscalar (|−〉).

2.3 Extended Supersymmetry

Having discussed the algebra and representations of simple (N = 1) supersymmetry, we will turn now to

the more general case of extended supersymmetry N > 1.

2.3.1 Algebra of Extended Supersymmetry

Now, the spinor - generators get an additional label A,B = 1, 2, ..., N . The algebra is the same as for

N = 1 except for

{

QAα , Q̄β̇B

}

= 2(σµ)αβ̇Pµδ
A
B

{

QAα , QBβ

}

= ǫαβZ
AB

with antisymmetric central - charges ZAB = −ZBA commuting with all the generators

[

ZAB , Pµ
]

=
[

ZAB , Mµν
]

=
[

ZAB , QAα

]

=
[

ZAB , ZCD
]

=
[

ZAB , Ta

]

= 0 .

They form an abelian invariant subalgebra of internal symmetries. Recall that [Ta, Tb] = iCabcTc. Let G

be an internal symmetry group, then define the R - symmetry H ⊂ G to be the set of G - elements that

do not commute with the Supersymmetry - generators, e.g. Ta ∈ G satisfying

[

QAα , Ta

]

= Sa
A
BQ

B
α 6= 0

is an element of H . If ZAB = 0, then the R - symmetry is H = U(N), but with ZAB 6= 0, H will be a

subgroup. The existence of central charges is the main new ingredient of extended supersymmetries. The

derivation of the previous algebra is a straightforward generalisation of the one for N = 1 supersymmetry.

2.3.2 Massless Representations of N > 1 - Supersymmetry

As we did for N = 1, we will procede now to discuss massless and massive representations. We will start

with the massless case which is simpler and has very important implications.
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Let pµ = (E , 0 , 0 , E), then (similar to N = 1).

{

QAα , Q̄β̇B

}

= 4E




1 0

0 0





αβ̇

δA B =⇒ QA2 = 0

We can immmediately see from this that the central charges ZAB vanish since QA2 = 0 implies ZAB = 0

from the anticommutators
{

QAα , QBβ

}

= ǫαβZ
AB.

In order to obtain the full representation, define N creation- and annihilation - operators

aA :=
QA1

2
√
E
, aA† :=

Q̄A
1̇

2
√
E

=⇒
{

aA , a†B

}

= δA B ,

to get the following states (starting from vacuum |Ω〉, which is annihilated by all the aA):

states helicity number of states

|Ω〉 λ0 1 =




N

0





aA†|Ω〉 λ0 + 1
2 N =




N

1





aA†aB†|Ω〉 λ0 + 1 1
2!N(N − 1) =




N

2





aA†aB†aC†|Ω〉 λ0 + 3
2

1
3!N(N − 1)(N − 2) =




N

3





...
...

...

aN†a(N−1)†...a1†|Ω〉 λ0 + N
2 1 =




N

N





Note that the total number of states is given by

N∑

k=0




N

k



 =

N∑

k=0




N

k



 1k1N−k = 2N .

Consider the following examples:

• N = 2 vector - multiplet (λ0 = 0)

λ = 0

λ = 1
2 λ = 1

2

λ = 1

We can see that this N = 2 multiplet can be decomposed in terms of N = 1 multplets: one N = 1

vector and one N = 1 chiral multiplet.

• N = 2 hyper - multiplet (λ0 = − 1
2 )

λ = − 1
2

λ = 0 λ = 0

λ = 1
2

Again this can be decomposed in terms of two N = 1 chiral multiplets.
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• N = 4 vector - multiplet (λ0 = −1)

1× λ = −1

4× λ = − 1
2

6× λ = ±0

4× λ = + 1
2

1× λ = +1

This is the sinlge N = 4 multiplet with states of helicity λ < 2. It consists of one N = 2 vector

multiplet and two N = 2 hypermultiplets plus their CPT conjugates (with opposite helicities). Or

one N = 1 vector and three N = 1 chiral multiplets plus their CPT conjugates.

• N = 8 maximum - multiplet (λ0 = −2)

1× λ = ±2

8× λ = ± 3
2

28× λ = ±1

56× λ = ± 1
2

70× λ = ±0

From these results we can extract very important general conclusions:

• In every multiplet: λmax − λmin = N
2

• Renormalizable theories have |λ| ≤ 1 implying N ≤ 4. Therefore N = 4 supersymmetry is the

largest supersymmetry for renormalizable field theories. Gravity is not renormalizable!

• The maximum number of supersymmetries is N = 8. There is a strong belief that no massless

particles of helicity |λ| > 2 exist (so only have N ≤ 8). One argument is the fact that massless

particle of |λ| > 1
2 and low momentum couple to some conserved currents (∂µj

µ = 0 in λ = ±1

- electromagnetism, ∂µT
µν in λ = ±2 - gravity). But there are no further conserved currents for

|λ| > 2 (something that can also be seen from the Coleman-Mandula theorem). Also, N > 8 would

imply that there is more than one graviton. See chapter 13 in Weinberg I on soft photons for a

detailed discussion of this and the extension of his argument to supersymmetry in an article by

Grisaru and Pendleton (1977). Notice this is not a full no-go theorem, in particular the constraint

of low momentum has to be used.

• N > 1 - supersymmetries are non - chiral. We know that the Standard Model - particles live on

complex fundamental representations. They are chiral since right handed quarks and leptons do not

feel the weak interactions whereas left-handed ones do feel it (they are doublets under SU(2)L). All

N > 1 - multiplets, except for the N = 2 - hypermultiplet, have λ = ±1 - particles transforming in

the adjoint representation which is real (recall that in SU(N) theories the adjoint representation is

obtained from theproduct of fundamental and complex conjugate representations and so is real) and

therefore non - chiral. Then the λ = ± 1
2 - particle within the multiplet would transform in the same

representation and therefore be non - chiral. The only exception is the N = 2 - hypermultiplets

- for this the previous argument doesn’t work because they do not include λ = ±1 states, but

since λ = 1
2 - and λ = − 1

2 - states are in the same multiplet, there can’t be chirality either in this
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multiplet. Therefore only N = 1, 0 can be chiral, for instance N = 1 with




1/2

0



 predicting

at least one extra particle for each Standard Model - particle. But they have not been observed.

Therefore the only hope for a realistic supersymmetric theory is: broken N = 1 - supersymmetry

at low energies E ≈ 102 GeV.

2.3.3 Massive Representations of N > 1 Supersymmetry and BPS States

Now consider pµ = (m , 0 , 0 , 0), so

{

QAα , Q̄β̇B

}

= 2m




1 0

0 1



 δA B .

Contrary to the massless case, here the central charges can be non-vanishing. Therefore we have to

distinguish two cases:

• ZAB = 0

There are 2N creation- and annihilation - operators

aAα :=
QAα√
2m

, aA†
α̇ :=

Q̄Aα̇√
2m

leading to 22N states, each of them with dimension (2y + 1). In the N = 2 case, we find:

|Ω〉 1× spin 0

aA†
α̇ |Ω〉 4× spin 1

2

aA†
α̇ aB†

β̇
|Ω〉 3× spin 0 , 3× spin 1

aA†
α̇ aB†

β̇
aC†
γ̇ |Ω〉 4× spin 1

2

aA†
α̇ aB†

β̇
aC†
γ̇ aD†

δ̇
|Ω〉 1× spin 0

,

i.e. as predicted 16 = 24 states in total. Notice that these multplets are much larger than the

massless ones with only 2N states, due to the fact that in that case, half of the supersymmetry

generators vanish (QA2 = 0).

• ZAB 6= 0

Define the scalar quantity H to be

H := (σ̄0)β̇α
{

QAα − ΓAα , Q̄β̇A − Γ̄β̇A

}

≥ 0 .

As a sum of products AA†, H is semi-positive, and the ΓAα are defined as

ΓAα := ǫαβU
ABQ̄γ̇(σ̄

0)γ̇β

for some unitary matrix U (satisfying UU † = 1). Anticommutation - relations from the supersym-

metry - algebra imply

H = 8mN − 2 Tr
{

ZU † + UZ†
}

≥ 0 .
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Due to the polar - decomposition - theorem, each matrix Z can be written as a product Z = HV

of a positive hermitian H = H† and a unitary phase - matrix V = (V †)−1. Choose U = V , then

H = 8mN − 4 Tr
{

H
}

= 8mN − 4 Tr
{√

Z†Z
}

≥ 0 .

This is the BPS - bound for the mass m:

m ≥ 1

2N
Tr
{√

Z†Z
}

States of minimal m = 1
2NTr

{√
Z†Z

}

are called BPS (Bogomolnyi-Prasad-Sommerfeld) - states.

For these states the combination , QAα − ΓAα = 0 so the multiplet is shorter (similar to the massless

case in which Qa2 = 0) having only 2N instead of 22N states.

In N = 2, define the components of the antisymmetric ZAB to be

ZAB =




0 q1

−q1 0



 =⇒ m ≥ 1

2
q1 .

More generally, if N > 2 (but N even)

ZAB =






















0 q1 0 0 0 · · ·
−q1 0 0 0 0 · · ·

0 0 0 q2 0 · · ·
0 0 −q2 0 0 · · ·

0 0 0 0
. . .

...
...

...
...

. . .

0 qN
2

−qN
2

0






















,

the BPS - conditions holds block by block: 2m ≥ qi. To see that, define an H for each block. If k

of the qi are equal to 2m, there are 2N − 2k creation - operators and 22(N−k) states.

k = 0 =⇒ 22N states, long multiplet

0 < k <
N

2
=⇒ 22(N−k) states, short multiplets

k =
N

2
=⇒ 2N states, ultra - short multiplet

Remarks:

– BPS - states and -bounds started in soliton - (monopole-) solutions of Yang - Mills - systems,

which are localised finite-energy solutions of the classical equations of motion. The bound

refers to an energy bound.

– The BPS - states are stable since they are the lightest charged particles.

– The equivalence of mass and charge reminds that of charged black holes. Actually, extremal

black holes (which are the end points of the Hawking evaporation and therefore stable) happen

to be BPS states for extended supergravity theories.
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– BPS - states are important in understanding strong- / weak - coupling - dualities in field- and

string - theory. In particular the fact that they correspond to short multiplets allows to extend

them from weak to strong coupling since the size of a multplet is not expected to change by

changing continuously the coupling from weak to strong.

– In string theory the extended objects known as D - branes are BPS.
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Chapter 3

Superfields and Superspace

So far, we just considered supermultiplets, 1 particle - states. The goal is a supersymmetric field theory

describing interactions. Recall that particles are described by fields ϕ(xµ) with properties:

• function of coordinates xµ in Minkowski - spacetime

• transformation of ϕ under Lorentz - group

We want objects Φ(X),

• function of coordinates X in superspace

• transformation of Φ under Super - Poincaré

But what is that superspace?

3.1 Basics

3.1.1 Groups and Cosets

We know that every continuous group G defines a manifold MG via

Λ : G −→ MG ,
{

g = exp(iαaT
a)
}

−→
{

αa

}

,

where dimG = dimMG. Consider for example:

• G = U(1) with elements g = exp(iαQ), then α ∈ [0, 2π], so the corresponding manifold is the 1 -

sphere (a circle) MU(1) = S1.

• G = SU(2) with elements g =




p q

−q∗ p∗



, where complex parameters p and q satisfy |p|2+|q|2 =

1. Write p = x1 + ix2 and q = x3 + ix4 for xk ∈ R, then the constraint for p, q implies
∑4

k=1 x
2
k = 1,

so MSU(2) = S3

35
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• G = SL(2,C) with elements g = HV , V ∈ SU(2) and H = H† positive, detH = 1. Writing the

generic element h ∈ H as h = xµσ
µ =




x0 + x3 x1 + ix2

x1 − ix2 x0 − x3



, the determinant - constraint is

(x0)
2 −∑3

k=1(xk)
2 = 1, so MSL(2,C) = R3 × S3.

To be more general, let’s define a coset G/H where g ∈ G is identified with gh ∀ h ∈ H , e.g.

• G = U1(1) × U2(1) ∋ g = exp
(
i(α1Q1 + α2Q2)

)
, H = U1(1) ∋ h = exp(iβQ1). In G/H =

(
U1(1)× U2(1)

)
/U1(1), the identification is

gh = exp
{

i
(
(α1 + β)Q1 + α2Q2

)}

= exp
(
i(α1Q1 + α2Q2)

)
= g ,

so only α2 contains an effective information, G/H = U2(1).

• SU(2)/U(1) ∼ SO(3)/SO(2) = S2 This is the 2-sphere since g ∈ SU(2) can be written as g =



α β

−β∗ α∗



, identifying this by a U(1) element (eiγ , e−iγ) makes α effectively real and therefore

the parameter space is the 2-sphere (β2
1 + β2

2 + α2 = 1).

• More generally SO(n+ 1)/SO(n) = Sn.

heightwidthdepthSUSY02.png

• Minkowski = Poincaré / Lorentz = {ωµν, aµ}/{ωµν} simplifies to the translations {aµ = xµ} which

can be identified with Minkowski - space.

We define N = 1 - superspace to be the coset

Super - Poincaré / Lorentz =
{

ωµν , aµ, θα, θ̄α̇

}

/
{

ωµν
}

.

Recall that the general element g of Super - Poincaré - group is given by

g = exp
(
i(ωµνMµν + aµPµ + θαQα + θ̄α̇Q̄

α̇)
)
,

where Grassmann - parameters θα, θ̄β̇ reduce anticommutation - relations for Qα, Q̄β̇ to commutation -

relations:
{

Qα , Q̄α̇

}

= 2(σµ)αα̇Pµ =⇒
[

θαQα , θ̄
β̇Q̄β̇

]

= 2θα(σµ)αβ̇ θ̄
β̇Pµ

3.1.2 Properties of Grassmann - Variables

Recommendable books about Superspace are (Berezin), Supermanifolds (Bryce de Witt). Superspace

was first introduced in (Salam + Strathdee 1974).

Let’s first consider one single variable θ. When trying to expand a generic (analytic) function in θ as

a power - series, the fact θ2 = 0 cancels all the terms except for two,

f(θ) =
∞∑

k=0

fkθ
k = f0 + f1θ + f2 θ2

︸︷︷︸

0

+ ...
︸︷︷︸

0

= f0 + f1θ ,
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so the most general function f(θ) is linear. Of course, its derivative is given by df
dθ = f1. For integrals,

define
∫

dθ
df

dθ
:= 0 =⇒

∫

dθ = 0 ,

as if there were no boundary - terms. Integrals over θ are left to talk about: To get a non - trivial result,

define
∫

dθ θ := 1 =⇒ δ(θ) = θ .

The integral over a function f(θ) is equal to its derivative,

∫

dθ f(θ) =

∫

dθ (f0 + f1θ) = f1 =
df

dθ
.

Next, let θα, θ̄α̇ be spinors of Grassmann - numbers. Their squares are defined by

θθ := θαθα , θ̄θ̄ := θ̄α̇θ̄
α̇

=⇒ θαθβ = −1

2
ǫαβθθ , θ̄α̇θ̄β̇ =

1

2
ǫα̇β̇ θ̄θ̄ .

Derivatives work in analogy to Minkowski - coordinates:

∂θβ

∂θα
= δα

β =⇒ ∂θ̄β̇

∂θ̄α̇
= δα̇

β̇

As to multi - integrals,

∫

dθ1
∫

dθ2 θ2θ1 =
1

2

∫

dθ1
∫

dθ2 θθ = 1 ,

which justifies the definition

1

2

∫

dθ1
∫

dθ2 =:

∫

d2θ ,

∫

d2θ θθ = 1 ,

∫

d2θ

∫

d2θ̄ (θθ)(θ̄θ̄) = 1 ,

or written in terms of ǫ:

d2θ = −1

4
dθαdθβǫαβ , d2θ̄ =

1

4
dθ̄α̇dθ̄β̇ǫα̇β̇ .

Identifying integration and differentiation,

∫

d2θ =
1

4
ǫαβ

∂

∂θα
∂

∂θβ
,

∫

d2θ̄ = −1

4
ǫα̇β̇

∂

∂θ̄α̇
∂

∂θ̄β̇

3.1.3 Definition and Transformation of the General Scalar Superfield

To define a superfield, recall properties of scalar fields ϕ(xµ):

• function of spacetime - coordinates xµ
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• transformation under Poincaré, e.g. under translations:

Treating ϕ as an operator, a translation with parameter aµ will change it to

ϕ 7−→ exp(−iaµPµ)ϕ exp(iaµP
µ) .

But ϕ(xµ) is also a Hilbert - vector in some function - space F , so

ϕ(xµ) 7−→ exp(−iaµPµ)ϕ(xµ) =: ϕ(xµ − aµ) =⇒ Pµ = −i∂µ .

P is a representation of the abstract operator Pµ acting on F . Comparing the two transformation

- rules to first order in aµ, get the following relationship:

(1 − iaµPµ)ϕ(1 + iaµP
µ) = (1− iaµPµ)ϕ =⇒ i

[

ϕ , aµP
µ
]

= −iaµPµϕ = −aµ∂µϕ

For a general scalar superfield S(xµ, θα, θ̄α̇), do an expansion in powers of θα, θ̄α̇ which has a finite

number of nonzero terms:

S(xµ, θα, θ̄α̇) = ϕ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x) + (θσµθ̄)Vµ(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θρ(x) + (θθ)(θ̄θ̄)D(x)

Transformation of S(xµ, θα, θ̄α̇) under Super - Poincaré, firstly as a field - operator

S(xµ, θα, θ̄α̇) 7−→ exp
(
−i(ǫQ+ ǭQ̄)

)
S exp

(
i(ǫQ+ ǭQ̄)

)
,

secondly as a Hilbert - vector

S(xµ, θα, θ̄α̇) 7−→ exp
(
i(ǫQ+ ǭQ̄)

)
S(xµ, θα, θ̄α̇) = S

(
xµ − ic(ǫσµθ̄) + ic∗(θσµ ǭ), θ + ǫ, θ̄ + ǭ

)
.

Here, ǫ denotes a parameter, Q a representation of the spinor - generators Qα acting on functions of θ,

θ̄, and c is a constant to be fixed later, which is involved in the translation

xµ 7−→ xµ − ic(ǫσµθ̄) + ic∗(θσµ ǭ) .

The translation of arguments xµ, θα, θ̄α̇ imply,

Qα = −i ∂

∂θα
− c(σµ)αβ̇ θ̄β̇

∂

∂xµ
, Q̄α̇ = i

∂

∂θ̄α̇
+ c∗θβ(σµ)βα̇

∂

∂xµ
, Pµ = −i∂µ ,

where c can be determined from the commutation - relation

{

Qα , Q̄α̇
}

= 2(σµ)αα̇Pµ =⇒ Re{c} = 1

which, of course, holds in any representation. It is convenient to set c = 1. Again, a comparison of the

two expressions (to first order in ǫ) for the transformed superfield S is the key to get its commutation -

relations with Qα:

i
[

S , ǫQ+ ǭQ̄
]

= i(ǫQ+ ǭQ̄)S = δS
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Knowing the Q, Q̄ and S, get explicit terms for the change in the different parts of S:

δϕ = ǫψ + ǭχ̄

δψ = 2ǫM + σµǭ(i∂µϕ+ Vµ)

δχ̄ = 2ǭN − ǫσµ(i∂µϕ− Vµ)

δM = ǭλ̄− i

2
∂µψσ

µǭ

δN = ǫρ+
i

2
ǫσµ∂µχ̄

δVµ = ǫσµλ̄+ ρσµǭ+
i

2
(∂νψσµσ̄νǫ− ǭσ̄νσµ∂νχ̄)

δλ̄ = 2ǭD +
i

2
(σ̄νσµǭ)∂µVν + i(σ̄µǫ)∂µM

δρ = 2ǫD − i

2
(σν σ̄µǫ)∂µVν + iσµǭ∂µN

δD =
i

2
∂µ(ǫσ

µλ̄− ρσµǭ)

Note that δD is a total derivative.

3.1.4 Remarks on Superfields

• S1, S2 superfields ⇒ S1S2 superfields:

δ(S1S2) = i
[

S1S2 , ǫQ+ ǭQ̄
]

= iS1

[

S2 , ǫQ+ ǭQ̄
]

+ i
[

S1 , ǫQ+ ǭQ̄
]

S2

= S1

(
i(ǫQ+ ǭQ̄)S2

)
+ i
(
i(ǫQ+ ǭQ̄)S1

)
S2 = i(ǫQ+ ǭQ̄)(S1S2)

In the last step, we used the Leibnitz - property of the Q and Q̄ as differential - operators.

• Linear combinations of superfields are superfields again (straigtforward proof).

• ∂µS is a superfield but ∂αS is not:

δ(∂αS) = i
[

∂αS , ǫQ+ ǭQ̄
]

= i∂α

[

S , ǫQ+ ǭQ̄
]

= i∂α(ǫQ+ ǭQ̄)S 6= i(ǫQ+ ǭQ̄)(∂αS)

The problem is [∂α, ǫQ+ ǭQ̄] 6= 0. We need to define a covariant derivative,

Dα := ∂α + i(σµ)αβ̇ θ̄
β̇∂µ , D̄α̇ := −∂̄α̇ − iθβ(σµ)βα̇∂µ

which satisfies

{

Dα , Qβ
}

=
{

Dα , Q̄β̇
}

=
{

D̄α̇ , Qβ
}

=
{

D̄α̇ , Q̄β̇
}

= 0

and therefore
[

Dα , ǫQ+ ǭQ̄
]

= 0 =⇒ DαS superfield .

Also note that {Dα, D̄α̇} = 2i(σµ)αα̇∂µ.

• S = f(x) is a superfield only if f = const, otherwise, there would be some δψ ∝ ǫ∂µf . For constant

spinor c, S = cθ is not a superfield due to δφ = ǫc.
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S is not an irreducible representation of supersymmetry, so we can eliminate some of its components

keeping it still as a superfield. In general we can impose consistent constraints on S, leading to smaller

superfields that can be irreducible representations of the supersymmetry algebra. The relevant superfields

are:

• Chiral superfield Φ such that D̄α̇Φ = 0

• Antichiral superfield Φ̄ such that DαΦ̄ = 0

• Vector (or real) superfield V = V †

• Linear superfield L such that DDL = 0 and L = L†.

3.2 Chiral Superfields

We want to find the components of a superfields Φ satisfying D̄α̇Φ = 0. Define

yµ := xµ + iθσµθ̄ .

If Φ = Φ(y, θ, θ̄), then

D̄α̇Φ = −∂̄α̇Φ− ∂Φ

∂yµ
∂yµ

∂θ̄α̇
− iθβ(σµ)βα̇∂µΦ

= −∂̄α̇Φ− ∂µΦ(−iθσµ)α̇ − iθβ(σµ)βα̇∂µΦ

= −∂̄α̇Φ = 0 ,

so there is no θ̄α̇ - dependence and Φ depends only on y and θ. In components,

Φ(yµ, θα) = ϕ(yµ) +
√

2θψ(yµ) + θθF (yµ) ,

The physical components of a chiral superfield are: ϕ represents a scalar part (squarks, sleptons, Higgs),

ψ some s = 1
2 - particles (quarks, leptons, Higgsino) and F is an auxiliary - field in a way to be defined

later. There are 4 bosonic (complex ϕ, F ) and 4 fermionic (complex ψα) components. Reexpress Φ in

terms of xµ:

Φ(xµ, θα, θ̄α
′

) = ϕ(x) +
√

2θψ(x) + θθF (x) + iθσµθ̄∂µϕ(x) − i√
2
(θθ)∂µψ(x)σµθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ(x)

Under supersymmetry - transformation

δΦ = i(ǫQ+ ǭQ̄)Φ ,

find for the change in components

δϕ =
√

2ǫψ

δψ = i
√

2σµǭ∂µϕ+
√

2ǫF

δF = i
√

2ǭσ̄µ∂µψ .

So δF is another total derivative - term, just like δD in a general superfield. Note that:
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• The product of chiral superfields is a chiral superfield. In general, any holomorphic function f(Φ)

of chiral Φ is chiral.

• If Φ is chiral, then Φ̄ = Φ† is antichiral.

• Φ†Φ and Φ† + Φ are real superfields but neither chiral nor antichiral.

3.3 Vector Superfields

3.3.1 Definition and Transformation of the Vector Superfield

The most general vector superfield V (x, θ, θ̄) = V †(x, θ, θ̄) has the form

V (x, θ, θ̄) = C(x) + iθχ(x) − iθ̄χ̄(x) +
i

2
θθ
(
M(x) + iN(x)

)
− i

2
θ̄θ̄
(
M(x)− iN(x)

)

+ θσµθ̄Vµ(x) + i(θθ)θ̄

(

λ̄(x) +
i

2
σ̄µ∂µχ(x)

)

− i(θ̄θ̄)θ

(

λ(x) ± i

2
σµ∂µχ̄(x)

)

+
1

2
(θθ)(θ̄θ̄)

(

D − 1

2
∂µ∂

µC

)

.

These are 8 bosonic components C, M , N , D, Vµ and 4 + 4 fermionic ones (χα , λα).

If Λ is a chiral superfield, then i(Λ− Λ†) is a vector - superfield. It has components:

C = i(ϕ− ϕ†)

χ =
√

2ψ

1

2
(M + iN) = F

Vµ = −∂µ(ϕ+ ϕ†)

λ = D = 0

We can define a generalized gauge - transformations to vector fields via

V 7−→ V + i(Λ− Λ†) ,

which induces a standard gauge - transformation for the vector - component of V

Vµ 7−→ Vµ − ∂µ(ϕ+ ϕ†) =: Vµ − ∂µα .

Then we can choose ϕ, ψ, F within Λ to gauge away some of the components of V .
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3.3.2 Wess - Zumino - Gauge

We can choose the components of Λ above: ϕ, ψ, F in such a way to set C = χ = M = N = 0. This

defines the Wess-Zumino (WZ) gauge. A vector superfield in Wess - Zumino - gauge reduces to the form

VWZ (x, θ, θ̄) = (θσµθ̄)Vµ(x) + i(θθ)(θ̄λ̄) − i(θ̄θ̄)(θλ) +
1

2
(θθ)(θ̄θ̄)D(x) ,

The physical components of a vector superfield are: Vµ corresponding to gauge - particles (γ, W±, Z,

gluon), the λ and λ̄ to gauginos and D is an auxiliary - field in a way to be defined later. Powers of VWZ

are given by

V 2
WZ =

1

2
(θθ)(θ̄θ̄)V µVµ , V 2+n

WZ = 0 ∀ n ∈ N .

Note that the Wess - Zumino - gauge is not supersymmetric, since VWZ 7→ V ′
6W 6Z under supersymmetry.

However, under a combination of supersymmetry and generalized gauge - transformation V ′
6W 6Z 7→ V ′′

WZ

we can end up with a vector - field in Wess - Zumino - gauge.

3.3.3 Field - Strength - Superfield

A non - supersymmetric complex scalar - field ϕ transforms like

ϕ(x) 7−→ exp
(
iα(x)q

)
ϕ(x) , Vµ(x) 7−→ Vµ(x) + ∂µα(x)

under local U(1) with charge q and parameter α(x). Now, under supersymmetry

Φ 7−→ exp(iΛq)Φ , V 7−→ V + i(Λ− Λ†) ,

where Λ is the chiral superfield defining the generalised gauge transformations, then exp(iΛq)Φ is also

chiral if Φ is.

Before supersymmetry, we defined

Fµν = ∂µVν − ∂νVµ

as a field - strength. The supersymmetric analogy is

Wα = −1

4
(D̄D̄)DαV

which is both chiral and invariant under generalized gauge - transformations. In components,

Wα(y, θ) = −iλα(y) + θαD(y)− i

2
(σµσ̄νθ)αFµν + (θθ)(σµ)αβ′∂µλ̄

β′

.
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4 D Supersymmetric Lagrangians

4.1 N = 1 Global Supersymmetry

We want to determine couplings among superfields Φ’s, V ’s and Wα which include the particles of the

Standard Model. For this we need a prescription to build Lagrangians which are invariant (up to a total

derivative) under a supersymmetry transformation. We will start with the simplest case of only chiral

superfields.

4.1.1 Chiral Superfield - Lagrangian

Look for an object L(Φ) such that δL is a total derivative under supersymmetry - transformation. We

know that

• For a general scalar superfield S = ...+ (θθ)(θ̄θ̄)D(x), the D-term transforms as:

δD =
i

2
∂µ(ǫσ

µλ̄− ρσµǭ)

• For a chiral superfield Φ = ...+ (θθ)F (x), the F -term transforms as:

δF = i
√

2ǭσ̄µ∂µψ ,

Therefore, the most general Lagrangian for a chiral superfield Φ’s can be written as:

L = K(Φ,Φ†)
︸ ︷︷ ︸

Kähler - potential

∣
∣
∣
D

+

(

W (Φ)
︸ ︷︷ ︸

super - potential

∣
∣
∣
F

+ h.c.

)

.

Where |D refers to the D-term of the corresponding superfield and similar for F -terms. The function K

is known as the Kähler potential, it is a real function of Φ and Φ†. W (Φ) is known as the superpotential,

it is a holomorphic function of the chiral superfield Φ (and therefore is a chiral superfield itself).

In order to construct a renormalisable theory, we need to construct a Lagrangian in terms of operators

of dimensionality such that the Lagrangian has dimensionality 4. We know [ϕ] = 1 (where the square

43
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brackets stand for dimensionality of te field) and want [L] = 4 . Terms of dimension 4, such as ∂µϕ∂µϕ
∗,

m2ϕϕ∗ and g|ϕ|4, are renormalizable, but 1
M2 |ϕ|6 is not. The dimensionality of the superfield Φ is the

same as that of its scalar component and that of ψ is as any standard fermion, that is

[Φ] = [ϕ] = 1 , [ψ] =
3

2

From the expansion Φ = ϕ+
√

2θψ + θθF + ... it follows that

[θ] = −1

2
, [F ] = 2 .

This already hints that F is not a standard scalr field. In order to have [L] = 4 we need:

[KD] ≤ 4 in K = ...+ (θθ)(θ̄θ̄)KD

[WF ] ≤ 4 in W = ...+ (θθ)WF

=⇒ [K] ≤ 2 , [W ] ≤ 3 .

A possible term for K is Φ†Φ, but no Φ + Φ† nor ΦΦ since those are linear combinations of chiral

superfields. Therefore we are lead to the following general expressions for K and W :

K = Φ†Φ , W = α+ λΦ +mΦ2 + gΦ3 ,

whose Lagrangian is known as Wess - Zumino - model:

L = Φ†Φ
∣
∣
∣
D

+

(

(
α+ λΦ +mΦ2 + gΦ3

)
∣
∣
∣
F

+ h.c.

)

= ∂µϕ∗∂µϕ+ iψ̄σ̄µ∂µψ + FF ∗ +

(
∂W

∂ϕ
F + h.c.

)

− 1

2

∂2W

∂ϕ2
ψψ

Note that

• The expression for Φ†Φ
∣
∣
∣
D

is justified by

Φ = ϕ(x) +
√

2θψ + θθF + iθσµθ̄∂µϕ −
i√
2
(θθ)∂µψσ

µθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ

• In general, the procedure to obtain the expansion of the Lagrangian in terms of the components of

the superfield is to perform a Taylor - expansion around Φ = ϕ, for instance ( where ∂W
∂ϕ = ∂W

∂Φ

∣
∣
∣
Φ=ϕ

):

W (Φ) = W (ϕ) + (Φ− ϕ)
︸ ︷︷ ︸

...+θθF+...

∂W

∂ϕ
+

1

2
(Φ− ϕ)2

︸ ︷︷ ︸

...+(θψ)(θψ)+...

∂2W

∂ϕ2

The part of the Lagrangian depending on the auxiliary field F takes the simple form:

L(F ) = FF ∗ +
∂W

∂ϕ
F +

∂W ∗

∂ϕ∗
F ∗

Notice that this is quadratic and without any derivatives. This means that the field F does not propagate.

Also, we can easily eliminate F using the field - equations

δS(F )

δF
= 0 =⇒ F ∗ +

∂W

∂ϕ
= 0

δS(F )

δF ∗
= 0 =⇒ F +

∂W ∗

∂ϕ∗
= 0
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and substitute the result back into the Lagrangian,

L(F ) 7−→ −
∣
∣
∣
∣

∂W

∂ϕ

∣
∣
∣
∣

2

=: −V(F )(ϕ) ,

This defines the scalar potential. From its expression we can easily see thet it is a positive definite scalar

potential V(F )(ϕ).

We finish the section about chiral superfield - Lagrangian with two remarks,

• The N = 1 - Lagrangian is a particular case of standard N = 0 - Lagrangians: the scalar potential

is semipositive ( V ≥ 0). Also the mass for scalar field ϕ (as it can be read from the quadratic term

in the scalar potential ) equals the one for the spinor ψ (as can be read from the term 1
2
∂2W
∂ϕ2 ψψ) .

Moreover, the coefficient g of Yukawa - coupling g(ϕψψ) also determines the scalar self - coupling,

g2|ϕ|4. This is the source of ”miraculous” cancellations in SUSY perturbation - theory. Divergences

are removed from diagrams:

heightwidthdepthSUSY03.png

• In general, expand K(Φi,Φj
†

) and W (Φi) around Φi = ϕi, in components

(
∂2K

∂ϕi∂ϕj∗

)

∂µϕ
i∂µϕj∗ = Kī∂µϕ

i∂µϕj∗ .

Kī is a metric in a space with coordinates ϕi which is a complex Kähler - manifold:

gī = Kī =
∂2K

∂ϕi∂ϕj∗

4.1.2 Vector Superfield - Lagrangian

Let’s first discuss how we ensured gauge - invariance of ∂µϕ∂µϕ
∗ under local transformations ϕ 7→

exp
(
iα(x)q

)
for non - supersymmetric Lagrangians.

• Introduce covariant derivative Dµ depending on gauge - potential Aµ

Dµϕ := ∂µϕ− iqAµϕ , Aµ 7−→ Aµ + ∂µα

and rewrite kinetic term as

L = Dµϕ(Dµϕ)∗ + ...

• Add kinetic term for Aµ to L

L = ...+
1

4g2
FµνF

µν , Fµν = ∂µAν − ∂νAµ .
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With SUSY, the Kähler - potential K = Φ†Φ is not invariant under

Φ 7−→ exp(iqΛ)Φ , Φ†Φ 7−→ Φ† exp
(
iq(Λ− Λ†)

)
Φ

for chiral Λ. Our procedure to construct a suitable Lagrangian is analogous to the non-supersymmetric

case (although the expressions look slightly different):

• Introduce V such that

K = Φ† exp(qV )Φ , V 7−→ V − i(Λ− Λ†) ,

i.e. K is invariant under general gauge - transformation.

• Add kinetic term for V with coupling τ

Lkin = τ(WαWα)
∣
∣
∣
F

+ h.c.

which is renormalizable if τ is a constant. In general it is non - renormalizable for τ = f(Φ) (need

τ = const). We will call f the gauge - kinetic function.

• A new ingredient of supersymmetric theories is that an extra term can be added to L which is also

invariant (for U(1) gauge theories) and is known as the Fayet - Iliopoulos - term:

LFI = ξV
∣
∣
∣
D

= ξD

Where ξ a constant. Notice that the FI term is gauge invariant for a U(1) theory because the

corresponding gauge field is not charged under U(1) (the photon is chargeless), whereas for a non-

abelian gauge theory the gauge fields are charged and therefore their corresponding D terms is also

and then a FI term would not be gauge invariant and therefore would be forbidden. This is the

reason it exists only for abelian gauge theories.

So the renormalizable Lagrangian of super - QED is given by

L =
(
Φ† exp(qV )Φ

)
∣
∣
∣
D

+

(

W (Φ)
∣
∣
∣
F

+ h.c.

)

+

(

1

4
WαWα

∣
∣
∣
F

+ h.c.

)

+ ξV
∣
∣
∣
D
.

If there were only one superfield Φ charged under U(1) then W = 0. For several superfields the superpo-

tential W is constructed out of holomorphic combinations of the superfields which are gaguge invariant.

In components (using Wess - Zumino - gauge):

(
Φ† exp(qV )Φ

)
∣
∣
∣
D

= F ∗F + ∂µϕ∂
µϕ∗ + iψ̄σ̄µ∂µψ + qV µ

(
1

2
ψ̄σ̄µψ +

i

2
ϕ∗∂µϕ−

i

2
ϕ∂µϕ

∗

)

+
i√
2
q(ϕλ̄ψ̄ − ϕ∗λψ) +

q

2

(

D +
1

2
VµV

µ

)

|ϕ|2

Note that

• V n≥3 = 0 due to Wess - Zumino - gauge

• can complete ∂µ to Dµ using the term qV µ(...)

W (Φ) = 0 if there is only one Φ. In case of several Φi, only chargeless combinations of products of Φi

contribute, since W (Φ) has to be invariant under Φ 7→ exp(iΛ)Φ.
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Let’s move on to the WαWα - term:

WαWα

∣
∣
∣
F

= 2
(1

2
D2 − 1

4
FµνF

µν + iλσµ∂µλ̄−
i

8
Fµν F̃

µν
)

,

where the last term involving F̃µν = ǫµνρσF
ρσ is a total derivative i.e. contains no local physics.

With the last term,

ξV
∣
∣
∣
D

= ξD ,

the collection of the D - dependent terms in L

L(D) =
q

2
D|ϕ|2 +

1

2
D2 + ξD

yields field - equations

∂L
∂D
− ∂µ

∂L
∂(∂µD)

= 0 =⇒ D = −ξ − q

2
|ϕ|2 .

Substituting those back into L(D),

L(D) = −1

2

(

ξ +
q

2
|ϕ|2

)2

= −V(D)(ϕ) ,

get a scalar potential V(D)(ϕ). Together with V(F )(ϕ) from the previous section, the total potential is

given by

V (ϕ) = V(F )(ϕ) + V(D)(ϕ) =

∣
∣
∣
∣

∂W

∂ϕ

∣
∣
∣
∣

2

+
1

2

(

ξ +
1

2
q|ϕ|2

)2

.

4.1.3 Action as a Superspace - Integral

Without SUSY, the relationship between the action S and L is

S =

∫

d4x L .

To write down a similar expression for SUSY - actions, recall
∫

d2θ (θθ) = 1 ,

∫

d4θ (θθ)(θ̄θ̄) = 1 .

This provides elegant ways of expressing K
∣
∣
∣
D

and so on:

L = K
∣
∣
∣
D

+
(

W
∣
∣
∣
F

+ h.c.
)

+
(

WαWα

∣
∣
∣
F

+ h.c.
)

=

∫

d4θ K+

(∫

d2θ W + h.c.

)

+

(∫

d2θ WαWα + h.c.

)

With non - abelian generalizations

Φ′ = exp(iΛ)Φ

exp(V ′) = exp(−iΛ†) exp(V ) exp(iΛ)

W ′
α = exp(−2iΛ)Wα exp(2iΛ)

WαWα 7−→ Tr
{

WαWα

}
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end up with the most general action

S
[

K
(
Φ†
i , exp(qV ),Φi

)
,W
(
Φi
)
, f
(
Φi
)
, ξ
]

=

∫

d4x

∫

d4θ (K+ξVU(1))+

∫

d4x

∫

d2θ(W+fWαWα+h.c.) .

Recall that the underlined Fayet - Ikopoulos - term ξV only appears for U(1) - gauge theories.

4.2 Non - Renormalization - Theorems

We have seen that in general the functions K,W, f and the FI constant ξ determine the full structure of

N = 1 supersymmetric theories (up to two derivatives of the fields as usual). if we know their expressions

we know all the interactions among the fields.

In order to understand the important properties of supersymmetric theories under quantization, we

most address the following question: How do K, W , f and ξ behave under quantum - corrections? We

will show now that:

• K gets corrections order by order in perturbation - theory

• only one loop - corrections for f(Φ)

• W (Φ) and ξ not renormalized in perturbation - theory.

The non-renormalization of the superpotential is one of the most important results of supersymmet-

ric field theories. The simple behaviour of f and the non-renormalization of ξ have also interesting

consequences. We will procede now to address these issues.

4.2.1 History

• In 1977 Grisaru, Siegel, Rocek showed using ”supergraphs” that except for one loop - corrections

for f , quantum corrections only come in the form

∫

d4x

∫

d4θ
{

...
}

.

• 1993: Seiberg (based on string theory - arguments by Witten 1985) used symmetru and holomorphy

arguments to establish these results in a simple an elegant way. We will follow here this approach

following closely the discusion of Weinberg’s section 27.6.
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4.2.2 Proof of the Non - Renormalization - Theorem

Let’s follow Seiberg’s path of proving the non - renormalization - theorem. Introduce “spurious” super-

fields X , Y ,

X = (x, ψx, Fx) , Y = (y, ψy, Fy)

involved in the action

S =

∫

d4x

∫

d4θ
[

K + ξVU(1)

]

+

∫

d4x

∫

d2θ
[

YW (Φi) +XWαWα + h.c.
]

.

We will use:

• symmetries

• holomorphicity

• limits X →∞ and Y → 0

Symmetries

• SUSY and gauge - symmetries

• R - symmetry U(1)R: Fields have different U(1)R - charges determining how they transform under

that group

fields Φi V X Y θ θ̄ Wα

U(1)R - charge 0 0 0 2 −1 1 1

e.g. Y 7−→ exp(2iα)Y , θ 7−→ exp(−iα)θ , etc.

• Peccei - Quinn - symmetry

X 7−→ X + ir , r ∈ R

Since XWαWα involves terms like

Re{X}FµνFµν + Im{X}FµνF̃µν ,

a change in the imaginary - part of X would only add total derivatives to L,

L 7−→ L+ rFµν F̃
µν

without any local physics. Call X an axion - field.
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Holomorphicity

Consider the quantum - corrected Wilsonian - action

Sλ ≡
∫

DϕeiS

where the path integral is understood to go for all the fields in the system and the integration is only over

all momenta greater than λ in the standard Wilsonian formalism (different to the 1PI action in which the

integral is over all momenta). If supersymmetry is preserved by the quantisation process, we can write

the effective action as:

Sλ =

∫

d4x

∫

d4θ
[

J
(
Φ,Φ†, eV , X, Y,D...

)
+ξ(X,X†, Y, Y †)VU(1)

]

+

∫

d4x

∫

d2θ
[

H(Φ, X, Y,Wα)
︸ ︷︷ ︸

holomorphic

+h.c.
]

.

Due to U(1)R - transformation - invariance, H must have the form

H = Y h(X,Φ) + g(X,Φ)WαWα .

Invariance under shifts in X imply that h = h(Φ) (independent of X). But a linear X - dependence is

allowed in front of WαWα (due to Fµν F̃
µν as a total derivative). So the X - dependence in h and g is

restricted to

H = Y h(Φ) +
(
αX + g(Φ)

)
WαWα .

Limits

In the limit Y → 0, there is an equality h(Φ) = W (Φ) at tree - level, so W (Φ) is not renormalized! The

gauge - kinetic function f(Φ), however, gets a one - loop correction

f(Φ) = αX
︸︷︷︸

tree - level

+ g(Φ)
︸︷︷︸

1 loop

.

Note that gauge - field - propagators are proportional to 1
x (gauge - couplings∼ xFµνFµν ∝ X∂[µAν]∂[µAν],

gauge self - couplings to X3 corresponding to a vertex of 3 X - lines).
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Count the number Nx of x - powers in any diagram; it is given by

Nx = VW − IW
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and is therefore related to the numbers of loops L:

L = IW − VW + 1 = −Nx + 1 =⇒ Nx = 1− L

L = 0 (tree - level) : Nx = 1 , α = 1

L = 1 (one loop) : Nx = 0

Therefore the gauge kinetic term X + g(Φ) is corrected only at one-loop! (all other (infinite) loop

corrections just cancel).

On the other hand, the Kähler - potential, being non-holomorphic, is corrected to all orders J(Y, Y †, X+

X†, ...). For the Fayet - Iliopoulos - term ξ(X,X†, Y, Y †)VU(1)

∣
∣
∣
D

, gauge - invariance under V 7→ V +

i(Λ− Λ†) implies that ξ is a constant. Only contributions are

heightwidthdepthSUSY05.png

∝
∑

qi = Tr
{

QU(1)

}

.

But if Tr{Q} 6= 0, the theory is ”inconsistent” due to gravitational anomalies:
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Therefore, if there are no gravitational anomalies, there are no corrections to the Fayet - Iliopoulos -

term.

4.3 N = 2,4 Global Supersymmetry

For N = 1 - SUSY, we had an action S depending on K, W , f and ξ. What will the N ≥ 2 - actions

depend on? We know that in global supersymmetry, the N = 1 actions are particular cases of non-

supersymmetric actions (in which some of the couplings are related, potential is positive, etc.). In the

same way, actions for extended supersymmetries are particular cases of N = 1 supersymmetric actions,

and therefore will be determined by K, W , f and ξ. The extra supersymmetry will put constraints to

these functions and therefore the corresponding actions will be more rigid. The larger the number of

supersymmetries the more constrained actions.
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4.3.1 N = 2

Consider the N = 2 vector - multiplet

Aµ

λ ψ

ϕ

where the Aµ and λ are described by a vector superfield V and the ϕ, ψ by a chiral superfield Φ.

W = 0 in the N = 2 - action. K, f can be written in terms of a single holomorphic function F(Φ) called

prepotential:

f(Φ) =
∂2F
∂Φ2

, K(Φ,Φ†) =
1

2i

(

Φ† exp(2V )
∂F
∂Φ
− h.c.

)

Full perturbative action doen’t contain any corrections for more than one loop,

F = Φ2 (tree - level)

= Φ2 ln

(
Φ2

λ2

)

(one loop)

λ denotes some cut - off. These statements apply to the ”Wilson” effective - action distinct from 1 particle

- irreducible Γ[Φ]. Note that

• Perturbative processes usually involve series
∑

n ang
n with coupling g < 1.

• exp
(

− c
g2

)

is a non - perturbative example (no expansion in powers of g).

There are obviously more things in QFT than Feynman - diagrams can tell, e.g. instantons, monopoles.

Decompose the N = 2 - prepotential F as

F(Φ) = F1loop + Fnon - pert

where Fnon - pert for instance could be the ”instanton” - expansion
∑

k ak exp
(

− c
g2 k
)

. In 1994, Seiberg

- Witten achieved such an expansion in N = 2 SUSY.

Of course, there are still vector- and hypermultiplets in N = 2, but those are much more complicated.

We will now consider a particularly simple combination of these multplets.
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4.3.2 N = 4

As an N = 4 - example, consider the vector multiplet,







Aµ

λ ψ1

ϕ1







︸ ︷︷ ︸

N=2 vector

+







ϕ2

ψ3 ψ2

ϕ3







︸ ︷︷ ︸

N=2 hyper

.

We are more constrained than in above theories, there are no free functions at all, only 1 free parameter:

f = τ =
Θ

2π
︸︷︷︸

Fµν F̃µν

+ i
4π

g2

︸︷︷︸

FµνFµν

N = 4 is a finite theory, with vanishing β - function. Couplings remain constant at any scale, we have

conformal invariance. There are nice - transformation - properties under S - duality,

τ 7−→ aτ + b

cτ + d
,

where a, b, c, d form a SL(2,Z) - matrix.

Finally, as an aside, major developments in string and field theories have led to the realization that

certain theories of gravity in anti de sitter space are ‘dual’ to field theories (without gravity) in one

less dimension, that happen to be invariant under conformal transformations. This is the AdS/CFT

correspondence. This has allowed to extend gravity (and string) theories to domains where they are

not well understood and field theories also. The prime example of this correspondence is AdS in five

dimensions dual to a conformal field theory in four dimensions that happens to be N = 4 supersymmetry.

4.3.3 Aside on Couplings

For all kinds of renormalizations, couplings g depend on a scale µ. The coupling changes under RG -

transformations scale - by - scale. Define the β - function to be

µ
dg

dµ
= β(g) = −bg3

︸ ︷︷ ︸

1−loop

+... .

The theory’s - cutoff depends on the particle - content.

Solve for g(µ) up to one loop - order:

M∫

m

dg

g3
= −b

+∞∫

−∞

dµ

µ
=⇒ −1

2

(
1

g2
M

− 1

g2
m

)

= −b ln

(
M

m

)
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=⇒ g2
m =

1
1
g2

M

+ b ln
(
m2

M2

)

The solution has a pole at

m0 =: Λ = M exp

(

− b

2g2

)

which is the natural scale of the theory. For m → ∞, get asymptotic freedom as long as b > 0, i.e.
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limm→∞ gm = 0. This is the case in QCD. If b < 0, however, have a Landau - pole which is an upper -

bound for the energy - scales where we can trust the theory. QED breaks down in that way.

4.4 Supergravity

4.4.1 Supergravity as a Gauge - Theory

We have seen that a superfield Φ transforms under supersymmetry like

δΦ = i(ǫQ+ ǭQ̄)Φ .

The questions arises if we can make ǫ a function of spacetime - coordinates ǫ(x), i.e. extend SUSY to a

local symmetry. The answer is yes, the corresponding theory is supergravity.

How did we deal with local α(x) in internal - symmetries? We introduced a gauge - field Aµ coupling to

a current Jµ via interaction - term AµJ
µ. That current Jµ is conserved and the corresponding charge

constant

Q =

∫

d3x J0 = const .

For spacetime - symmetries, local Poincaré - parameters imply the equivalence - principle which is con-

nected with gravity. The metric gµν as a gauge - field couples to ”current” T µν via gµνT
µν . Conservation

∂µT
µν = 0 implies constant total - momentum

Pµ =

∫

d3x T µ0 = const .

Now consider local SUSY. The gauge - field of that supergravity is the gravitino ψµα with associated super

- current ψµαJ
α
µ and SUSY - charge

Qα =

∫

d3x J0
α .



4.4. SUPERGRAVITY 55

The supergravity - action given by

S =

∫

d4x
√−g

(

R
︸︷︷︸

Einstein

+
(
ψµσνDρψ̄σ − ψ̄µσ̄νDρψσ

)
ǫµνρσ

︸ ︷︷ ︸

Rarita - Schwinger

)

is invariant under

δeaµ =
i

2
(ψµσ

aǭ− ǫσaψ̄µ)

δψαµ = Dµǫ
α .

Historically, the first supergravity actions were constructed by S. Ferrara, D. Freedman and P. van

Niewenhuizen, followed closely by deser and Zumino, in 1976. We do not provide details of these calcu-

lations that are beyond the scope of these lectures.

4.4.2 N = 1 - Supergravity Coupled to Matter

Here we will provide,, without proof, some properties of N = 1 supergravity actions coupled to matter.

The total Lagrangian, a sum of supergravity - contribution and the SUSY - Lagrangian discussed before,

L = LSUGRA + L(K,W, f, ξ) .

where the second term is understood to be covariantized (to be invariant under general coordinate trans-

formations.).

• This action has a so - called Kähler - invariance:

K 7−→ K + h(Φ) + h∗(Φ∗)

W 7−→ exp
(
h(Φ)

)
W

• There is a modification to the scalar potential of global supersymmetry VF

VF = exp

(
K

M2
P

){

K−1
ī DiWD̄W

∗ − 3
|W |2
M2
P

}

, DiW = ∂iW + ∂iK
W

M2
P

.

In the MP → ∞ - limit, gravity is decoupled and VF = Kī∂iX∂̄W
∗ which is the global super-

symmetric potential. Notice that for finite values of the Planck mass, the potential VF above is no

longer positive. The extra (negative) factor proportional to −3|W |2 comes from the auxiliary fields

of the gravity multplet.
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Chapter 5

Supersymmetry - Breaking

5.1 Basics

We know that fields ϕi of gauge - theories transform like

ϕi 7−→
(
exp(iαaT a)

)

i
jϕj

under finite group elements. The infinitesimal case is

δϕi = iαa(T a)i
jϕj .

Symmetry is broken if the vacuum - state (ϕvac)i transforms in a non - trivial way, i.e.

(αaT a)i
j(ϕvac)j 6= 0 .

In U(1), let ϕ = ρ exp(iϑ) in complex polar - coordinates, then infinitesimally

δϕ = iαϕ =⇒ δρ = 0 , δϑ = α ,

the last of which corresponds to a Goldstone - boson.

Similarly, we speak of broken SUSY if the vacuum - state |vac〉 satisfies

Qα|vac〉 6= 0 .

Let’s consider the anticommutation - relation {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ multiplied by (σ̄ν)β̇α,

(σ̄ν)β̇α
{

Qα , Q̄β̇

}

= 2(σ̄ν)β̇α(σµ)αβ̇Pµ = 4ηµνPµ = 4P ν ,

especially the (ν = 0) - component using σ̄0 = 1:

(σ̄0)β̇α
{

Qα , Q̄β̇

}

=
2∑

α=1

(QαQ
†
α +Q†

αQα) = 4P 0 = 4E

This has two very important implications:

57
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• E ≥ 0 for any state, since QαQ
†
α +Q†

αQα is positive definite

• 〈vac|QαQ†
α +Q†

αQα|vac〉 > 0, so in broken SUSY, the energy is strictly positive, E > 0.

5.2 F- and D - Breaking

5.2.1 F - Term

Consider the transformation - laws under SUSY for components of chiral superfields Φ,

δϕ =
√

2ǫψ

δψ =
√

2ǫF + i
√

2σµǭ∂µϕ

δF = i
√

2ǭσ̄µ∂µψ .

If one of δϕ, δψ, δF 6= 0, then SUSY is broken. But to preserve Lorentz - invariance, need

〈ψ〉 = 〈∂µϕ〉 = 0

as they would both transform under some representation of Lorentz - group. So our SUSY - breaking -

condition simplifies to

6SUSY ⇐⇒ 〈F 〉 6= 0 .

Only the fermionic part of Φ will change,

δϕ = δF = 0 , δψ =
√

2ǫ〈F 〉 6= 0 ,

so call ψ ”Goldstone - fermion” or ”goldstino”. Remember that the F - term of the scalar - potential is

given by

V(F ) = K−1
ij

∂W

∂ϕi

(
∂W

∂ϕj

)∗

,

so SUSY - breaking is equivalent to a positive vacuum - expectation - value

6SUSY ⇐⇒ 〈V(F )〉 > 0 .
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5.2.2 O’Raifertaigh - Model

The O’Raifertaigh - model involves a triplet of chiral superfields Φ1, Φ2, Φ3 for which Kähler - and super

- potentials are given by

K = Φ†
iΦi , W = gΦ1(Φ

2
3 −m2) +MΦ2Φ3 , M >> m .

From the F - equations of motion, if follows that

−F ∗
1 =

∂W

∂ϕ1
= g(ϕ2

3 −m2)

−F ∗
2 =

∂W

∂ϕ2
= Mϕ3

−F ∗
3 =

∂W

∂ϕ3
= 2gϕ1ϕ3 +Mϕ2 .

We cannot have F ∗
i = 0 for i = 1, 2, 3 simultaneously, so that form of W indeed breaks SUSY. Now,

determine the spectrum:

V =

(
∂W

∂ϕi

)(
∂W

∂ϕj

)∗

= g2|ϕ2
3 −m2|2 +M2|ϕ3|2 + |2gϕ1ϕ3 +Mϕ2|2

If m2 < M2

2g2 , then the minimum is at

〈ϕ2〉 = 〈ϕ3〉 = 0 , 〈ϕ1〉 arbitrary .
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=⇒ 〈V 〉 = g2m4 > 0 .

This arbitrariness of ϕ1 implies zero - mass, mϕ1 = 0. For simplicity, set 〈ϕ1〉 = 0 and compute the

spectrum of fermions and scalars. Consider the mass - term

〈
∂2W

∂ϕi∂ϕj

〉

ψiψj =







0 0 0

0 0 M

0 M 0






ψiψj

in the Lagrangian, which gives ψi - masses

mψ1 = 0 , mψ2 = mψ3 = M .

ψ1 turns out to be the goldstino (due to δψ1 ∝ 〈F1〉 6= 0 and zero - mass). To determine scalar - masses,

look at the quadratic terms in V :

Vquad = −m2g2(ϕ2
3 + ϕ∗2

3 ) +M2|ϕ3|2 +M2|ϕ2|2 =⇒ mϕ1 = 0 , mϕ2 = M

Regard ϕ3 as a complex field ϕ3 = a+ ib where real- and imaginary - part have different masses,

m2
a = M2 − 2g2m2 , m2

b = M2 + 2g2m2 .

This gives the following spectrum:
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We generally get heavier and lighter superpartners, the ”supertrace” of M (treating bosonic and fermionic

parts differently) vanishes. This is generic for tree - level of broken SUSY. Since W is not renormalized to

all orders in perturbation theory, we have an important result: If SUSY is unbroken at tree - level, then

it also unbroken to all orders in perturbation theory. This means that in order to break supersymmetry

we need to consider non-perturbative effects:

=⇒ 6SUSY non - perturbatively

5.2.3 D - Term

Consider a vector superfield V = (λ , Aµ , D),

δλ ∝ ǫD =⇒ 〈D〉 6= 0 =⇒ 6SUSY .

λ is a goldstino (which is NOT the fermionic partner of any goldstone boson). More on that in the

examples.

5.3 Supersymmetry - Breaking in N = 1 - Supergravity

• Supergravity multiplet adds new auxiliary - fields Fg with nonzero 〈Fg〉 for broken SUSY.

• The F - term is proportional to

F ∝ DW = ∂W + ∂K
W

M2
P

.

• Scalar potential V(F ) has a negative gravitational term,

V(F ) = exp

(
K

M2
P

){

K−1
ij DiW (DjW )∗ − 3

|W |2
M2
P

}

.

That is why both 〈V 〉 = 0 and 〈V 〉 6= 0 are possible after SUSY - breaking in supergravity, whereas

broken SUSY in the global case required 〈V 〉 > 0. This is very important for the cosmological con-

stant problem (which is the lack of understadning of why the vacuum energy today is almost zero).

The vacuum energy essentially corresponds to the value of the scalar potential at the minimum. In

global supersymmetry, we know that the breaking of supersymmetry implies this vacuum energy

to be large. In supergravity it is possible to break supersymmetry at a physically allowed scale and

still to keep the vacuum energy zero. This does not solve the cosmological constant problem, but

it makes supersymmetri theories still viable.
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• The super-Higgs effect. Spontaneosuly broken gauge theories realize the Higgs mechanism in which

the corresponding Goldstone boson is ‘eaten’ by the corresponding gauge field to get a mass. A

similar phenomenon happens in supersymmetry. The goldstino field joins the originally massless

gravitino field (which is the gauge field of N = 1 supergravity) and gives it a mass, in this sense

the gravitino ‘eats’ the goldstino to get a mass. A massive gravitino (keeping a massless graviton)

illustrates the breaking of supersymmetry. The super-Higgs effect should not be confused with the

supersymmetric extension of the standard Higgs effect in which a massless vector superfield, eats a

chiral superfield to receive a mass making it into a superssymetric massive multiplet.
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Chapter 6

The MSSM

6.1 Basic Ingredients

6.1.1 Particles

First of all, we have vector fields transforming under SU(3)c×SU(2)L×U(1)Y , secondly there are chiral

superfields representing

• quarks

Qi =

(

3 , 2 , −1

6

)

︸ ︷︷ ︸

left - handed

, ūci =

(

3̄ , 1 ,
2

3

)

, d̄ci =

(

3̄ , 1 , −1

3

)

︸ ︷︷ ︸

right - handed

• leptons

Li =

(

1 , 2 ,
1

2

)

︸ ︷︷ ︸

left - handed

, ēci = (1 , 1 , −1) , ν̄ci = (1 , 1 , 0)
︸ ︷︷ ︸

right - handed

• higgses

H1 =

(

1 , 2 ,
1

2

)

, H2 =

(

1 , 2 , −1

2

)

the second of which is a new particle, not present in the stanrd model. It is needed in order to

avoid anomalies, like the one shown below.

The sum of Y 3 over all the MSSM - particles must vanish (i.e. multiply the third quantum number with

the product of the first two to cover all the distinct particles).
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6.1.2 Interactions

• K = Φ† exp(qV )Φ is renormalizable.

• fa = τa where ℜ{τa} = 4π
g2a

determines the gauge coupling constants. These coupling constants

change with energy as mentioned before. The precise way they run is determined by the low energy

spectrum of the matter fields in the theory. We know from precision tests of the standard model,

that with its spectrum, the running of the three gauge couplings is such that they do not meet at

a single point at higher energies, signalling a gauge coupling unification. However with the matter

field spectrum of the MSSM, the three different couplings evolve in such a way that they meet at

a large energy E. This is considered to be the main phenomenological success of supersymmetric

theories and it hints to a supersymmetric grand unified theory at large energies.
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• Fayet-Iliopoulos term: need ξ = 0, otherwise break charge and colour.

• The superpotential W is given by

W = y1QH2ū
c + y2QH1d̄

c + y3LH1ē
c + µH1H2 +W6BL ,

W6BL = λ1LLē
c + λ2LQd̄

c + λ3ū
cd̄cd̃c + µ′LH2

The first three terms in W correspond to standard Yukawa couplings giving masses to up quarks,

down quarks and leptons. The four term is a mass term for the two Higgs fields. But each 6BL -

term breaks baryon- or lepton - number. These couplings are not present in the standard model

that automatically preserves baryon and lepton number (as accidental symmetries), but this is not

the case in supersymmetry. The shown interaction would allow proton - decay p→ e+ + π0 within

seconds.
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In order to forbid those couplings an extra symmetry should be imposed. The simplest one that

works is R - partiy R defined as

R := (−1)3(B−L)+2S =







+1 : all observed particles

−1 : superpartners
.

It forbids all the terms in W6BL.

The possible existence of R-parity would have important physical implications:
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• The lightest superpartner (LSP) is stable.

• Usually, LSP is neutral (higgsino, photino), the neutralino is best candidate for dark matter

(WIMP).

• In colliders, super - particles are produced in pairs, decay to LSP and give a signal of ”missing

energy”.

6.1.3 Supersymmetry - Breaking

Recall the two sectors of the Standard Model:



observable

sector (quarks)




Yukawa←→




symmetry -

breaking (Higgs)





Supersymmetry has an additional ”messenger” - sector




observable

sector



 ←→




messenger -

sector



 ←→




SUSY -

breaking





involving three types of mediation

• gravity - mediation

The inverse Planck - mass Mpl is the natural scale of gravity. We must include some mass - square

to get the right dimension for the mass - splitting in the observable sector. That will be the square

of SUSY - breaking - mass M 6SUSY :

∆m =
M2

6SUSY

Mpl
.

We want ∆m ∼ TeV and know Mpl ∼ 1018GeV, so

M 6SUSY =
√

∆m ·Mpl ≈ 1011 GeV .

The gravitino gets a mass m3/2 of ∆m - order TeV. Note that gravitino eating goldstino to get

mass is called superhiggs - effect.

• gauge - mediation

G =
(
SU(3)× SU(2)× U(1)

)
×G6SUSY =: G0 ×G6SUSY

Matter fields are charged under both G0 and G6SUSY which gives a M 6SUSY of order ∆m, i.e. TeV.

In that case, the gravitino mass m3/2 is given by
M2

6SUSY

Mpl
∼ 10−3 eV

• anomaly - mediation

Auxiliary fields of supergravity get a vacuum expectation - value. The effects are all present but

suppressed by loop - effects.
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In any case, the Lagrangian for the observable sector has contributions

L = LSUSY + L6SUSY = LSUSY +



 Mλλ · λ
︸ ︷︷ ︸

gaugino - masses

+h.c.



+ m2
0ϕ

∗ · ϕ
︸ ︷︷ ︸

scalar - masses

+(Aϕϕϕ + h.c.)

Mλ,m
2
0, A are called ”soft - breaking terms”. They determine the amount by which supersymmetry is

expected to be broken in the observable sector and are the main parameters to follow in the attempts to

identify supersymmetric theories with potential experimental observations.

6.1.4 Hierarchy - Problem

In high energy physics there are at least two fundamental scales the Planck mass Mplanck ∼ 1019 GeV

defining the scale of quantum gravity and the electroweak scale MEW ∼ 102 GeV, defining the symmetry

breaking scale of the standard model. Undesrstanding why these two scales are so different is the hierarchy

problem. Actually the problem can be formulated in two parts:

1. Why MEW << MPlanck? which is the proper hierarchy problem.

2. Is this hierarchy stable under quantum corrections? This is the ‘naturalness’ part of thehierarchy

problem which is the one that presents a bigger challenge.

Let us try to understand the naturalness part of thehierarchy problem.

In the Standard Model we know that:

• Gauge particles are massless due to gauge - invariance, that means, a direct mass term for the gauge

particles MAµA
µ is not allowed by gauge invariance (Aµ → Aµ + ∂µα for a U(1) field).

• Fermions: Also gauge invariance forbids mψψ for all quarks and leptons. Recall these particles

receive a mass only thorugh the Yukawa couplings to the Higgs (Hψψ gives a mass to ψ after H

gets a nonzero value).

• Scalars: only the Higgs in the standard model. They are the only ones that can have a mass term

in the Lagrangian m2HH̄ . So there is not a symmetry that protects the scalars from becoming

very heavy. Actually, if the standard model is valid up to a fixed cut-off scale Λ (for instance

Λ ∼ MPlanck as an extreme case), it is known that loop corrections to the scalar mass m2 induce

values of order Λ2 to the scalar mass. These corrections come from both bosons and fermions

running in the loop. These would make the Higgs to be as heavy as Λ. This is unnatural since

Λ can be much larger than the electroweak scale ∼ 102 GeV. Therefore even if we start with a

Higgs mass of order the electroweak scale, loop corrrections would bring it up to the highest scale

in the theory, Λ. This would ruin the hierarchy between large and small scales. It is possible to

adjust or ‘fine tune’ the loop corrections such as to keep the Higgs light, but this would require

adjustments to many decimal figures on each ordere of perturbation theory. This fine tuning is

considered unnatural and an explanation of why the Higgs mass (and the whole electroweak scale)
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can be naturally maintained to be hierarchically smaller than the Planck scale or any other large

cut-off scale Λ is required.

In SUSY, bosons have the same masses as fermions, so no problem about hierarchy for all squarks

and sleptons since the fermions have their mass protected by gauge invariance. Secondly, we have seen

that explicit computation of loop diagrams cancel boson against fermion loops due to the fact that

the couplings defining the vertices on each case are determined by the same quantity (g in the Yukawa

coupling of fermions to scalar and g2 in the quartic couplings of scalars as was mentioned in the discussion

of the WZ model). These “miraculous cancellations” protect the Higgs mass from becoming arbitrarily

large. See the discussion and diagram at the end of subsection 4.1.1. Another way to see this is that

even though a mass term is still allowed for the Higgs by the coupling in the superpotential µH1H2, the

non-renormalization of the superpotential guarantees that the, as long as supersymmetry is not broken,

the mass parameter µ will not be corrected by loop effects.

Therefore if supersymmetry were exact the fermions and bosons would be degenerate but if supersym-

metry breaks at a scale close to the electroweak scale then it will protect the Higgs from becoming too

large. This is the main reason to expect supersymmetry to be broken at low energies of order 102 − 103

GeV to solve the naturalness part of the hierarchy problem.

Furthemore, the fact that we expect supersymmetry to be broken by non-perturbative effects (of order

e−1/g2) is very promising as a way to explain the existence of the hierarchy (first part of the hierarchy

problem). That is that if we start at a scale M >> MEW (M ∼ MPlanck in string theory or GUT’s),

the supersymmetry breaking scale can be generated as Msusy ∼ Me−1/g2 , for a small gauge coupling,

say g ∼ 0.1, this would naturally explain why Msusy << M .

6.1.5 Cosmological Constant - Problem

This is probably a more difficult problem as explained in section 1.2. The recent evidence of an accelrating

universe indicates a new scale in physics which is the cosmological constant scale MΛ, with MΛ/MEW ∼
MEW /MPlanck ∼ 10−15. Explaining why MΛ is so small is the cosmological constant problem. Again it

can expressed in two parts, why the ratio is so small and (more difficult) why this ratio is stable under

quantum corrections.

Supersymmetry could in principle solve this problem, since it is easy to keep the vacuum energy

Λ to be zero in a supersymmetric theory. However keeping it so small would require a supersymmetry

breaking scale of order ∆m ∼MΛ ∼ 10−3 eV. But that would imply that the superpartner of the electron

would be essentially of the same mass as the electron and should have been seen experimentally long ago.

Therefore the best supersymetry can do is to keep the cosmological constant Λ small until it breaks. If

it breaks at the elctroweak scale MEW that would lead to MΛ ∼MEW which is not good enough.

Can we address both the hierarchy- and the cosmological constant - problem at the same time? Some

attempts are rcently put forward in terms of the string theory ‘landscape’ in which our universe is only

one of a set of a huge number of solutions (or vacua) of the theory. This number being greater than

10500 would indicate that a few of these universes will have the value of the cosmological constant we
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have today, and we happen to live in one of those (in the same way that there are many galaxies and

planets in the universe and we just happen to live in one). This is still very controversial, but has lead to

speculations that if this is a way of solving the cosmological constant problem, it would indicate a similar

solution of the hierarchy problem and the role of supersymmetry would be diminished in explaining the

hierarchy problem. This would imply that the scale of supersymmetry breaking could be much larger. It

is fair to say that there is not at present a satisfactory approach to both the hierarchy and cosmological

constant problems. It is important to keep in mind that even though low-energy supersymmetry solves

the hierarchy problem in a very elegant way, tyhe fact that it does not address the cosmological constant

problem is worrisome in the sense that any solution of the cosmological constant problem could affect

our understanding of low energy physics to change the nature of the hierarchy problem and then the

importance of low-energy supersymmetry. This is a very active area of research at the moment.



Chapter 7

Extra Dimensions

It is important to look for alternative ways to address the problems that supersymmetry solves and also

to address other problems of the standard model. We mentioned in the first lecture that supersymmetry

and extra dimensions are the natural extensions of spacetime symmetries that may play an important

role in our understanding of nature. here we will start the discussion of physics in extra dimensions.

7.1 Basics of Kaluza - Klein - Theories

7.1.1 History

• In 1914 Nordstrom and 1919 - 1921 Kaluza independently tried to unify gravity and electromag-

netism. Nordstrom was attempting an unsuccessful theory of gravity in terms of scalar fields, prior

to Einstein. Kaluza used Einstein’s theory extended to five dimensions. His concepts were based

on Weyl’s ideas.

• 1926 Klein: cylindric universe with 5th dimension of small radius R

• after 1926 Several people developed the KK ideas (Einstein, Jordan, Pauli, Ehrenfest,...)

heightwidthdepthSUSY16.png

• 1960’s: B. de Witt (D > 5) obtaining Yang-Mills in 4d. Also strings with D = 26.

• In 1970’s and 1980’s. Superstrings required D = 10. Developments in supergravity required extra

dimensions and possible maximum numbers of dimensions for SUSY were discussed: D = 11 turned

out to be the maximum number of dimensions (Nahm). Witten examined the coset

G/H =
SU(3)× SU(2)× U(1)

SU(2)× U(1)× U(1)
, dim(G/H) = (8 + 3 + 1)− (3 + 1 + 1) = 7

which implied D = 11 also to be the minimum. 11 dimensions, however, do not admit chirality

since in odd dimensions, there is no analogue of Dirac γ - matrices.

69
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• 1990’s: Superstrings, revived D = 11 (M - theory) and brane - world - scenario (large extra

dimensions).

7.1.2 Scalar Field in 5 Dimensions

Before discusing the Kaluza-Klein ideas of gravity in extra dimensions, we will start with the simpler

cases of scalar fields in extra dimensions, followed by vector fields and other bosonic fields of helicity

λ ≤ 1. This will illustrate in simple terms the effects of having extra dimensions. We will be building

up on the level of complexity to reach gravitational theories in five and higher dimensions. In the next

chapter we extend the discusiion to include fermionic fields.

Consider a massless 5D scalar field ϕ(xM ) , M = 0, 1, ..., 4 with action

S5D =

∫

d5x ∂Mϕ∂Mϕ .

Set the extra dimension x4 = y defining a circle of radius r with y ≡ y + 2πr. Our spacetime is now

M4 × S1. Periodicity in y - direction implies Fourier - expansion

ϕ(xµ, y) =

∞∑

n=−∞

ϕn(x
µ) exp

(
iny

r

)

.

Notice that the Fourier coefficients are functions of the standrd 4D coordinates and therefore are (an

infinite number of) 4D scalar fields. The equations of motion for the Fourier - modes are wave - equations

∂M∂Mϕ = 0 =⇒
∞∑

n=−∞

(

∂µ∂µ −
n2

r2

)

ϕn(xµ) exp

(
iny

r

)

= 0

=⇒ ∂µ∂µϕn(xµ)− n2

r2
ϕn(x

µ) = 0 .

These are then an infinite number of Klein-Gordon equations for massive 4D fields. This means that

each Fourier mode ϕn is a 4D particle with mass, m2
n = n2

r2 . Only the zero - mode (n = 0) is massless.

Visualize the states as an infinite tower of massive states (with increasing mass proportional to n). This

is called “Kaluza-Klein” - tower and the massive states (n 6= 0 ) are called Kaluza-Klein or momentum

states, since they come from the momentum in the extra dimension:

heightwidthdepthSUSY17.png

In order to obtain the effective action in 4D for all these particles, let us plug the mode - expansion of ϕ

into the original 5D action,

S5D =

∫

d4x

∫

dy

∞∑

n=−∞

(

∂µϕn(xµ)∂µϕn(x
µ)∗ − n2

r2
|ϕn|2

)

= 2πr

∫

d4x (∂µϕ0(x
µ)∂µϕ0(x

µ)∗ + ...) = S4D + ... .
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This means that the 5D action reduces to one 4D action for a massless scalar field plus an infinite sume of

massive scalars in 4D. If we are interested only about energies smaller than 1/r we may concentrate only

on the 0-mode action. If we keep only the 0 - mode (like Kaluza did), then ϕ(xM ) = ϕ(xµ). This would be

equivalent to just ‘truncating’ all the massive fields. In this case speak of ‘dimensional reduction’. More

generally, if we keep all the massive modes we talk about “compactification”, meaning that the extra

dimension is compact and its existence is taken into account as long as the Fourier modes are included.

7.1.3 Vector - Field in 5 Dimensions

Let us now move to the next simpler case of an abelian vector field in 5D, similar to electromagnetic field

in 4D. We can split a massless vector - field AM (xM ) into

AM =







Aµ (vector in 4 dimensions)

A4 =: ρ (scalar in 4 dimensions)
.

Each component has a Fourier - expansion

Aµ =
∞∑

n=−∞

Anµ exp

(
iny

r

)

, ρ =
∞∑

n=−∞

ρn exp

(
iny

r

)

.

Consider the action

S5D =

∫

d5x
1

g2
5D

FMNF
MN

with field - strength

FMN := ∂MAN − ∂NAM
implying

∂M∂MAN − ∂M∂NAM = 0 .

Choose a gauge, e.g. transverse

∂MAM = 0 , A0 = 0 =⇒ ∂M∂MAN = 0 ,

therefore this becomes equivalent to the scalar field case (for each component AM ) indicating an infinite

tower of massive states for each massless state in 5D. In order to find the 4D effective action we can plug

this into the 5D action:

S5D 7−→ S4D =

∫

d4x

(
2πr

g2
5D

F(0)
µνF(0)µν +

2πr

g2
5D

∂µρ0∂
µρ0 + ...

)

,

Therefore we have a 4D theory of a gauge particle (massless), a massless scalar and infinite towers of

massive vector and scalar fields. Notice that the gauge couplings of 4 - dimensional and 5 - dimensional

actions (coefficients of FFMN
MN and FµνF

µν) are related by

1

g2
4D

=
2πr

g2
5D

.

In D spacetime - dimensions, this genealizes to

1

g2
4

=
VD−4

g2
D

where Vn is the volume of the n - dimensional sphere of radius r.

Higher dimensional electromagnetic fields have further interesting issues that we pass to discuss:
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Electric (and Gravitational) Potential

Gauss’ law implies for the electric field ~E and its potential Φ of a point - charge Q:

∮

S2

~E · d~S = Q =⇒ ‖ ~E‖ ∝ 1

R2
, Φ ∝ 1

R
4 dimensions

∮

S3

~E · d~S = Q =⇒ ‖ ~E‖ ∝ 1

R3
, Φ ∝ 1

R2
5 dimensions

So in D spacetime - dimensions

‖ ~E‖ ∝ 1

RD−2
, Φ ∝ 1

RD−3
.

If one dimension is compactified (radius r) like in M4 × S1, then

‖ ~E‖ ∝







1
R3 : R < r

1
R2 : R >> r

.

Analogues arguments hold for graviational fields and their potentials.

Comments on Spin and Number of Degrees of Freedom

We know that in 4D a gauge particle has spin one and carries two degrees of freedom. We may ask what

is the generalization of these results to a higher dimensionalgauge field.

Recall Lorentz - algebra in 4 dimension

[

Mµν , Mρσ
]

= i(ηµσMνρ + ηνρMµσ − ηνσMµρ − ηµρMνσ)

Ji = ǫijkMjk , J ∝ M23 .

For massless representations in D dimensions, O(D − 2) is little group:

Pµ = (E , E , 0 , ... , 0
︸ ︷︷ ︸

O(D−2)

)

The Lorentz - algebra is just like in 4 dimensions, replace µ, ν, ... by M , N , ..., so M23 commutes with

M45 and M67 for example. Define the spin to be the maximum eigenvalue of any M i(i+1). The number

of degrees of freedom in 4 dimensions is 2 (Aµ 7→ Ai with i = 2, 3) corresponding to the 2 photon -

polarizations and (D − 2) in D dimension, AM 7→ Ai where i = 1, 2, ..., D − 2.
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7.1.4 Duality and Antisymmetric Tensor Fields

So far we considered scalar- and vector - fields:

scalar vector index - range

D = 4 ϕ(xµ) Aµ(x
µ) µ = 0, 1, 2, 3

D > 4 ϕ(xM ) AM (xM ) M = 0, 1, ..., D− 1

We will see now that in extra dimensions there are further fields corresponding to bosonic particles of

helicity λ ≤ 1. These are antisymmetric tensor fields, which in 4D are just equivalent to scalars or vector

fields by a symmetry known as ‘duality’ but in extra dimensions these will be new types of particles (that

play an important role in string thoery for instance).

In 4 dimensions, define a dual field - strength to the Faraday - tensor Fµν via

F̃µν := ǫµνρσFρσ ,

then Maxwell’s equations in vacuum read:

∂µFµν = 0 (field - equations)

∂µF̃µν = 0 (Bianchi - identities)

The exchange F ↔ F̃ corresponding to ~E ↔ ~B swaps field - equations and Bianchi - identities (EM -

duality).

In 5 dimensions, one could define in analogy

F̃MNP = ǫMNPQRFQR .

One can generally start with an antisymmetric (p+ 1) - tensor AM1...Mp+1 and derive a field strength

FM1...Mp+2 = ∂[M1
AM2...Mp+2]

and its dual (with D − (p+ 2) indices)

F̃M1...MD−p−2 = ǫM1...MD
FMD−p−1...MD .

Consider for example

• D = 4

Fµνρ = ∂[µBνρ] =⇒ F̃σ = ǫσµνρF
µνρ = ∂σa

The dual potentials that yield field strengths Fµν ↔ F̃µν have different number of indices, 2 - tensor

Bνρ ↔ a (scalar potential).

• D = 6

FMNP = ∂[MBNP ] =⇒ F̃QRS = ǫMNPQRSF
MNP = ∂[QB̃RS]

Here the potentials BNP ↔ B̃RS are of the same type.
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Antisymmetric tensors carry spin 1 or less, in 6 dimensions:

BMN =







Bµν : scalar in 4 dimensions

Bµ5 , Bµ6 : 2 vectors in 4 dimensions

B56 : scalar in 4 dimensions

To see the number of degrees of freedom, consider little group

BM1...Mp+1 7−→ Bi1...ip+1 , ik = 1, ..., (D − 2) .

These are




D − 2

p+ 1



 independent components. Note that under duality,

L =
1

g2
(∂[M1

BM2...Mp+2])
2 ←→ g2(∂[M1

B̃M2...MD−(p+2)])
2

p branes

Electromagnetic fields couple to the worldline of particles via

∫

Aµ dx
µ ,

This can be seen as follows: the electromagnetic field couples to a conserved current in four dimensions

as
∫
d4xAµJ

µ (Jµ = ψ̄γµψ for an electron field for instance). For a particle of charge q, the current can

be written as an integral over the world line of the particle Jµ = q
∫
dξµδ4(x− ξ) such that

∫
J0d3x = q

and so the coupling becomes
∫
d4xJµAµ = q

∫
dξµAµ.

We can extend this idea for higher dimensional objects. For a potential B[µν] with two indices, the

analogue is

∫

Bµν dx
µ ∧ dxν ,

i.e. need a string with 2 dimensional worldsheet to couple. Further generalizations are

∫

Bµνρ dx
µ ∧ dxν ∧ dxρ (membrane)

∫

BM1...Mp+1 dx
M1 ∧ ... ∧ dxMp+1 (p− brane)

Therefore we can see that antisymmetric tensors of higher rank coupled naturally to extended objects.

This leads to n introduction of the concept of a p-brane as a generalisation of a particle that couples

to antisymmetric tensors of rank p + 1. A particle carries charge under a vector field, such as elec-

tromagnetism. In the same sense, p branes carry a new kind of charge with respect to a higher rank

antisymmetric tensor.
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7.1.5 Gravitation: Kaluza-Klein Theory

After discussing scalar-, vector- and antisymmetric tensor - fields

spin deg. of freedom

scalar ϕ 0 1 + 1

vector AM 0 , 1 D − 2

antisymmetric tensor AM1...Mp+1 0 , 1




D − 2

p+ 1





we are now ready to consider the graviton GMN of Kaluza - Klein - theory in D dimensions

GMN =







Gµν graviton

Gµn vectors

Gmn scalars

where µ, ν = 0, 1, 2, 3 and m,n = 4, ..., D − 1.

The background - metric appears in the 5 - dimensional Einstein - Hilbert - action

S =

∫

d5x
√

|G|(5)R , (5)RMN = 0 .

One possible solution is 5 dimensional Minkowski - metric GMN = ηMN , another one is of four-

dimensional Minkowski spacetime M4 times a circle S1, i.e. the metric is of the M4 × S1 - type

ds2 = W (y)ηµνdx
µdxν − dy2

where M3×S1×S1 is equally valid. W (y) is a “warped factor” that is allowed by the symmetries of the

background and y is restricted to the interval [0, 2πr]. For somplicity we will set the wwarp factor to a

constant but will consider it later where it will play an important role.

Consider excitations in addition to the background - metric

GMN = φ−
1
3




gµν − κ2φAµAν −κφAµ
−κφAν φ





in Fourier - expansion

GMN = φ(0)− 1
3




g
(0)
µν − κ2φ(0)A

(0)
µ A

(0)
ν −κφ(0)A

(0)
µ

−κφ(0)A
(0)
ν φ(0)





︸ ︷︷ ︸

Kaluza - Klein - ansatz

+ ∞ tower of massive modes

and plug the zero - mode - part into the Einstein - Hilbert - action:

S4D =

∫

d4x
√

|g|
{

M
2 (4)
pl R− 1

4
φ(0)F (0)

µν F
(0)µν +

1

6

∂µφ(0)∂µφ
(0)

(φ(0))2
+ ...

}

This is the unified theory of gravity, electromagnetism and scalar fields! Its symmetries will be discussed

in the next section.
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Symmetries

• General 4 - dimensional coordinate - transformations

xµ 7−→ x′µ(xν) , g(0)
µν (graviton) , A(0)

µ (vector)

• y - transformation

y 7−→ y′ = F (xµ, y)

Notice that

ds2 = φ(0)− 1
3

{

g(0)
µν dx

µdxν − φ(0)(dy − κA(0)
µ dxµ)2

}

so, in order to leave ds2 invariant, need

F (xµ, y) = y + f(xµ) =⇒ dy′ = dy +
∂f

∂xµ
dxµ , A

′(0)
µ = A(0)

µ +
1

κ

∂f

∂xµ

which is the gauge - transformation for a massless field A
(0)
µ ! This is the way to understand

that standard gauge symmetries can be derived from general coordinate transformations in extra

dimensions, explaining the Kaluza-Klein programme of unifying all the interactions by means of

extra dimensions.

• overall scaling

y 7−→ λy , A(0)
µ 7−→ λA(0)

µ , φ(0) 7−→ 1

λ2
φ(0) =⇒ ds2 7−→ λ

2
3 ds2

φ(0) is a massless ”modulus - field”, a flat direction in the potential. 〈φ(0)〉 and therefore the size

of the 5th dimension is arbitrary. φ(0) is called breathing mode, radion or dilaton. This is a major

problem for these theories. It looks like all the values of the radius (or volume in general) of the

extra dimensions are equally good and the theory does not provide a way to fix this size. It is

a manifestation of the problem that the theory cannot prefer a flat 5D Minkowski space (infinite

radius) over M4 × S1 (or M3 × S1 × S1, etc.). This is the ‘moduli’ problem of extra dimensional

theories. String theories share this problem. Recent developments in string theory allows to fix the

value of the volume and shape of the extra dimension, leading to a large but discrete set of solutions.

This is the so-called ‘landscape’ of string solutions (each one describing a different universe and

ours is only one among a huge number of them).

Comments

• The Planck - mass M2
pl = M3

∗ · 2πr is a derived quantity. We know experimentally taht Mpl ≈
1019 GeV, therefore we can adjust M∗ and r to give the right result. But there is no other constraint

to fix M∗ and r.
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• Generalization to more dimensions

GMN =




gµν − κ2AiµA

j
νhij −κγmnKn

i A
i
µ

−κγmnKm
i A

i
ν γmn





The Km
i are Killing - vectors of an internal manifold MD−4 with metric γmn. The theory corre-

sponds to Yang - Mills in 4 dimensions. Note that the Planck - mass now behaves like

M2
pl = MD−2

∗ VD−4 ∝ MD−2
∗ rD−4 = M2

∗ (M∗r)
D−4 .

In general we know that the highest energies explored so far require M∗ > 1 TeV and r < 10−16 cm

since no signature of extra dimensions has been seen in any experiment. In Kaluza-Klein theories

there is no reason to expect a large value of the volume and it has been usually assumed that

M∗ ≈Mpl.

7.2 The Brane - World - Scenario

So far we have been discussion the standard Kaluza-Klein theory in which our universe is higher dimen-

sional. We have not seen the extra dimensions because they are very small (smaller than the smallest

scale that can be probed experimenatlly at colliders which is 10−16 cm).

We will introduce now a different and more general higher dimensional scenario. The idea here is that

our universe is a p brane, or a surface inside a higher dimenional ‘bulk’ spacetime. A typical example of

this is as follows: all the standard model particles (quarks, leptons but also gauge fields) are trapped on

a three-dimensional spatial surface (the brane) inside a high dimension spacetime (the bulk). Gravity on

the other hand lives on the full bulk spacetime and therefore only gravity probes the extra dimensions.

Therefore we have to distinguish the D - dimensional ”Bulk” - space (background spacetime) from

the (p+1) world - volume - coordinates of a p - brane. Matter lives in the d(= 4) dimensions of the brane,

whereas gravity takes place in the D Bulk - dimensions. This scenario seems very ad-hoc at first sight

but it is naturally realised in string theory where matter tends to live on D-branes ( a particular class of

p-branes corresponding to surfaces where ends of open strings are attached to). Whereas gravity, coming

from closed strings can leave in the full higher dimensional (10) spacetime. Then the correspondence is

as follows:

gravity ←→ closed strings

matter ←→ open strings

heightwidthdepthSUSY18.png

For phenomenological purposes we can distinguish two different classes of brane world scenarios.
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1. Large Extra Dimensions. Let us first consider an unwarped compactification, that is a constant

warp factor W (y). We have remarked that the fundamental higher dimensional scale M∗ is limited

to be M∗ ≥ 1 TeV in order to not contradict experimental observations which can probe up to

that energy. By the same argument we have constrained the size of the extra dimensions r to be

r < 10−16 cm because this is the length associated to the TeV scale of that accelerators can probe.

However, in the brane world scenario, if only gravity feels the extra dimensions, we have to use the

constraints for gravity only. Since gravity is so weak, it is difficult to test experimentally and so far

the best experiments can only test it to scales of larger than 0.1 mm. This is much larger than the

10−16 cm of the standard model. Therefore, in the brane world scenario it is possibe to have extra

dimensions as large as 0.1 mm without contradicting any experiment!

This has an important implication also as to the value of M∗ (which is usually taken to be of order

Mpl in Kaluza-Klein theories. From the Einstein-Hilbert action, the Planck - mass Mpl is still given

by

M2
pl = MD−2

∗ VD−4 .

with VD−4 ∼ rD−4 the volume of the extra dimensions. But now we can have a much smaller

fundamental scale M∗ if we allow the volume to be large enough. We may even try to have the

fundamental scale to be of order M∗ ∼ 1 TeV. In five dimensions, this will require a size of the

extra dimension to be of order r ∼ 108 Km in order to have a Planck mass of the observed value

Mpl ∼ 1018 GeV (where we have used r = M2
pl/M

3
∗ ). This is clearly ruled out by experiments.

However, starting with a six-dimensional spacetime we get r2 = M2
pl/M

4
∗ , which gives r ∼ 0.1mm

for M∗ = 1 TeV. This is then consistent with all gravitational experiments as well as standard

model tests. Higher dimensions would give smaller values of r and will also be consistent. The

inetersting thing about the six-dimensional case is that it is possible to be tested by the next

round of experiments in both, the accelerator experiments probing scales of order TeV and gravity

experiments, studying deviations of the squared law at scales smaller than 0.1mm.

Notice that this set up changes the nature of the hierarchy problem because now the small scale

(i.e. MEW ∼ M∗1 Tev is fundamental whereas the large Planck scale is a derived quantity. The

hierarchy problem now is changed to explain why the size of the extra dimensions is so large to

generate the Planck scale of 1018 GeV starting from a small scale M∗ ∼ 1 TeV. This changes the

nature of the hierarchy problem, becasue it turns it into a dynamical question of how to fix the size

of the extra dimensions. Notice that this will require exponentially large extra dimensions (in units

of the inverse fundamental scale M∗). The hierarchy problem then becomes the problem of finding

a mechanism that gives rise to exponentially large sizes of the extra dimensions.

2. Warped Compactifications This is the so-called Randall-Sundrum scenario. The simplest case is

again a five-dimensional theory but with the following properties. Instead of the extra dimension

being a circle S1, it is now an interval I (which can be defined as an orbifold of S1 by identifying

the points y = −y, if the original circle had length 2πr, the interval I will have half that size,

πr). The surfaces at each end of the interval play a role similar to a brane, being three-dimensional

surfaces inside a five-dimensional spacetime. The second important ingredient is that the warp

factor W (y) is not asumed to be a constant but to be determined by solving Einstein’s equations in

this background. We then have warped geometries with a y - dependent warp - factor exp
(
W (y)

)
,
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in 5 dimensions

ds2 = exp
(
W (y)

)
ηµνdx

µdxν + dy2 .

The volume VD−4 has a factor
+π∫

−π

dy exp
(
W (y)

)
.

Consider then the two ‘branes’, one at y = 0 (‘the Planck brane’) and one at y = πr (‘the standard

model brane’), the total action has contributions from the two branes and the Bulk itself:

heightwidthdepthSUSY19.png

S = Sy=0 + Sy=πr + Sbulk

Einstein’s equations imply W (y) ∝ e−|ky| with k a constant (see hep-ph 9905221 and example sheet

4), so the metric changes from y = 0 to y = πr via ηµν 7−→ exp(−kπr)ηµν . This means that all the

length and energy scales change by changing y. If the fundamental scale is M∗ ∼ Mpl, the y = 0

- brane carries physics at Mpl, but as long as we move away from this end of the interval, all the

energy scales will be ‘red-shifted’ by the factor e−|ky| until we reach the other end of the interval

in which y = πr . This exponential changes of scales is appropriate for the hierarchy problem. If

the fundamental scale is the Planck scale, at y = 0 the physics will be governed by this scale but at

y = r we will have an exponentially smaller scale. In particular we can have the electroweak scale

Mew ∼ Mple
−πkr ∝ 1 TeV if r is only slightly bigger than the Planck length r ≥ 50lpl. This is

a more elegant way to ‘solve’ thehierarchy problem. We only need to find a mechanism to fix the

value of r of order 50lpl! Notice that in this scenario five-dimesions are compatible with experiment

(unlike the unwarped case that required a radius many kilometers large).

Notice that in both scenarios the problem of solving thehierarchy problem has been turned into the

problem of fixing the size of the extra dimensions. It is worth remarking that both mechanisms have

been found to be realised in string theory (putting them on firmer grounds). Studying mechanisms to

fix the ‘moduli’ that determines the size and shape of extra dimensions is one of the most active areas of

reserach within string theory.



80 CHAPTER 7. EXTRA DIMENSIONS



Chapter 8

Supersymmetry in Higher

Dimensions

So far we have been discussed the possible bosonic fields in extra dimensions (scalars, vectors, antisym-

metric tensors and metrics).

What about fermionic fields in extra dimensions?

8.1 Spinors in Higher Dimensions

For a theory of fermions in more than 4 dimensions, need some analogue of the 4 - dimensional Dirac γ

- matrices, i.e. representations of

{

ΓM , ΓN
}

= 2ηMN , ΣMN =
i

4

[

ΓM , ΓN
]

,

where the ΣMN are the generators of SO(1, D − 1).

• Representations in even dimensions D = 2n:

Define

ai =
i

2
(Γ2i−1 + iΓ2i) , i = 1, ..., n

=⇒
{

ai , a
†
j

}

= δij ,
{

ai , aj

}

=
{

a†i , a
†
j

}

= 0 .

Let |0〉 denote the vacuum such that ai|0〉 = 0, then there are states

states |0〉 a†i |0〉 a†ia
†
j|0〉 · · · (a†na

†
n−1...a

†
1)|0〉

number 1 n




n

2



 · · · 1

of total number

1 + n+




n

2



+ ...+ 1 =

n∑

k=0




n

k



 = 2n = 2
D
2 .

81
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The spinor - representation is given by si = ± 1
2

|s1...sn〉 = a
†(s1+ 1

2 )
1 ...a

†(sn+ 1
2 )

n |0〉 .

Note that the generators Σ2i,2i−1 commute with each other. Consider

Si := Σ2i,2i−1 = a†iai −
1

2
,

then the |s1...sn〉 defined above are simultaneous eigenstates of all the Si’s,

Si|s1...sn〉 = si|s1...sn〉 ,

call those |s1...sn〉 Dirac - spinors. In D = 4 dimensions, e.g., n = 2, the states | ± 1
2 ,± 1

2 〉 form a 4

component - spinor. Recall Σ03 = K3 and Σ21 = J3.

Representations in even dimensions are reducible, since the generalization of γ5,

Γ2n+1 = inΓ1Γ2...Γ2n

satisfies
{

Γ2n+1 , ΓM

}

= 0 ,
[

Γ2n+1 , ΣMN

]

= 0 , Γ2
2n+1 = 1 .

All the |s1...sn〉 are eigenstates to Γ2n+1

Γ2n+1|s1...sn〉 = ±|s1...sn〉

with eigenvalue +1 for even numbers of si = + 1
2 and −1 for odd ones. This property is called

chirality, the spinors are ”Weyl - spinors” in that case. Note that

Γ2n+1 = 2nS1S2...Sn

• Representations in odd dimensions D = 2n+ 1:

Just add Γ2n+1 to the ΓM - matrices, there is no extra ai. So the representation is the same as for

D = 2n, but now irreducible. Since odd dimensions don’t have a ”γ5”, there is no chirality. The

spinor - representation’s dimension is 2
D−1

2 .

• Majorana - spinors

Can define a charge - conjugation C such that

CΓMC−1 = ±(ΓM )T .

The + defines a reality condition for ”Majorana - spinors”. If D = 8k+2, then spinors can be both

Majorana and Weyl.
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8.2 Supersymmetry - Algebra

The SUSY - algebra in D dimensions consists of generators MMN , PM , Qα last of which are spinors in D

dimensions. The algebra has the same structure as in 4 dimensions, with the bosonic generators defining

a standard Poincaré algebra in higher dimensions and

{

Qα , Qβ

}

= aMαβPM + Zαβ

where aMαβ are constants and the central charges Zαβ now can also include brane charges. This is the

D > 4 Coleman - Mandula- or H - L - S - generalization of te 4d algebra. The arguments for the proof

are identical to those in 4d and we will skip them here.

A new feature of the Poincaré algebra is that all the generators M2i,2i+1 commute with each other

and can be simultaneously diagonalised as we have seen in the discussion of the higher dimensional

spinorial representation. Then we can have several ‘spins’ defined as the eigenvalues of these operators.

Of particular relevance is the generator M01. This is used to define a weight w of an operator O by

[M01,O] = −iwO

(notice that O and O∗ have the same weight).

8.2.1 Representations of Supersymmetry - Algebra in Higher Dimensions

Consider massless states Pµ = (E , E , 0 , ... , 0) with little - group SO(D − 2). We define the spin to

be the maximum eigenvalue of MMN in the representation. Notice that for the momentum of a massless

particle P1 − P0 = 0 and that

[M01, P1 ± P0] = ∓i(P1 ± P0)

Therefore the weight of P1±P0 is w = ±1. Therefore in the anticommutators we only need to consider

combinations of {Q,Q} in which both Q’s have weight w = +1/2 (so the anticommutator gives weight

w = +1 since the weight w = −1 combination P1 − P0 vanishes).

So starting with arbitrary spinors Qα of the form

| ± 1/2,±1/2, · · · ,±1/2 >

which number N = 2n = 2D/2, 2(D−1)/2 for even and odd dimensionality respectively, having weight

+1/2 it means that Qα is of the form:

|+ 1/2,±1/2, · · · ,±1/2 >

(recall that each entry is an eigenvalue of MMN and the first one is the eigenvalue of M01 which is the

weight.) leading to half of the number of components of Qα: N/∈.
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Furthermore, we can separate the Q’s into Q+ and Q− according to eigenvalues of M23 (standard spin

in 4d). Since P1 + P0 has M23 eigenvalue equal to 0 as it can be easily seen from the MMN , PQ algebra,

then the Q+ and Q− satisfy an algebra of the form {Q+, Q+} = {Q−, Q−} = 0 and {Q+, Q−} 6= 0 which

is again the algebra of creation and annihilation operators.

This implies that a supersymmetric multiplet can be constructed starting from a ‘vacuum’ state of

helicity λ annihilated by the Q− operators: Q−|λ >= 0 and the rest of the states in the multplet are

generated by acting on Q+. Therefore they will be of the form

|+ 1/2,+1/2,±1/2, · · · ,±1/2 >

and the total number will be N/△. Since M23(Q
+|λ >) = (λ− 1/2) (Q+|λ >) then the states will be

|λ >, |λ− 1/2 >, · · · , |λ− 1/2 (N/4) >

Therefore

λmax − λmin = λ− (λ−N/8) = N/8

Imposing |λ| < 2 this implies that N < 25 = 32 but remembering that N = 2D/2, 2(D−1)/2 for even and

odd dimensionality this implies a maximum number of spacetime dimensions D = 10, 11 !!!.

Notice the similraity of this argument with the previous proof that the maximum number of super-

symmetries in 4-dimensions was N = 8. We will see later that precisely N = 8 supergravity is obtained

from the supersymmetric theories in D = 10 and D = 11.

Let’s take a closer look at the spectrum of D = 11 and D = 10:

• D = 11

Only N = 1 - SUSY is possible. The only multiplet consists of

gMN
︸ ︷︷ ︸

graviton

, ψαM
︸︷︷︸

gravitino

, AMNP
︸ ︷︷ ︸

antisymmetric tensor (non - chiral)

For the counting of degrees of freedom for each field we have to recall performing the analysis using

the little groupO(D−2). The graviton in D dimensions carry (D−2)(D−1)/2−1, corresponding to

a symmetric tensor in D−2 dimensions minus the trace, which is in this case (D = 11) 45−1 = 44.

The antisymmetric tensor of rank p + 1 in D dimensions has




D − 2

p+ 1



 degrees of freedom, in

this case is




9

3



 = 84, whereas for the gravitino, the spinor has 2(D−2)/2× (D−2)−2(D−2)/2 the

first factor is the product of the spinor components times the vector components of the gravitino

(since it carries both indices), the subtraction of the degrees of freedom of a spin 1/2 component

is similar to the subtraction of the trace for the graviton). In this case we this gives 128 which

matches the number of bosonic degrees of freedom 84 + 44.

• D = 10

This allows N = 2:

IIA gMN 2ψαM BMN φ AMNP λ

IIB gMN 2ψαM 2BMN 2φ A†
MNPQ λ

I (gMN BMN φ ψαM ) (AM λ) (chiral)
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About antisymmetric tensors AM1...Mp+1 of spin 0 or 1, we know:

• AM couples to a particle
∫
AM dxM , where dxM refers to the world - line

• AMN couples to a string
∫
AMN dxM ∧ dxN (world - sheet)

• AMNP to a membrane ...

• AM1...Mp+1 to a p - brane

The coupling is dependent of the object’s charges:

object charge couples to

particle q AM

string qM AMN

p− brane qM1...Mp
AM1...Mp+1

Charges are new examples of central - charges in SUSY - algebra:

{

Q , Q
}

∝ aP + bM1...MpqM1...Mp

8.3 Dimensional Reduction

Let’s review the general procedure of reducing any number of dimensions bigger than 4 to 4D. We start

with 5 dimensions (one of which has radius R):

M5 = M4 × S1 =⇒ ϕ(xM ) = ϕ(xµ, x5 = y) =
∞∑

n=−∞

ϕn(xµ) exp

(
iny

R

)

and replace one field in 5 dimensions by ∞ many fields in 4 D. If ϕ is massless,

(∂M∂
M )5ϕ = 0 =⇒ (∂µ∂

µ)4ϕn −
n2

R2
ϕn = 0 ,

then ϕn has a mass of n
R .

For dimensional reduction, take the n = 0 - mode,

ϕ(xM ) 7−→ ϕ(xµ)

AM (xM ) 7−→ Aµ(x
µ) , Am(xµ)

︸ ︷︷ ︸

scalars

, m = 4, ..., D

BMN 7−→ Bµν , Bµn
︸︷︷︸

vectors

, Bmn
︸︷︷︸

scalars

ψ
︸︷︷︸

2n

7−→ ψ
︸︷︷︸

1
42n 4D−spinors

.
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Consider e.g. the reduction of 11 D to 4 D: The fundamental fields are garviton gMN that carries

9× 10/2− 1 = 44 degrees of freedom (using the Little group O(9) and the subtraction of −1 corresponds

to the overall trace of the symmetric tensor that is an extra scalar field degree of freedom. The second

field is the gravitino ψαM carrrying 9 × 2(9−1)/2 − 2(9−1)/2 = 8 × 16 = 128. Again the subtraction

is an extra spinor degree of freedom. The final field is an antisymmetric tensor AMNP that carries

9!/3!6! = 84degrees of freedom. Notice we have 128 bosonic degrees of freedom and 128 fermionic degrees

of freedom. Dimensional reduction to 4D leads to:

gMN 7−→ gµν
︸︷︷︸

graviton

, gµm
︸︷︷︸

7 vectors

, gmn
︸︷︷︸

7·8
2 =28 scalars (symmetry!)

AMNP 7−→ Aµνρ , Aµνm
︸ ︷︷ ︸

7 tensors

, Aµmn
︸ ︷︷ ︸

21 vectors

, Amnp
︸ ︷︷ ︸

7·6·5
1·2·3 =35 scalars (antisymmetry!)

ψαM 7−→ ψαM
︸︷︷︸
32
4 =8

, ψαm
︸︷︷︸

7·8=56 fermions

Recall here that a three index antisymmetric tensor in 4 dimensions carries no degrees of freedom and that

two-index antisymmetric tensors are dual to scalars. The spectrum is the same as the N = 8 supergravity

in 4 dimensions (one graviton, 8 gravitini, 35 vectors, 70 scalars and 56 fermions).

There is a theory of N = 8 - supergravity based on the gMN and AMNP . Reducing the dimension from

11 to 4 has an effect ofN = 1 7→ N = 8. This N = 8 - model is non - chiral, but by other compactifications

and p - branes in a 10 - dimensional string - theory can provide chiral N = 1 - models close to the

MSSM. Notice that the statement of why the maximum dimensionality of supersymmetric theories is

11 is identical to the statement that the maximum number of supersymmetries in four-dimensions is

N = 8. Since both thoeries are related by dimensional reduction. Actually, the explicit construction of

extended supergravity theories was originally done by going to the simpler theory in extra dimensions

and dimensionally reduce it.

8.4 Summary

This is the end of these lectures. We have seen that both supersymmetry and extra dimensions provide

the natural way to extend the spacetime symmetries of standard field theories.

They both have a set of beautiful formal properties, but they also address important unsoved physical

questions, like the hierarchy problem.

For supersymmetry we can say that it is a very elegant extension of spacetime - symmetry:

• It may be realized at low energies, the energy of SUSY - breaking of 1 TeV is within experimental

reach (hierarchy, unification, dark matter)

• It may be essential ingredient of fundamental theory (M - theory, strings)

• It is a powerful tool to understand QFTs, especially non - perturbatively (S-duality, seiberg-Witten,

AdS/CFT).
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Both supersymmetry and extra dimensions may be tested soon in experiments. They are both basic

ingredients of string theory and may be relevant only at large energies.


