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Recent work [Raufaste, et al., Soft Matter 18, 4944 (2022)] studied dynamics of a soap
film in the shape of an unstable minimal surface whose evolution is governed in part by
the frictional forces associated with surface Plateau border (SPB) motion. In this note,
we study a variant of this problem in which a half-catenoid bounded by a wire loop and
a fluid bath axisymmetrically surrounds a cylindrical rod with a radius equal to the neck
of the critical catenoid given by the wire loop. When the half-catenoid is brought just
beyond the point of instability, the film touches the cylinder and separates from the bath,
creating an SPB that is dragged upwards along the rod by the now unstable soap film,
and asymptotically relaxes to a new stable annular minimal surface. We find that the
SPB motion is consistent with a theoretical analysis in which the surface tension force
associated with the contracting soap film balances the frictional force f ~ Ca?/? given
by Bretherton’s law, where Ca is the capillary number.
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1. Introduction

Starting from the work of Courant (1940), there has been significant interest in the
dynamics of interconversions between soap film minimal surfaces triggered by boundary
perturbations. These include Courant’s original paradigm of the interconversion between
a Mobius strip and a disc, an example for which later work (Goldstein et al. 2010, 2014;
Pesci et al. 2015; Machon et al. 2016) discovered that the topological rearrangement
is associated with a singularity at the film’s boundary that involves reconnection of the
associated surface Plateau border (SPB). Because, at least at its early stage, the dynamics
of the instability involves a competition between inertial and capillary forces (Keller &
Miksis 1983), the film motion is in the regime of high Reynolds number and is very rapid.

As a means of slowing down such topological rearrangements, we recently introduced
(Goldstein et al. 2021; Raufaste et al. 2022) a version of the classical instability of a
catenoidal soap film in which the rotational symmetry is broken by introducing a surface
cutting the catenoid so that the motion involves SPBs moving along the surface, providing
the bulk of the viscous dissipation. In that work, we found that the speed of the moving
SPB was quantitatively consistent with a balance between capillary forces and viscous
dissipation within the SPB, obeying Bretherton’s law (Bretherton 1961) in which the
viscous force f per unit length scales as f = AyCa?/3, where A is a dimensionless
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FIGURE 1. Experimental setup. (a) A half-catenoid spanning a loop and a fluid bath and
surrounding a cylinder whose radius equal the critical neck radius of the catenoid defined by the
loop. (b) Schematic of setup as the soap film retracts.

constant, v is the surface tension, and the capillary number is Ca = pv/~, with p the
fluid viscosity and v the SPB velocity.

A simple configuration to study the migration of an SPB was proposed in section IV
of Moffatt et al. (2016). This involved placing a rod symmetrically along the axis of a
catenoidal soap film suspended by two circular wires drawn slowly apart just beyond the
separation of critical stability. The collapsing soap film then impacts the rod. and splits
into two parts with SPBs propagating in opposite directions along the rod boundary. In
the above paper, an estimate for the SPB velocity was obtained by dimensional analysis.

In the present paper, we refine this model in a manner that allows experimental
realisation and control. We again do so in the context of a catenoid brought to its point of
criticality, by introducing a coaxial central cylinder whose radius is chosen to correspond
to the neck of the critical catenoid supported by the loop. We take advantage of the
fact (Salkin et al. 2014) that a soap film minimal surface connecting a circular support
to a soap solution below is exactly a half-catenoid (Fig. 1(a)). Thus, by slowly raising
the supporting loop the film evolves through a continuum of stable half-catenoids with
progressively smaller neck radii, until it reaches the critical state and touches the cylinder.
Beyond the critical state, an SPB disconnects from the bath and moves upward under the
action of the film’s surface tension and resisted by dissipation within the SPB, eventually
rising to the level of the upper loop to form a stable minimal surface in the form of an
annulus. This setup therefore achieves a controlled interconversion between two minimal
surfaces: the half-catenoid and the annular disk. In the following, we describe a theoretical
approach to this dynamical process and its comparison with experiments.

2. Theory and Experimental Verification

The geometry of the setup is shown in Fig. 1(b): A wire loop of radius R held at a
distance less than dp.x above a soap solution (dpnax = 0.663R is the critical height of
a half-catenoid) supports a soap film whose shape is the function {(z) surrounding a
central cylinder of radius ry = 0.553 R, the corresponding critical neck radius. The initial
condition of the surface is the critical half-catenoid where the contact line of the surface
with the cylinder coincides with the surface of the bath. When the loop is moved beyond
dmax the SPB detaches from the bath and begins its motion up the cylinder.

While the motion of the soap film is a moving boundary problem in which the shape of
the film is to be determined as part of the dynamics, we explore the simplest possibility,
a quasistatic approximation in which, at every instant of time, the moving film is taken
to be an (unstable) equilibrium catenoid that connects the present location of the SPB
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FIGURE 2. Geometry of Plateau borders for two topologically equivalent situations. (a)
Relaxation of a half-catenoid. (b) Relaxation of a bubble with an embedded ring in a tube.
(c) Pathway of smooth interconversion between (a) and (b).

to the wire loop above. The motion is then governed by a balance between the film’s
capillary force and the viscous drag within the moving SPB.

We adopt a coordinate system with the origin on the plane of the loop, with positive z
downwards, as in Fig. 1(b). Let d(t) be the time-dependent SPB location measured from
the origin, z = 0. Under the quasistatic approximation the shape of the moving surface
can be found by a standard analysis. The general form of the catenoid is

¢(2) = acosh (Z;C>, (2.1)

where the constants a and ¢ are determined by the boundary conditions. These are
¢(0) = R and, for all d = d(t) < dmax, ¢(d) = ro. We adopt a system of units made
dimensionless with the loop radius R and define
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and find from the boundary conditions the result
D D
B = cosh <> — /1 — a?sinh () , (2.3)
@ @

which can be solved to yield a transcendental equation relating D and «,

Dy =aln lﬂli—\/i VﬁIQ—_o;ﬂ . (2.4)

These two branches combine to give a loop in the aD-plane. The contact angle 6 at the
SPB, defined to be 0 when the film is tangent to the cylinder, is given by

6 =—tan" [Sinh (Da‘ —cosh™! (;))} . (2.5)

The motion of the soap film arises from a balance between the capillary force v cos 6 per
unit length of SPB, with 6 given by (2.5), and frictional forces that arise from flows within
the Plateau border. The latter have been considered previously by Cantat et al. (2004);
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FiGURE 3. Time dependence of the SPB position in scaled coordinates. Data points are from
experiments, blue line is the solution to (2.7) for ¢ = 3/2, and red line is for ¢ = 1.

Cantat & Delannay (2005); Terriac et al. (2006), who noted in steady-state problems that
Bretherton’s law holds. As shown in Fig. 2, the Plateau border problems of a moving
bubble in a tube and the present situation are related by topological inversion. Thus we
expect that per unit length of the contact line between the film and the central cylinder
there is a frictional force of the form previously used to describe the motion of a bubble
in a tube, with a general power-law exponent ¢,

where A is a dimensionless constant and ¢ = 2/3 corresponds to Bretherton’s law. For
the case of interest (¢ = 2/3), we define a rescaled time T = ~vt/(uRA'?), and then the
scaled SPB position obeys the equation

fTZT) = —cos(9(D))/1 = — (a(ﬂD))l/q’

where the second relation follows from (2.5) by straightforward but lengthy algebra,
and a(D) is given implicitly by (2.4). While it is possible to obtain an implicit solution
for T(«) in terms of hypergeometric functions for any power ¢ < 1, the result is not
particularly illuminating and a numerical solution is straightforward. The function D(T")
is shown in Fig. 3 for ¢ = 2/3, 1. One can easily show that the asymptotic behaviour of D
for large T is D ~ T2 when ¢ = 2/3, which contrasts strongly with exponential decay
obtained when the frictional law is taken to be linear in the capillary number (¢ = 1).
To test which power law exponent ¢ governs the SPB motion, we employed an
apparatus consisting of a 50ml Falcon tube (diameter 39 mm) attached by its threaded
end to a large plastic Petri dish (inner diameter 135 mm, height 15 mm). The upper loop
supporting the soap film is a section of Tygon tubing (diameter 8 mm) attached to a
shelf extending out from the bottom of a plastic cylinder that fits tightly around the
Falcon tube and smoothly slides along it. The shelf is perforated in order to allow free
circulation of air in and out of the half-catenoid region. The Petri dish was filled with a
soap solution to ~ 2mm below the top. The soap solution was a mixture of Fairy liquid
detergent, glycerol and water using published proportions (recipe C in Lalli et al. (2023)).
Videos of the meniscus motion were captured at 200 frames/sec using a Phantom V641

(2.7)
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high speed camera equipped with a Zeiss macro lens (f = 60 mm). The SPB motion was
tracked by hand from those videos using Image J. Figure 3 shows the average data from
two independent sessions, consisting respectively of 8 and 10 independent runs, plotted
against the scaled time T from theory. At long times, the data clearly favour ¢ = 2/3.
The deviations visible at early times may arise from a breakdown of the quasi-static
approximation when the film separates from the bath. Taking the value ¢ = 2/3, there
is one free parameter to compare experiment and theory, the characteristic time 7 that
maps the dimensional time ¢ to the scaled time T via T = t/7, where 7 = RA3/21 /. We
find 7 = 0.04s. Using R = 4cm, u = 2cP, and the estimated v = 25 dyne/cm, we find
A =11 — 18, consistent in scale with previous observations by Cantat et al. (2004) and
Cantat & Delannay (2005).

The agreement between theory and experiment reported provides further validation of
the applicability of Bretherton’s law to the motion of Plateau borders, and also a pathway
forward in the quantitative description of more complex topological rearrangements of
soap films (Goldstein et al. 2014). Chief among these are those in which the Plateau
border undergoes a reconnection at the moment of singularity (Goldstein et al. 2010).
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